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Abstract: Owing to its immense surface area, the mucosal surface of the gastrointestinal (GI) 

tract is continually subject to numerous endogenous and exogenous antigens capable of induc-

ing an inflammatory response in the appropriate setting. In certain individuals, these inflam-

matory responses may also become dysregulated and result in the development of chronic GI 

inflammation, such as inflammatory bowel disease. Furthermore, gastric and colonic malignant 

processes are extremely common and, to date, still have high mortality rates. As a result, con-

tinuing research has focused on elucidating potential molecular mechanisms involved in these 

processes in an attempt to understand the pathophysiology of these diseases and, potentially, 

aid in the development of novel therapeutics. Interleukin-8 (CXCL8) is a small molecular 

weight chemokine identified almost 30 years ago. Ongoing research has demonstrated that this 

factor contributes to a multitude of pathophysiological processes within the GI tract, including 

chronic GI inflammatory states, such as inflammatory bowel disease, and gastric and colonic 

carcinomas. This review highlights the role of CXCL8 in GI inflammation and malignancy. It 

describes molecular mechanisms involved in promoting and restraining CXCL8 production in 

GI cells and how CXCL8 contributes to the pathophysiology of a variety of GI inflammatory 

processes. Finally, this review describes a variety of mechanisms by which CXCL8–CXCL1/2 

signaling may contribute to GI malignancy.

Keywords: CXCL8, inflammatory bowel disease, IBD, colon cancer, IL-8, Crohn’s disease, 

ulcerative colitis

Introduction
The gastrointestinal (GI) tract represents the largest mucosal surface in contact with the 

external environment and, as such, is exposed to numerous endogenous and exogenous 

antigens capable of inducing an inflammatory response in the appropriate setting. In 

addition, many malignant processes occur within the GI tract, and continual exposure 

to chronic inflammation increases the likelihood of these processes.1,2 Inflammatory 

bowel disease (IBD) is subdivided into two main entities: Crohn’s disease and ulcerative 

colitis (UC). These diseases are chronic, relapsing, and remitting disorders of the GI 

tract that result from a combination of genetic, environmental, and immune factors. 

The incidence and prevalence of Crohn’s disease and UC appears to be increasing 

worldwide, and both represent significant economic burdens to health care systems 

and countries.3,4 Similarly, colorectal and gastric cancers are two of the most com-

monly identified malignancies and leading causes of mortality worldwide.5,6 To date, 

our understanding of these disease processes remains incomplete, and resistance to 

standard therapeutics has been reported for patients with IBD and gastric or colorectal 
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cancer (CRC). The mechanisms underlying this resistance 

remain unclear.7,8 As such, ongoing research has focused 

on elucidating the molecular mechanisms involved in the 

development of GI inflammatory and malignant processes 

in the hopes of identifying novel therapeutic targets.

Nearly 30 years ago, three separate research groups 

simultaneously described a small molecular weight protein 

secreted by stimulated human mononuclear cells that induced 

polymorphonuclear cell (PMN) chemotaxis, degranulation, 

and superoxide and hydrogen peroxide (H
2
O

2
)  production.9–11 

As such, the compound plays a critical role in the body’s 

antimicrobial defense mechanisms. This product was sub-

sequently named interleukin-8 and now often abbreviated 

as IL-8 or CXCL8 with both terms being used interchange-

ably.12,13 Research has subsequently demonstrated that 

CXCL8 is involved in a variety of processes apart from 

PMN activation, and its expression has been observed in 

a multitude of acute and chronic inflammatory processes, 

including many GI disease states. Its expression has been 

reported in a variety of resident and invading cell types within 

the GI tract, including monocytes, macrophages, endothelial 

cells, epithelial cells, fibroblasts, and neutrophils. Indeed, 

CXCL8 expression occurs acutely during GI infection caused 

by bacteria, viruses, and parasites, while elevated levels of 

CXCL8 are also reported in patients with chronic GI inflam-

mation. In addition, sustained CXCL8 expression is reported 

in tumorous GI epithelial cell lines and in mucosal biopsy 

tissues collected from patients with gastric cancer or CRC. 

As a result, the expression or dysregulation of CXCL8 has 

been postulated to contribute to the pathophysiology of vari-

ous disease states, and furthermore, targeting its expression 

may be of therapeutic benefit. In addition, the measurement 

of CXCL8 has been proposed as a potential diagnostic or 

prognostic marker for several GI disease states. The following 

review provides a summary of our current understanding of 

how CXCL8 expression contributes to the pathophysiology 

of various GI disease states.

Classification as a CXCL family 
chemokine
The primary amino acid sequence of interleukin-8 contains 

two N-terminal cysteine residues separated by a single amino 

acid that promotes formation of two disulfide bonds in higher-

level amino acid structures.14,15 The presence of this sequence 

results in its assignment to the CXCL family of chemokines, 

hence the abbreviation CXCL8. Furthermore, the primary 

amino acid sequence of CXCL8 contains a glutamate–leucine–

arginine (ELR+) sequence proximal to the CXC motif that 

is essential for binding to its two receptors;16–18 deletion or 

modification of this motif attenuates CXCL8 receptor bind-

ing.19,20 The presence of these motifs designates CXCL8 as 

an ELR+ CXC chemokine. The CXCL8 gene is located on 

chromosome 4q12-13 in close approximation to other ELR+ 

CXC chemokines that perform similar functions, includ-

ing CXCL1 (growth-related oncogene α; GROα), CXCL2 

(GROβ), CXCL3 (GROγ), CXCL5 (epithelial-derived 

neutrophil-activating peptide 78; ENA-78), and CXCL7 (neu-

trophil-activating peptide 2; NAP-2).15,21,22 Like several genes 

in this cluster, the CXCL8 gene contains four exons, three 

introns, and single CAT- and TATA-like structures.23 Together, 

these genes share ∼30%–50% amino acid homology.15 As 

mentioned, CXCL8 primarily binds two receptors that are 

responsible for the majority of activated intracellular signaling 

events and are now designated as CXCR1 and CXCR2.24,25 

Characterization of these receptors has also led to their iden-

tification on a variety of cell types, including endothelial 

cells, epithelial cells, fibroblasts, and neutrophils.26,27 This 

suggests that CXCL8 has a multitude of effects that extend 

beyond PMN activation and chemotaxis. Moreover, although 

CXCR1 and CXCR2 are highly homologous, differences 

in intracellular signaling cascades and biological processes 

activated following CXCL8 binding have been described.28 

Molecular studies also indicate that only CXCL6 and CXCL8 

are capable of binding CXCR1, while CXCR2 is capable 

of binding CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, 

CXCL7, and CXCL8.29,30 Therefore, although CXCL8 may 

structurally resemble other proinflammatory mediators of the 

ELR+ CXCL family, the differences in receptor–ligand bind-

ing suggest a, potentially, nonredundant role for this factor in 

a variety of biological or pathological processes. See Tables 1 

and 2 for chemokine family members related to CXCL8 and 

ELR+ CXCL members.

Molecular signaling cascades and 
CXCL8 expression
An abundance of research examining the molecular mecha-

nisms of CXCL8 mRNA transcription has been performed 

and aided in the study of how this chemokine contributes to 

disease in various organ systems, including the GI tract. Initial 

experiments using in vitro intestinal epithelial monolayers 

have demonstrated that GI CXCL8 mRNA transcription is 

regulated via the cooperation of inducible and constitutively 

expressed transcription factors, whereby the constitutively 

expressed transcription factors activator protein-1 (AP-1) and 

cis-regulatory enhancer binding protein-like factor cooper-

ate with inducible nuclear factor κB (NF-κB) transcription 
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factors to induce expression of CXCL8 mRNA.31–35 These 

factors bind cis-acting elements within the −94 to −71 region 

of the CXCL8 promoter to induce mRNA transcription.35,36 

The NF-κB pathway has received much attention for its role 

in CXCL8 gene transcription, and numerous studies have 

demonstrated aberrant activation of this pathway during GI 

disease states.

The NF-κB pathway promotes transcription of a vari-

ety of anti- and proinflammatory mediators, including 

CXCL8, and is subdivided into a classical and alternative 

pathway based on activating stimuli and composition of 

transcription factor subunits. NF-κB transcription factors 

are homo- or heterodimers of five different subunits: p50/

p105, p52/p100, p65 (RelA), RelB, or c-Rel.37 In the absence 

of proinflammatory stimuli, these transcription factors are 

bound to inhibitor of κB (IκB) proteins and retained within 

the cytosol so as to prevent their nuclear translocation and 

subsequent induction of gene transcription.37,38 Activation of 

the classical NF-κB pathway occurs in response to a variety 

of host- or pathogen-derived proinflammatory stimuli that 

bind different receptor families, including toll-like receptors 

(TLRs),39 nucleotide oligomerization domain-containing 

protein 1 and 2,40 interleukin-1 receptor (IL-1R),41 and tumor 

necrosis factor α (TNFα) receptor.42,43 Activation of the 

NF-κB pathway is also modulated by microtubule-associated 

serine/threonine protein kinase-3 (MAST3), and alteration of 

this pathway has been shown to affect CXCL8 secretion.44 

Moreover, CXCL8 expression and activation of the NF-κB 

pathway has been reported to occur in response to reactive 

oxygen species (ROS), hypoxia, and acidosis.45 It should be 

noted, however, that these experiments have not all been 

performed within GI experimental models, and additional 

experiments are required to confirm the relevance of these 

observations in the GI tract. Upstream signaling cascades 

from these various receptors converge and phosphorylate 

residues on the IκB kinase (IKK) complex to activate the 

classical NF-κB pathway; this complex is composed of two 

kinase subunits, IKKα and IKKβ, and a regulatory subunit 

IKKγ/NEMO.46 Activation of the classical pathway results 

in phosphorylation of Ser177 and Ser181 residues on IKKβ 

and downstream phosphorylation, ubiquitination, and pro-

teasomal degradation of IκB proteins.47,48 Degradation of IκB 

proteins permits the nuclear translocation of p65-containing 

NF-κB transcription factors that subsequently induce CXCL8 

mRNA transcription.49,50

In the GI tract, CXCL8 mRNA transcription occurs 

following activation of the classical NF-κB pathway. The 

upstream signaling mechanisms involved in NF-κB p65-

induced CXCL8 mRNA transcription may be cell specific. 

In vitro experiments using gastric epithelial cells and 

Table 1 CXCL chemokine family related to CXCL8

CXC family 
(human)

Alternative 
names

Chromosome Mouse 
ortholog

Alternative 
names

Receptor(s) ELR+ References

CXCL1 GROα 4q13.3 CXCL1 GRO/KC CXCR1, CXCR2 Yes 303,304
CXCL2 GROβ 4q13.3 CXCL2 MIP-2 CXCR2 Yes 303,304
CXCL3 GROγ 4q13.3 GM1960 Dcip1 CXCR2 Yes 303,304
CXCL4 PF4 4q13.3 CXCL4 PF4 CXCR3b No 303,304
CXCL5 eNA-78 4q13.3 CXCL5 LIX CXCR2 Yes 303,304
CXCL6 GCP-2 4q13.3 CXCR1, CXCR2 Yes 303,304
CXCL7 NAP-2 4q13.3 CXCL7 Ppbp Yes 303,304
CXCL8 IL-8 4q13.3 CXCR1, CXCR2 Yes 303,304
CXCL9 MIG 4q21.1 CXCL9 MIG CXCR3, CXCR3b No 303,304
CXCL10 IP-10 4q21.1 CXCL10 IP-10 CXCR3, CXCR3b No 303,304

Table 2 eLR+ CXCL chemokine family members related to CXCL8

CXC family  
(human)

Alternative  
names

Chromosome Mouse  
ortholog

Alternative  
names

Receptor(s) References

CXCL1 GROα 4q13.3 CXCL1 GRO/KC CXCR1, CXCR2 303,304
CXCL2 GROβ 4q13.3 CXCL2 MIP-2 CXCR2 303,304

CXCL3 GROγ 4q13.3 GM1960 Dcip1 CXCR2 303,304

CXCL5 eNA-78 4q13.3 CXCL5 LIX CXCR2 303,304
CXCL6 GCP-2 4q13.3 CXCR1, CXCR2 303,304
CXCL7 NAP-2 4q13.3 CXCL7 Ppbp 303,304
CXCL8 IL-8 4q13.3 CXCR1, CXCR2 303,304
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monocytic THP-1 cells exposed to Helicobacter pylori dem-

onstrated that these two cell lines utilize different upstream 

signaling cascades for CXCL8 mRNA transcription.51 

Stimulation of TLR2 is also implicated in H. pylori-induced 

E-cadherin disruptions, which have a well-established 

association with the development of gastric cancer. Indeed, 

recent findings have established that H. pylori infection 

is associated with elevated serum levels of an 80 kDa 

E-cadherin ectodomain in human patients. This was thought 

to arise via a heat-labile H. pylori surface component that 

activated the host protease calpain to cleave E-cadherin in 

human gastric cells, independently of the virulence factors 

CagA and VacA.52 Whether and how these pathways interact 

with CXCL8 signaling in gastric epithelial cells have yet 

to be assessed. Regardless, numerous in vitro experiments 

have shown that pathogen- or host-derived proinflammatory 

mediators promote NF-κB p65 nuclear accumulation and 

subsequent transcription and translation of CXCL8 within 

GI cell lines.53–58 Moreover, inhibition of the classical NF-κB 

pathway in in vitro intestinal epithelial monolayers reduces 

CXCL8 mRNA production.31 Similarly, mice infected with 

the attaching and effacing pathogen Citrobacter rodentium 

display elevated levels of activated NF-κB transcription 

factors and a paralleled increase in the CXCL8-related 

chemokines CXCL1 (KC) and CXCL2 (MIP-2) that 

were attenuated following NF-κB inhibition.59 In separate 

experiments, NF-κB p65 subunit inhibition ameliorated 

2,4,6-trinitrobenzenesulfonic acid-induced colitis in vivo; 

however, these experiments did not analyze expression of 

CXCL8-related chemokines.60 These in vivo and in vitro 

experimental observations are further corroborated with 

data collected from human patients. Mucosal biopsy tis-

sues collected from patients with H. pylori-induced gastritis 

display elevated levels of nuclear NF-κB p65 and increased 

levels of CXCL8 that parallel an increase in PMN tissue 

infiltration.61–66 Similarly, both activated NF-κB p65 and 

elevated CXCL8 have been observed in inflamed mucosal 

biopsy specimens collected from IBD patients, and increased 

expression of activated NF-κB p65 and CXCL8 directly 

correlated with indices of inflammation.60,67–70 Elevated 

levels of activated NF-κB p65 have also been reported in 

gastric and CRC lesions;71–73 however, association studies 

examining increased nuclear accumulation NF-κB p65 and 

elevated CXCL8 have not been performed. Collectively, 

these studies demonstrate the importance of the classical 

NF-κB pathway in contributing to CXCL8 production 

within the GI tract. Furthermore, they highlight the impor-

tance of this pathway in contributing to CXCL8-mediated 

GI disease. See Figure 1A and B for details on factors 

impacting CXCL8 and possible outcomes in inflammation 

and neoplasia. For details on mouse orthologs and ELR+ 

CXCL chemokine expression in mice see Table 1 and 

Figure 2 for details.

Restraining NF-κB activation and  
CXCL8 production
Estimates suggest that the human GI tract contains ∼1014 

microorganisms with an estimated collective biomass of 

more than 1 kg.74–76 As a result, cells within the GI tract are 

constantly exposed to a multitude of potentially noxious 

and/or inflammatory stimuli capable of activating the NF-κB 

pathway and promoting transcription of various proinflam-

matory cytokines, including CXCL8. Despite this, the GI 

tract and its microbiota have evolved to exist in a state of 

equilibrium.77,78 A key mechanism that limits inflammation 

to a low level is the secretion of a mucus blanket which, in 

health, separates the microbiota from the host epithelium. In 

addition, researchers have described a variety of mechanisms 

employed by GI tissues aimed at attenuating activation of the 

NF-κB pathway and transcription of proinflammatory genes, 

such as CXCL8. One of the most basic mechanisms employed 

by the GI tract to ensure homeostasis with the gut microbiota 

is via the downregulation of receptor molecules capable of 

activating the classical NF-κB pathway on epithelial cells 

lying in close apposition to the microbiota. Experiments have 

demonstrated that in vitro intestinal epithelial monolayers are 

hyporesponsive to TLR2 and TLR4 stimulation due to down-

regulation of these receptors. Notwithstanding, these cells 

were capable of activating the classical NF-κB pathway and 

inducing CXCL8 mRNA transcription following transgenic 

expression of TLR2 or TLR4 and administration of their 

respective ligands.79,80 Importantly, experiments have dem-

onstrated that administration of proinflammatory interferon 

γ or TNFα to in vitro intestinal monolayers restores TLR4 

expression and NF-κB-mediated CXCL8 production induced 

via lipopolysaccharide.81 These experiments parallel observa-

tions of mucosal biopsy tissues collected from IBD patients, 

whereby areas of active inflammation were associated with 

increased TLR2 and TLR4 expression.82–84 Another mecha-

nism employed by GI tissue to maintain homeostasis with 

resident microbiota is the preferential expression of receptors 

on epithelial surfaces separated from the gut microbiota. For 

example, the flagellin receptor TLR5 is primarily expressed 

on the basolateral surface of intestinal epithelial monolayers 

to ensure TLR5-mediated induction of the NF-κB pathway, 

and subsequent CXCL8 expression only occurs following 
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disruption of monolayer integrity, such as during infection 

with Salmonella typhimurium.85,86 Similarly, TLR9 ligation 

activates distinctive receptor-signaling cascades within intes-

tinal epithelial cells depending on the intestinal epithelial 

surface, whereby only basolateral TLR9 ligation resulted in 

NF-κB activation and CXCL8 secretion.87 These processes 

may be actively altered by enteropathogens, as illustrated in 

the Campylobacter jejuni-induced disruption of protective 

apical TLR9, which in turn primes the gut for heightened 

levels of CXCL8 and inflammation upon exposure to proin-

flammatory stimuli.88 Collectively, these results demonstrate 

that the GI epithelium, at least partially, regulates CXCL8 

transcription via the NF-κB pathway through reduced expres-

sion and/or localization of TLRs.

In order to restrain inflammatory responses, the GI tract 

also expresses molecules that negatively regulate TLR/IL-1R 

proinflammatory signaling cascades, such as single IgG 

IL-1-related receptor (SIGIRR) and Toll-interacting protein 

(TOLLIP).80,89–91 These inhibitory proteins are essential for 

attenuating GI CXCL8 responses and associated with a 

variety of clinical GI disease states. SIGIRR and TOLLIP 

expressions are downregulated in mucosal biopsy tissues 

collected from areas of active inflammation in IBD patients.92 

These molecules are also downregulated in immature GI 

tissues collected from patients with necrotizing enterocolitis 

and are associated with a concomitant increase in CXCL8 

expression.93 Decreased TOLLIP mRNA has been found in 

association with increased levels of TLR mRNA in colon 

cancer and H. pylori-induced gastritis.94,95 Interestingly, 

decreased TOLLIP mRNA and increased TLR mRNA are 

observed as progression from H. pylori-induced gastritis to 

adenocarcinoma occurred.94 These observations may help, 

at least partially, explain experimental data suggesting that 

CXCL8 is the most upregulated gene in in vitro gastric 

epithelial cells exposed to H. pylori.96 Clinical observations 

suggesting these inhibitory proteins attenuate CXCL8 pro-

duction are supported experimentally. The genetic ablation 

of TOLLIP and SIGIRR in vitro results in enhanced NF-κB 

responses and increased CXCL8 mRNA transcription, while 

their overexpression leads to blunted CXCL8 expression.90 

Epithelial SIGIRR deficiency in vivo increases susceptibility 

to dextran sulfate sodium (DSS)-induced colitis, enhances 

Inflammation
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Figure 1 An overview of CXCL8 gene regulation and the signalling cascades downstream of CXCL8-mediated CXCR1/2 activation.
Notes: (A) Phosphorylation of IκBα and JAK proteins following receptor activation (eg, IL-1R, TLRs, etc) allows for the nuclear translocation of transcription factors and 
the subsequent expression of target genes, such as CXCL8.39–50 (B) The effects of CXCL8-activated signalling cascades on the pathogenesis of inflammatory bowel diseases 
and tumorigenesis (see Tables 3 and 4).
Abbreviations: IL-1R, interleukin-1 receptor; TLRs, toll-like receptors; PAMPs, pathogen-associated molecular patterns; DAMPs, damage-associated molecular patterns.
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expression of CXCL8-related chemokines, and increases tum-

origenesis rates following DSS + azoxymethane treatment.97 

Similarly, genetic deletion of TOLLIP in vivo enhances  

susceptibility to experimental models of colitis and leads to 

upregulated NF-κB activity and expression of CXCL8-related 

cytokines.98 Collectively, these results demonstrate that the 

GI tract expresses molecules capable of dampening CXCL8 

expression, and absence of these molecules can result in 

pathological CXCL8 expression. This pathological expression 

of CXCL8 may contribute to the development of chronic GI 

inflammatory disease states or malignancies.

CXCL8 gene polymorphisms
Although the CXCL8 promoter region is essential to mRNA 

transcription, gene polymorphism studies indicate that other 

regions within the gene may contribute to CXCL8 production 

and, potentially, susceptibility to certain GI disease states. 

For example, multiple polymorphisms within the CXCL8 

gene are thought to influence susceptibility to the develop-

ment of irritable bowel syndrome.99 A collection of research 

also suggests that polymorphisms at position −251 of the 

CXCL8 gene enhance susceptibility to a variety of GI disease 

states. Individuals with adenosine residues at position −251 

(−251A) of the CXCL8 gene are thought to be at increased 

risk of infection from Clostridium difficile, enteroaggrega-

tive Esherichia coli, and H. pylori, and following infection, 

have elevated inflammatory responses and/or more clinically 

significant disease.100–109 It is currently unknown whether 

these polymorphisms enhance susceptibility to other GI 

pathogens. Moreover, −251A polymorphisms are thought to 

increase susceptibility to the development of gastric cancer 

and IBD.110–114 It is worth noting that the reproducibility of 

some of the above studies has been questioned. As a result, it 

has been postulated that the presence of these mutations may 

influence the development of GI disease only within certain 

populations.115 It is unknown whether other CXCL8 gene 

polymorphisms contribute to the development of certain GI 

diseases. Research to date examining the relationship between 

CXCL8 gene polymorphisms and GI disease has focused 

on the −251 region, and additional research is required to 

clarify whether polymorphisms at other sites also factor into 

susceptibility to GI inflammation or cancer. Other CXCL8 

gene polymorphisms are associated with a variety of inflam-

matory and malignant states, including osteoarthritis,116 ovar-

ian cancer,117 and systemic lupus erythematosus nephritis.118 

Additionally, it is currently unknown how −251A polymor-

phisms affect CXCL8 transcription. To date, experiments 

have only demonstrated that lipopolysaccharide stimulation 

of peripheral blood cells collected from patients with −251A 

polymorphisms results in enhanced CXCL8 production;119 the 

mechanism via which this occurs remains obscure.

Interleukin-8 protein
CXCL8 is synthesized as a 99 amino acid precursor 

and secreted following proteolytic processing of leader 

sequences. These sequences are variable, approximately 20 

amino acid residues in length, and cleaved by a variety of 

extracellular enzymes. The variability associated with the 

cleavage site results in the generation of an assortment of 

CXCL8 isoforms.57 The most commonly reported active 

CXCL8 isoforms contain 77 (CXCL8 1-77) or 72 (CXCL8 

6-77) amino acids. CXCL8 6-77 is primarily secreted by 

activated macrophages and monocytes and has potent 

effects on PMNs.62,105 It is compared to CXCL8 1-77 largely 

derived from endothelial cells and fibroblasts.120,121 Active 

CXCL8 isoforms can be further processed via a myriad of 

factors that further modulate CXCL8 potency. Importantly, 

the ELR motif must remain intact for its stimulatory effect 

on PMNs, while CXCL8 1-77 can be further processed by 

thrombin into the more potent isoform CXCL8 6-77.122 

Moreover, PMN-derived cathepsin G, elastase, matrix met-

alloproteinase-9 (MMP-9; gelatinase B), and proteinase-3 

are capable of proteolytically processing CXCL8 1-77 into 

more potent isoforms.123,124 Therefore, PMNs may induce a 

positive feedback loop that further potentiates the recruit-

ment of additional PMNs. It has recently been proposed 

that modification of CXCL8 via various factors be divided 

into three distinct groups. The first group involves isoforms 

of CXCL8 generated by cleavage with aminopeptidases, 

which yields isoforms of 75–79 amino acids in length with 

intermediate activity toward PMNs. The second group 

includes CXCL8 isoforms of 69–72 amino acids in length 

that are generated by proteolytic cleavage and are highly 

potent PMN chemoattractants. Finally, the third group is 

generated via modification of arginine to citrulline residues 

and is a weak PMN chemoattractant.125 Although citrulli-

nation of CXCL8 dampens PMN tissue responses, it may 

enhance CXCL8’s ability to mobilize PMNs within the 

blood stream.126 Collectively, these studies demonstrate that 

CXCL8 exists in a multitude of isoforms that are subject 

to modification by the surrounding host tissue. It remains 

largely unknown how proteolytic modifications to CXCL8 

affect various inflammatory or malignant GI disease states. 

See Figure 1A and B and Tables 3 and 4 for a review of 

a CXCL8 signaling and in promoting inflammation and 

neoplasia.
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Table 3 The role of CXCL8 in promoting inflammation

Function Mechanism(s) References

Increased tissue recruitment of PMNs –  enhanced egression of PMNs from the bone marrow
–  Extravasation of PMNs from the vasculature through the promotion of firm  

adhesion to the endothelium via inside-out signaling to PMN integrins
–  Induction of PMN chemotaxis toward infectious/inflammatory sites within tissues  

as an intermediate chemoattractant

151–169

enhanced respiratory burst in  
neutrophils

–  Priming of NADPH-oxidase activity thorough the upregulation of fMLF receptors,  
increased intracellular calcium concentrations, and the phosphorylation of its  
p47phox and p67phox subunits

186–192

enhanced PMN degranulation –  Induction of degranulation through the activation of CXCR1 and CXCR2 on PMNs 185,213–215
Preclinical studies and early clinical  
trials with CXCL8, CXCR1/2 inhibitors

–  CXCR2 inhibitors used in colorectal cancer models, arthritis, IBD (DSS), and  
clinical trials for RA, COPD, asthma, and psoriasis

298–312

Abbreviations: PMNs, polymorphonuclear cells; NADPH, nicotinamide adenine dinucleotide phosphate; fMLF, formyl-methionyl-leucyl phenylalanine; IBD, inflammatory 
bowel disease; DSS, dextran sulfate sodium; RA, rheumatoid arthritis.

MMP-9-mediated proteolytic processing
Several proteases capable of processing CXCL8 have 

been shown to be elevated in GI disease states. MMP-9 

is associated with a variety of GI disease states, and it 

has been shown experimentally that intestinal epithelial 

MMP-9 expression aggravates experimental colitis and 

delays wound healing.127 Expression of this protease is also 

elevated in many patients with active IBD and colorectal 

or gastric cancer, and heightened expression is associated 

with poor cancer disease prognosis.128–138 Additionally, H. 

pylori infection is associated with elevated MMP-9 expres-

sion in an NF-κB-dependent manner,139–141 and pathogen 

eradication results in attenuated MMP-9 expression.142 High 

expression of MMP-9 and CXCL8-related chemokines has 

been observed in animals infected with C. rodentium143 

and in vivo models of colitis-associated colon cancer.144 

In addition, serum MMP-9 and CXCL8 are concomitantly 

elevated in patients with stages II–IV CRC,145 and elevated 

MMP-9 expression is associated with increased CXCR1 

and CXCR2 in gastric biopsy tissues collected from patients 

Table 4 Role of CXCL8 in promoting tumorigenesis and malignancy in gastric and intestinal carcinomas

Function Mechanism(s) References

Increased angiogenesis –  Recruitment of inflammatory cells that express proangiogenic factors
–  Induction of MMP-2, MMP-9, and veGF
–  Induction of endothelial cell proliferation and capillary tube rearrangement
–  Inhibition of endothelial cell apoptosis through the upregulation of  

antiapoptotic proteins (ie, Bcl-XL, Bcl-XS)

145,240,246, 
249,254–261

Increased epithelial-to-mesenchymal transition –  Increased expression of eGFR, MMP-9, and veGF by gastric and intestinal  
epithelial cells

–  Decreased expression of e-cadherin by gastric and intestinal epithelial cells
–  enhanced migratory and invasive properties in gastric and intestinal  

epithelial cells

77,257

enhanced recruitment of myeloid-derived  
suppressor cells to the tumor microenvironment

–  Suppression of antitumor immune responses
–  Increased angiogenesis

84,278

enhanced migration and invasion of cancer cells –  Possibly due to increased FAK and Src phosphorylation
–  Noted in prostate, melanoma, colon, and gastric cancers

78,261

Resistance to chemotherapy –  Decreased sensitivity to oxaliplatin due to enhanced CXCL8-dependent  
NF-κB signaling, triggering the upregulation of antiapoptotic proteins

261,267,281, 
285,291

Oncogenic mutations or loss of tumor  
suppressor genes can increase CXCL8 signaling

–  Activating mutations in Ras-GTPase or loss of functional PTeN can  
increase CXCL8 signaling as can wnt/β-catenin

261,267,292, 
298

Inflammation/tumor environment can increase 
CXCL8-CXCR1/2 signaling

–  Hypoxia, acidosis, altered glucose metabolism, TNFα, and IL-1β
–  CXCL8-CXCR1/2 signaling can also activate numerous transcription  

factors, including NF-κB, AP-1, β-catenin/TCF, STAT3, and HIF

261,300

Neutralizing antibodies or other inhibitors of  
CXCL8-CXCR1/2 reduce tumor burden

–  Numerous animal studies show efficacy of neutralizing antibodies and  
small molecule inhibitors (several are now in clinical trials)

–  Reduction in angiogenesis, cell proliferation, and cancer-associated  
inflammation

261

Abbreviations: MMP, matrix metalloproteinase; veGF, vascular endothelial growth factor; eGFR, epidermal growth factor receptor; GTPase, guanosine triphosphatase.
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with gastric cancer.146 Although both MMP-9 and CXCL8 

are co-expressed in several GI disease states, it remains 

unknown whether proteolytic processing of CXCL8 by 

MMP-9 contributes to disease pathogenesis. However, in 

vivo studies have demonstrated that manipulation of MMP-9 

alters susceptibility to experimental colitis, as inhibition of 

MMP-9 activity in mice is associated with decreased PMN 

accumulation and decreased expression of the CXCL8-

related chemokine CXCL5.147 Overexpression of intestinal 

epithelial MMP-9 in vivo enhanced animal susceptibility to 

DSS- or S. typhimurium-induced colitis, as was evidenced 

by increased intestinal PMN accumulation and CXCL1 

expression.148,149 Collectively, these results demonstrate 

that MMP-9 is capable of modifying GI disease states, but 

additional research is required to examine whether MMP-

9-mediated proteolytic processing of CXCL8 contributes to 

various GI disease states.

CXCL8 contributes to the tissue 
recruitment of neutrophils
Bone marrow egression and 
extravasation
A multitude of research findings have established that  

CXCL8 plays numerous roles in the recruitment of PMNs 

into GI tissues. CXCL8 has been shown to contribute to PMN 

bone marrow egression, extravasation, and tissue migra-

tion. Although not all the experimental studies have been 

conducted in GI tissues, the following provides a framework 

for describing how CXCL8 contributes to the recruitment of 

PMNs in GI tissues. The initial recruitment of PMNs requires 

their mobilization from the bone marrow into the circulation. 

During homeostasis, PMNs are largely retained within the 

bone marrow and only ∼2% are found in circulation.150 As 

in vivo experiments have shown, the retention of PMNs in 

the bone marrow involves antagonism between CXCR2  

and CXCR4, whereby the CXCR4 ligand, CXCL12 (stroma 

cell-derived factor 1; SDF-1), retains PMNs within the bone 

marrow by enhancing receptor–ligand interactions between 

PMN integrins and surface receptors on bone marrow 

endothelial and stromal cells.151–153 During an acute inflam-

matory response, including GI inflammation, the release of 

granulocyte colony-stimulating factor decreases CXCL12 

expression, while simultaneously increasing the expression 

of CXCR2 ligands, including CXCL8, by endothelial cells 

to promote PMN bone marrow egression.154 This has been 

demonstrated during in vivo studies showing that intrave-

nous administration of CXCL8 induces rapid mobilization 

of PMNs and their progenitor cells from the bone marrow 

into the bloodstream.155,156

Following this, PMNs exit the vasculature and enter 

tissues via postcapillary venules in a series of highly charac-

terized steps.157–159 Briefly, PMN extravasation is subdivided 

into five overlapping steps: tethering, rolling, firm adhesion, 

crawling, and transmigration.157 Exposure to proinflammatory 

stimuli induces the release of a multitude of proinflammatory 

mediators, such as histamines, leukotrienes, and cytokines. 

These mediators are released from tissue-resident immune 

and epithelial cells that induce expression of P- and E-selectin 

molecules on the luminal surfaces of endothelial cells. These 

molecules bind glycosylated ligands, such as P-selectin 

glycoprotein 1 (PSGL-1), on the surface of PMNs to induce 

PMN tethering and, subsequently, PMN rolling.160 Firm adhe-

sion of PMNs to the vascular endothelium occurs as rolling 

PMNs contact ELR+ PMN chemokines, such as CXCL8. 

Endothelial cells are capable of transcytosing CXCL8, pro-

duced by various cell types, to the luminal surface where it is 

subsequently bound to heparan sulfate;28,161 this ensures that 

secreted chemokines are immobilized and able to induce firm 

adhesion and migration in circulating PMNs.162,163 Binding 

of CXCL8 to its receptor triggers a signaling cascade that 

enhances the binding affinity and avidity of PMN integrin 

molecules, such as CD11a/CD18 and CD11b/CD18. This 

enables them to strongly bind endothelial surface ligands, 

such as intercellular adhesion molecules, and undergo firm 

adhesion.160,164,165 Following this, PMNs crawl across the 

surface of the endothelium and, subsequently, preferentially 

migrate into host tissues via tricellular endothelial cell 

corners.166,167 Collectively, these results demonstrate that 

CXCL8 participates in PMN bone marrow egression and 

extravasation during inflammatory responses, including 

those in the GI tract.

PMN tissue migration
CXCL8 is also involved in directing extravasated PMNs 

through GI tissues to an infectious or inflammatory site. 

Following extravasation, PMNs migrate through multiple 

and sequential chemotactic gradients within host tissues.168 

These gradients are classified into a hierarchy of intermedi-

ate and end-target chemoattractants. End-target chemoat-

tractants are produced immediately at the inflammatory 

site and are the final chemotactic gradients PMNs will 

migrate through; these are host- or microbially-derived 

factors located in the immediate vicinity of an infectious or 

inflammatory site. Examples include bacterial formylated 

peptides and the complement fragment C5a. Intermediate 
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chemoattractants are host-derived factors that direct PMNs 

toward end-target chemoattractants and are produced at 

distances farther from the infectious or inflammatory site. 

End-target chemoattractant signaling cascades override those 

generated from intermediate chemoattractants. Therefore, 

intracellular signaling cascades from intermediate chemoat-

tractants, such as CXCL8, via the p38 MAPK pathway are 

superseded by phosphatidylinositol-3-kinase (PI3K) signal-

ing following PMN receptor binding of end-target chemoat-

tractants.169 For example, S. typhimurium infection of the 

intestinal epithelium drives expression of CXCL8 and the 

arachidonic acid metabolite lipoxin A
4
; CXCL8 promotes 

PMN recruitment to the basolateral membrane, and lipoxin A
4
 

induces PMN transepithelial migration.170–172 Taken together, 

these results demonstrate that CXCL8 plays an important 

role in directing extravasated PMNs toward infectious or 

inflammatory sites until its signal is overridden by end-target 

chemoattractant signals.

CXCL8 aids in the activation of 
neutrophil antimicrobial machinery
Respiratory burst
Following directed chemotaxis to an inflammatory or infec-

tious site, PMNs utilize a variety of mechanisms to clear host 

tissues of invading or translocated microbes, including the 

respiratory burst. This process is essential to host defense 

against a variety of infectious organisms, as has been dem-

onstrated in patients with chronic granulomatous disease. 

Individuals with chronic granulomatous disease are highly 

susceptible to a variety of catalase-positive bacterial and 

fungal infections, due to mutations in genes essential for the 

respiratory burst.173,174 Similarly, genetic deletion of factors 

essential for the respiratory burst enhances susceptibility to 

in vivo infection.175–178 The respiratory burst involves rapid 

utilization of oxygen, increased glucose consumption, and 

the release of ROS.179 In PMNs, production of ROS involves 

the assembly of the multicomponent enzymatic nicotinamide 

adenine dinucleotide phosphate (NADPH)-oxidase (NOX2) 

complex. This complex is composed of several subunits dis-

tributed throughout the cytosol and cell membranes of inac-

tive PMNs. The flavocytochrome b
558

 subunit, composed of 

gp91phox/Nox2 and p22phox, is located on the plasma membrane 

and within specific granules, while the other components 

(p67phox, p47phox, p40phox, and the small G-protein Rac2) are 

cytosolic proteins.180 Assembly and activation of the NOX2 

system on plasma and phagosomal membranes occur follow-

ing PMN exposure to and phagocytosis of microbes.181–183 

This process initially results in the production of superoxide 

anion radicals (O2
− i) by the NADPH-oxidase (NOX) system, 

whereby O2
− i is subsequently converted to other oxygen 

radicals, such as H
2
O

2
.184

CXCL8 itself does not induce NOX2 activity and, 

therefore, overt production of ROS. This has been shown 

experimentally in mice transgenically engineered to 

continually express human intestinal epithelial CXCL8; 

these animals show extensive PMN tissue infiltration, but 

lack apparent histological signs of mucosal injury that could 

be, potentially, induced by ROS.185 Rather, CXCL8 pretreat-

ment has been shown to enhance ROS production when 

PMNs are subsequently treated with formylated bacterial 

peptides (such as formyl-methionyl-leucyl phenylalanine 

[fMLF]), phorbol 12-myristate 13-acetate, or platelet acti-

vating factor.186,187 This appears to occur via the CXCR1 

receptor.188,189 Importantly, this CXCL8-mediated priming 

of NOX2 enhances the microbicidal activity of PMNs.190 

Ongoing research suggests that CXCL8-mediated priming of 

NOX2 activity in PMNs may occur via multiple mechanisms. 

PMNs pretreated with CXCL8 have elevated surface expres-

sion of the fMLF receptors, which is postulated to contribute 

to enhanced fMLF-induced ROS production.191 Separately, 

it has been demonstrated that increased intracellular Ca2+ is 

required for activation of the NOX2 system, potentially via 

activation of phospholipase A
2
.192–194 Accordingly, CXCL8 

pretreatment has been shown to increase intracellular Ca2+.195 

Finally, the phosphorylation of the p47phox and p67phox sub-

units of the NOX2 system has been suggested to be essential 

for its activation.196–198 CXCL8 pretreatment has also been 

shown to induce the pre-assembly of the NOX2 system within 

PMN lipid rafts via phosphorylation of p47phox and p67phox.199 

Collectively, these results demonstrate that CXCL8 plays a 

critical role in the production of ROS within PMNs.

It is well known that chronic GI inflammatory states are 

capable of progressing to various GI cancers.200 Although 

the NOX2 system is vital in microbial elimination, the 

production of ROS also results in bystander damage to host 

tissues that can predispose to the development of cancer. 

PMN-derived oxidants are found in excess in mucosal 

biopsy tissues collected from areas of active inflammation 

in patients with IBD201 and gastric biopsies collected from 

patients with chronic H. pylori infection.202,203 Furthermore, 

ROS production has been shown to contribute to intestinal 

epithelial damage in patients with IBD.204 This ongoing dam-

age during chronic inflammatory states triggers a multitude 

of changes within host tissues that can result in the devel-

opment of cancer. Indeed, tissues collected from patients 

with either H. pylori infection or IBD have increased rates 
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of DNA damage, elevated mutation levels, and defective 

DNA mismatch repair systems.205–209 Furthermore, biopsies 

collected from areas of active inflammation in patients 

with UC demonstrated higher mutation rates in the tumor 

suppressor p53 gene; this was attributed to an increase in 

ROS production.210 Currently, it remains unknown whether 

CXCL8-mediated priming of the NOX2 NADPH-oxidase 

system is involved in promoting the progression of chronic 

GI inflammation to malignancy, and additional studies would 

be required to confirm these hypotheses.

Degranulation
PMN granules are storage organelles containing a plethora 

of noxious antimicrobial compounds and divided into three 

subsets based on their contents, order of production, and 

release within host tissues.180 Primary granules (also known 

as azurophilic granules) are positive for myeloperoxidase 

and, therefore, have a critical role in the potentiation of the 

respiratory burst.211 Furthermore, these granules contain 

a bevy of antimicrobial compounds such as defensins, 

lysozyme, and bactericidal/permeability-increasing pro-

tein and three serine proteases: cathepsin G, neutrophil 

elastase, and  proteinase 3.212 These are the first granules 

formed during PMN differentiation.213 Secondary granules 

(also known as specific granules) contain lactoferrin and a 

variety of antimicrobial compounds, including neutrophil 

gelatinase-associated lipocalin, cathelicidin, and lysozyme.212 

These are formed after primary granules.213 Finally, tertiary 

granules (also referred to as gelatinase granules) contain 

a large number of metalloproteinases;212 these are the last 

granules formed during PMN differentiation.213 The utiliza-

tion of these granules by PMNs occurs in an order opposite 

to their production during differentiation. Degranulation 

of PMN tertiary granules occurs during migration through 

the basement membrane. It has been postulated that metal-

loproteinases degrade components of this structure to ease 

PMN migration,214,215 while degranulation of primary and 

secondary granules occurs once PMNs have arrived at the 

inflammatory site.

The initial identification and characterization of CXCL8 

as a PMN-activating compound demonstrated its ability to 

induce PMN degranulation.10,216–218 Follow-up experiments 

demonstrated that CXCL8 was capable of inducing PMN 

degranulation of primary, secondary, and tertiary granules 

via CXCR1 and CXCR2.188,219,220 Interestingly, tertiary 

granule exocytosis and release of MMP-9 was reported to 

occur downstream of CXCR2.221 Additionally, the release 

of antimicrobial peptides also serves as a chemoattractant 

for T-cells.222,223 CXCL8 is subject to modification via 

numerous proteases elevated in several infectious, inflam-

matory, or cancerous states of the GI tract, where elevated 

CXCL8 has been concomitantly reported. In these states, 

PMN degranulation products represent an abundant source 

of proteases capable of proteolytically processing CXCL8. 

PMN elastase is increased in fecal samples collected from 

patients with CD and UC,224 while separate reports have 

indicated that its antagonists, elafin and secretory leukocyte 

protease inhibitor (SLPI), are significantly decreased.225–227 

Elevated PMN elastase is reported in patients with CRC,228 

while H. pylori infection results in suppression of SLPI.229 

As such, the increased expression of proteases coupled 

with decreased antiprotease expression may lead to height-

ened proteolytic activity within GI tissues and, as a result, 

enhanced processing of CXCL8. Additional research is 

required to investigate this hypothesis. To date, it has 

been shown that exogenous administration of elafin and 

SLPI reduces inflammation in in vivo models of colitis, 

whereby a decrease in PMN tissue infiltration and expres-

sion of CXCL8-related chemokines was observed.226,227 

However, little research has examined whether the 

protease:antiprotease imbalance results in modifications to 

CXCL8 that contribute to pathology associated with IBD, 

various cancers, or other GI disease states.

Interestingly, certain GI pathogens have been shown to 

release proteases that proteolytically process CXCL8 and alter 

their effects on PMNs. Entamoeba histolytica cysteine pro-

tease 2 cleaves CXCL8, and this product is more effective at 

inducing PMN chemotaxis.230 In contrast, Giardia duodenalis 

cathepsin B cysteine proteases were shown to degrade CXCL8 

and attenuate CXCL8-induced PMN chemotaxis.231 This 

research may explain how in vivo G. duodenalis infections 

were capable of attenuating granulocyte infiltration induced 

by intrarectal instillation of C. difficile TcdA/TcdB or reducing 

CXCL chemokine expression from ex vivo inflamed intesti-

nal mucosal biopsy tissues.232 It remains unknown whether 

other GI pathogens produce proteases or factors capable of 

modifying CXCL8 and whether this could, potentially, affect 

the pathogenesis of infection.

Involvement of CXCL8 in malignant 
processes
Over expression of CXCL8 and CXCR1/2 has been described 

in numerous inflammatory and neoplastic disease states. The 

link between chronic inflammation and neoplasia has been 

well described, and cancer-associated inflammation, due to 

changes in tumor microenvironment or changes within the 
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tumor cell, can be associated with increased tumor growth, 

metastasis, resistance to therapy, all of which impact progno-

sis and survival (see Figure 1A and B and Tables 3 and 4 for 

a review a CXCL8 signaling and in promoting inflammation 

and neoplasia).

CXCL8 induces angiogenesis
Angiogenesis, or the formation of new blood vessels, involves 

a sequential sequence of events beginning with basement 

membrane proteolysis, endothelial cell proliferation and 

chemotaxis, and finally, organization and maturation of 

tubular structures. This process has long been recognized 

as an integral hallmark in cancer development,233 and 

disrupting angiogenesis has been proposed as an effec-

tive therapeutic target for a variety of cancers.234 Indeed, 

angiogenesis is essential to providing the primary neoplasm 

with an adequate blood supply and contributes to cancer 

metastasis.235,236 The induction of angiogenesis occurs early 

during the development of multistage cancers and has been 

observed in histological specimens collected from prema-

lignant, noninvasive lesions such as dysplasias and in situ 

carcinomas.237 It is thought that tumor progression induces 

activation of variety of angiogenic switches that promote 

surrounding vasculature to produce new vessels.238 These 

newly formed blood vessels tend to be heterogeneous in 

size and structure, are poorly formed, and have inadequate 

function.239–241 The angiogenic switches responsible for new 

blood vessel formation have been proposed to occur through 

direct and indirect mechanisms. Oncogenes within tumor 

cells may directly induce expression of angiogenic factors. 

Alternatively, these angiogenic factors may be produced 

indirectly by infiltrating inflammatory cells, including mac-

rophages, PMNs, mast cells, and myeloid progenitor cells.242 

Indeed, individuals with chronic inflammatory disorders are 

at increased risk of developing cancer, which may be, at least 

in part, due to expression of angiogenic factors produced by 

infiltrating inflammatory cells.243 For example, it has been 

well established that chronic inflammation with H. pylori 

infection is associated with increased risk of gastric cancer.244 

Similarly, individuals with IBD are at increased risk of colon 

cancer via a variety of mechanisms that remain incompletely 

understood.1

CXCL8 and related chemokines have been demon-

strated to have oncogenic properties capable of inducing 

angiogenesis;245–247 this occurs independently of their ability 

to induce PMN chemotaxis248–250 and results via activation of 

CXCR2.251–253 Indeed, mucosal biopsy tissues collected from 

patients with gastric carcinomas have increased CXCL8 levels 

that parallel increased tumor vascularity.254 Furthermore, one 

study has suggested that the survival rate of patients with 

gastric carcinomas was significantly reduced in patients 

with tumors expressing high levels of CXCL8.255 A variety 

of signaling molecules produced during tumor metabolism 

may induce CXCL8 secretion and, resultantly, promote 

tumor angiogenesis. For example, the production of lactate 

has been shown to induce autocrine CXCL8 production and 

thereby promote tumor angiogenesis in an in vivo model of 

CRC.256 Experimentally, increased CXCL8 expression in vivo 

enhanced blood vessel formation, while genetic deletion of 

CXCR2 blunted this effect.257 Research has now demon-

strated that CXCL8 contributes to angiogenesis via multiple 

mechanisms, including inducing expression of vascular 

endothelial growth factor258 as well as MMP-2 and MMP-9 

within endothelial cells; these two factors are involved in 

basement degradation during angiogenesis.249 In patients with 

CRC, a concomitant increase in serum CXCL8 and MMP-9 is 

observed in patients with stage II disease or higher.145 CXCL8 

is also capable of inducing endothelial cell proliferation and 

capillary tube reorganization in a concentration-dependent 

manner, whereby lower rather than higher concentrations are 

more effective at inducing these effects.259 Finally, CXCL8 

has also been shown to inhibit endothelial cell apoptosis 

via increasing expression of antiapoptotic proteins, such as 

Bcl-X
L
 and Bcl-X

s
.249,260 Similarly, in in vivo models of CRC, 

the transgenic expression of CXCL8 in animals results in 

enhanced tumor burdens that were, at least partially, due to 

increased tumor angiogenesis.261 CXCL8 and/or CXCL1/2 

have also been shown to promote angiogenesis in several 

other cancers, including melanoma, pancreatic, prostate, and 

non-small-cell lung cancer.262

CXCL8 induces epithelial-to- 
mesenchymal transition, migration, 
and invasion
Tumor epithelial-to-mesenchymal transition (EMT) is a 

process involving the dedifferentiation of epithelial cells into 

an invasive mesenchymal phenotype. This process involves 

the loss of epithelial cell characteristics, including a loss in 

cell polarity, cell–cell contacts, epithelial surface markers, 

and a concomitant increase in mesenchymal properties. The 

properties include increased expression of mesenchymal-

associated proteins, enhanced cell motility, and metastatic 

potential.263 Indeed, in vitro experiments have demonstrated 

that gastric epithelial cell lines treated with exogenous 

CXCL8 increased expression of the epidermal growth factor 

receptor, MMP-9, and vascular endothelial growth factor; at 
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the same time, this treatment decreased E-cadherin expres-

sion and increased the invasive potential of these cells.264 

 Clinical research has indicated that CXCL8 levels are 

positively associated with the extent of tissue invasion and 

metastasis. In patients with CRC, elevated levels of CXCL8 

have been positively associated with tumor size, level of 

infiltration, and liver metastases.265,266 Heightened expression 

of both CXCL8 receptors in gastric mucosal biopsy tissues 

has been associated with gastric cancer metastasis.146 CXCL8 

tissue expression levels have been reported to increase as 

colonic adenocarcinoma cells become less differentiated, 

while serum levels have been shown to increase in propor-

tion to the pathological staging of CRC tumors and distant 

metastases.267 These positive correlations between CXCL8 

and tissue invasion and metastasis are further supported 

by in vitro experiments, whereby knockdown of CXCR1 

and CXCR2 proteins inhibited the migratory capability 

of gastric epithelial cells.146 Similarly, overexpression of 

CXCL8 in in vitro colonic epithelial cell lines enhanced 

cellular proliferation, migration, and invasive potential of 

these cells.268 Studies in prostate cancer found that CXCL8 

enhances tumor cell migration and invasion via activation 

of Src and FAK.269 Moreover, in vitro experiments using a 

variety of colonic epithelial cell lines have demonstrated 

that expression of CXCL8 parallels metastatic potential, 

whereby increased expression of CXCL8 and its receptors is 

found in cell lines with higher invasive potential.270 Indeed, 

CXCL8 and its receptors are downstream targets for sev-

eral EMT transcription factors.271,272 The overexpression of 

CXCL8 by in vitro CRC cell lines has also been shown to 

act as an autocrine growth factor.273 Furthermore, CXCL8 

may also confer chemoresistance, as pretreatment of in vitro 

colonic and gastric epithelial cells with CXCL8 resulted in 

enhanced cell survival to oxaliplatin treatment.268,274,275 More-

over, CXCL8 treatment has been shown to reduce in vitro 

epithelial sensitivity to apoptosis.276 Importantly, inhibition 

of CXCR2 signaling in intestinal epithelial cells has been 

shown to increase sensitivity to oxaliplatin.277 Based on the 

above data, it has been proposed that targeting the CXCL8 

pathway represents a potential therapeutic target for gastric 

cancer and CRC.278

Myeloid-derived suppressor cells
Immature myeloid cells are a heterogeneous group of cells 

and comprise numerous subpopulations, including myeloid-

derived suppressor cells (MDSCs). Experimental evidence 

has shown that these cells are not fully differentiated and, 

therefore, express surface markers for both granulocytic and 

monocytic cell types.279 Ongoing research has implicated 

MDSCs in the pathophysiology of numerous cancers.280 In 

patients with CRC, MDSC populations are elevated both 

within cancerous tissue and serum; moreover, the level of 

elevation positively correlates with the cancer stage and 

extent of metastasis.281,282 A complete discussion of the 

research surrounding MDSCs is beyond the scope of this 

review. However, ongoing research has demonstrated that 

MDSCs participate in the progression of cancer via a number 

of mechanisms, including via the suppression of antitumor 

immune responses280,283 and promotion of angiogenesis.242 

As a result, targeting MDSCs has been proposed as a 

potential chemotherapeutic target.284 Experimental research 

has just begun to elucidate the role that CXCL8 plays in 

recruiting MDSCs. In in vivo models of colon cancer, mice 

transgenically engineered to express human CXCL8 dis-

played increased infiltration of immature myeloid cells into 

dysplastic and surrounding tissues; this ectopic expression 

of CXCL8 was associated with enhanced angiogenesis and 

tumorigenesis.261 Similarly, the in vivo deletion of CXCR2 

resulted in decreased chronic inflammation and develop-

ment of colitis-associated tumorigenesis.285 Collectively, 

these experimental results suggest that CXCL8 may play 

an important role in recruiting MDSCs to the tumor micro-

environment. Additional research is required to elucidate the 

exact mechanisms involved in these early findings.

Resistance to chemotherapy
Resistance to chemotherapeutics is an ongoing concern, and 

research has suggested that autocrine or paracrine expression 

of CXCL8 may contribute to resistance to chemotherapeutic 

agents in a variety of GI cancers. Currently, CRC chemo-

therapy involves the use of 5-fluorouracil and oxaliplatin.286 

Indeed, the efficacy of oxaliplatin treatment has been found 

to be dependent on genetic variations within the CXCL8 

and/or CXCR2 genes,8,287 and CXCL8 serum levels have 

been reported to be elevated in CRC patients who fail to 

respond to chemotherapy.288 Moreover, induced expression 

of CXCL8 in in vitro colonic adenocarcinoma cell lines 

resulted in decreased sensitivity to oxaliplatin treatment, 

while silencing of CXCL8 production produced the opposite 

effect.268 The former was associated with increased activation 

of the NF-κB pathway,268 which has been shown to induce 

transcription of genes that antagonize apoptosis.289 Similar 

results were observed using in vitro gastric adenocarcinoma 

cell lines.275 Additionally, blockade of CXCR2 signaling in 

in vitro colonic adenocarcinoma cell lines increased sen-

sitivity to oxaliplatin and induced expression of apoptotic 
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proteins.277 In addition, CXCL8-induced resistance to oxali-

platin therapy may occur following activation of upstream 

signaling cascades. Exposure of in vitro adenocarcinoma 

cells to oxaliplatin has been shown to induce interleukin-22 

expression that subsequently promotes CXCL8 expression 

and resistance to 5-fluorouracil and oxaliplatin therapy.274 

Gemcitabine is a commonly used chemotherapeutic agent 

used for treatment of pancreatic ductal adenocarcinomas.290 

However, gemcitabine resistance is often reported,291 and 

experiments performed in vivo and in vitro have demon-

strated that gemcitabine treatment induces CXCL8 expres-

sion in pancreatic cancer cells that subsequently results in 

neovascularization.292 Collectively, these results demonstrate 

that CXCL8 is involved in resistance to chemotherapeutic 

drugs in GI cancers, and targeting CXCL8 or its upstream 

inducers enhance the efficacy of chemotherapeutic agents. 

See Table 4 for a review of processes by which CXCL8 can 

impact neoplasia.

Specific targeting of CXCL8–
CXCR1/2 signaling in cancer therapy
As noted above, CXCL8 and CXCR1/2 are upregulated in 

several cancers, and it is felt that cancer-related inflamma-

tion results in increased migration, invasiveness, cancer 

cell resistance to apoptosis, and increased cancer cell 

proliferation.262,268,293 Not only can chronic inflammation 

increase the risk of cancer (up to 20% of all cancers may 

result from chronic inflammation) but also cancer cells and 

cancer growth often promote inflammation.262,294 Numerous 

signaling pathways can be activated downstream of CXCL8–

CXCR1/2, including MAPK, PI3K/Akt, PKC, FAK, and 

Src, all of which have been implicated in neoplasia and 

inflammatory processes. CXCL8–CXCR1/2 signaling can 

also activate numerous transcription factors, including 

NFκB, AP-1, β-catenin/Tcf, STAT3, and HIF, which can 

lead to upregulation of other receptor-signaling pathways, 

such as epidermal growth factor receptor and steroid recep-

tors.262,295,296 CXCL8 signaling can be induced by numerous 

factors associated with both  neoplasia and inflammation, 

including TNFα, IL-1β, ROS, death receptors (eg, Fas 

ligand), some steroid hormones (eg, androgens), hypoxia, 

acidosis, altered glucose levels, chemotherapeutic agents, 

and radiation therapy.262,297  Furthermore, the CXCL8 pro-

moter contains consensus sites for transcription factors that 

are altered in inflammation and neoplasia, including NFκB, 

AP-1, β-catenin/Tcf, and HIF transcriptional factors.262,296 

Oncogenic mutations and/or loss of tumor suppressor genes 

can alter CXCL8-CXCR1/2 signaling resulting in inflam-

mation and cancer progression.262,296,298,299 See Table 4 for 

further details.

In view of the link between inflammation and cancer, 

several approaches have targeted inflammatory pathways in 

the fight against cancer, including the NFκB pathways and, 

more specifically, CXCL8–CXCR1/2 signaling. Numerous 

agents have been developed to block CXCL8–CXCR1/2 

signaling directly or indirectly, including: 1) blocking signal 

transduction (inhibitors of MAPK pathways; ERK, JNK, 

p38, PI3K/Akt) that leads to CXCL8–CXCR1/2 expres-

sion; 2) NFκB inhibitors (downregulation of proinflam-

matory genes mediating, recruitment/invasion, apoptosis, 

proliferation, angiogenesis, and more specifically, CXCL8- 

CXCR1/2 expression); 3) nonsteroidal anti-inflammatory 

drugs (reduce inflammation and can decrease CXCL8- 

CXCR1/2 expression); and 4) direct targeting of CXCL8–

CXCR1/2 signaling.262 The main approaches to directly 

target CXCL8–CXCR1/2 signaling include: 1) CXCL8 

Sequencing of the mouse genome has identified orthologs to numerous ELR+ CXCL chemokines on 
chromosome 5, with the exception of CXCL8.304 Moreover, in vivo research has demonstrated that the mouse 
genome contains ELR+ CXCL chemokines capable of inducing similar activities within murine PMNs when 
compared to their human orthologs,305 and it has been proposed that these chemokines have functionally 
replaced CXCL8.306,307 Initial experiments also suggested that ELR+ chemokine receptor ligation and signal 
transduction were mediated by CXCR2308,309 and, furthermore, that CXCR1 was functionally inactive.310,311 
However, additional studies predicted the existence of another CXCR receptor capable of binding human 
CXCL8 with higher affinity than mCXCR2.308 Indeed, murine CXCR1 was subsequently identified, and its 
expression was found in lung, spleen, thymus, peripheral blood leukocytes, and isolated PMNs; in addition, 
it was shown that mCXCR1 plays an important role in several experimental models of inflammation.312,313 
These studies demonstrate that the mouse genome has evolved in the absence of CXCL8 and that it has 
been functionally replaced by structurally similar chemokines that are capable of binding CXCR1 and 
CXCR2. Since then, CXCL8 has been ectopically expressed in several models of GI inflammation and 
cancer.185,261 This expression of CXCL8 in in vivo mouse models will help us to further understand the role 
that CXCL8 plays in a variety of GI inflammatory disorders and malignancies.

Figure 2 CXC eLR+ chemokines in mice.
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neutralizing antibodies; 2) CXCR1/2 neutralizing anti-

bodies; and 3) small molecule CXCR1/2 antagonists and 

siRNA strategies. In summary, many studies have shown 

that CXCL8 and CXCR1/2 neutralizing antibodies, small 

molecule inhibitors, and siRNA can reduce inflammation 

and tumor growth in vitro, and some in preclinical models.262  

More specifically, these agents can reduce inflammation 

in animal models of arthritis models, IBD (DSS300 and 

2,4,6-trinitrobenzenesulfonic acid301 colitis), asthma, and 

tumor burden and metastasis in CRC models and other can-

cer cell types.262,277,302,303 Early clinical trials with primarily 

small molecule CXCR1/2 inhibitors are under way for IBD 

(UC), asthma, COPD, psoriasis, rheumatoid arthritis, solid 

organ transplant rejection, melanoma, CRC, breast cancer, 

and other malignancies262 (see Table 5).

Conclusion
Since its initial discovery, our understanding of how CXCL8 

contributes to various GI inflammatory and malignant states 

has vastly improved. Clinical research has demonstrated that 

CXCL8 is elevated in a variety of disease states, including 

GI infection, IBD exacerbations, and GI malignancy, and 

CXCL8 levels have been shown to correlate with predicted 

clinical outcomes. In addition, in vitro and in vivo experi-

ments have suggested potential mechanisms via which these 

processes occur. Much research has focused on CXCL8’s 

ability to induce various signaling events within PMNs, 

and indeed, experimental research has demonstrated that 

this factor contributes to a variety of proinflammatory 

PMN events, including its contribution to the oxidative 

burst, chemotaxis, and degranulation. However, research 

has also demonstrated that CXCL8 contributes to increased 

angiogenesis and EMT during malignancy via its actions 

on endothelial and epithelial cells, respectively. In addition, 

CXCL8 promotes the accumulation of MDSCs in GI tis-

sues during malignancy. As our understanding of CXCL8 

has improved, it has become apparent that certain CXCL8 

polymorphisms are associated with altered susceptibility 

to a variety of disease states, including GI infection, IBD, 

and gastric cancer. Despite these findings, our understand-

ing of the role that CXCL8 plays in the pathophysiology of 

various GI inflammatory and malignant disorders remains 

incompletely understood. Further understanding of the role 

of CXCL8–CXCL1/2 signaling in such events may help to 

increase our understanding of the pathophysiology of vari-

ous disease states and, potentially, contribute to the further 

development of novel therapeutics.
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