Open Access Full Text Article

ORIGINAL RESEARCH

The efficiency and safety of trastuzumab and lapatinib added to neoadjuvant chemotherapy in Her2-positive breast cancer patients: a randomized meta-analysis

Zhe-Ling Chen Yan-Wei Shen Shu-Ting Li Chun-Li Li Ling-Xiao Zhang Jiao Yang Meng Lv Ya-Yun Lin Xin Wang Jin Yang

Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China

Correspondence: Jin Yang Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No 277 Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China Tel +86 29 8532 3422 Fax +86 29 8532 3422 Email 1473106133@qq.com

Background: The addition of human epidermal growth factor receptor 2 (Her2) therapies to neoadjuvant chemotherapy (NAC) during treatment of Her2-positive breast cancer has been proposed as an effective way to improve the prognosis. However, the treatment outcomes of adding trastuzumab, lapatinib, or both to NAC were not unequivocal in randomized clinical trials. Based on these data, a meta-analysis was performed.

Objective: The main objective was to evaluate the efficiency and safety of trastuzumab and lapatinib added to NAC for treatment of Her2-positive breast cancer.

Methods: <u>ClinicalTrials.gov</u> and PubMed were searched for randomized clinical trials that compared trastuzumab, lapatinib, or both, added to NAC. The main endpoint was a pathologically complete response (pCR) rate, in breast only or in breast and lymph nodes. The drug safety and the influence of hormone-receptor status, comparing the clinical response and the rate of breast conservation, were evaluated.

Results: A total of eight publications were included in the primary analysis, designed as two or three subgroups. The cumulative cases were 2,349 and the analyses of all the clinical trials showed that the pCR rate was significantly higher in the group receiving trastuzumab than that in the group with lapatinib, either in breast only (P=0.001) or in breast and lymph nodes (P=0.0001). Similar results could be seen in comparisons of the combination versus trastuzumab group. Further studies of subgroups divided into hormone receptor-positive or-negative patients showed that the addition of trastuzumab or dual Her2-targeted therapy significantly improved the pCR rate in patients who were hormone-insensitive. Regarding the toxic effects, we found more grade 3 and 4 toxic effects, such as diarrhea, skin disorder, and hepatic biochemical changes in the lapatinib and combination groups. No temporally significant differences were found when the clinical response and the rate of breast conservation in the groups were analyzed.

Conclusion: The combination of trastuzumab and lapatinib was superior to single-agent treatment for improved pCR rate. However, combination treatment was not effective in improving the rate of breast conservation. Furthermore, a higher risk for toxicity was associated with combined administration.

Keywords: breast cancer, trastuzumab, lapatinib, human epidermal growth factor receptor, neoadjuvant, pathologically complete response

Introduction

The overexpression of human epidermal growth factor receptor 2 (Her2) can be found in 15%–20% of breast cancer patients, which is associated with significantly shortened

OncoTargets and Therapy 2016:9 3233-3247

3233

© 2016 Chen et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, large acparatol. But any commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, large see paragraph 4.2 and 5 of our Terms (http://www.dovepress.com/terms.php). disease-free and overall survival.¹ The expression product of the *Her2* gene is a membrane spanning oncogenic protein that is processed externally at the membrane. Because of its specific overexpression in tumor cells, Her2 can be used as a target antigen for breast cancer therapy.

The use of trastuzumab, a chimeric monoclonal antibody recognizing the extracellular region of the Her2 protein, has dramatically changed the outcome of patients with Her2-amplified breast cancer.² Pegram et al³ reported that when given single-therapy trastuzumab as the first-line treatment in 112 Her2-positive breast cancer patients, the total responsive rate was 23%. The responsive rate in a subgroup of patients that overexpressed Her-2 was 31%. Trastuzumab has therefore been shown to be effective when used as a single agent, or when used with other chemotherapeutic drugs.

Recently, many other inhibitors such as small molecule tyrosine-kinase inhibitors, monoclonal antibodies, and antibody-drug conjugates are emerging as additional treatments.² However, although these new drugs show promise, the most efficacious preoperative Her2 inhibitory agents are still being explored. Currently, the overexpression of the epidermal growth factor receptor and Her2 can be found in 20%–30% of the patients. Lapatinib is an orally bioavailable dual inhibitor of both the intracellular domain of the Her2 protein and the epidermal growth factor receptor. This dual inhibitor can effectively prevent the downstream signal transduction initiated by tyrosine kinase, thereby reducing the proliferation of tumor cells. Lapatinib was demonstrated to be beneficial in patients with Her2-positive locally advanced and metastatic breast cancer that had progressed after prior treatment with anthracycline, taxane, and trastuzumab. Because of their different mechanisms of drug actions, it may be useful to combine two drugs in order to provide improved clinically curative effects. Konecny et al⁴ found synergistic interactions between two agents in Her2-positive breast cancer models. If benefits such as decreasing the primary tumor and improving tumor response to chemotherapy⁵ could be achieved from neoadjuvant chemotherapy (NAC) alone, then using anti-Her2 agents together with NAC may provide a better outcome. It is therefore important to understand the efficacy and safety of a dual NAC/Her2-targeted therapy in the treatment of Her2-positive breast cancer patients. In this study, we evaluated pathologically complete response (pCR) rates when NAC was added to lapatinib, trastuzumab, or both in a meta-analysis of randomized clinical trials. We also evaluated the safety of these drugs and the influence of hormone-receptor (HR) status on treatment success.

The clinical response and the rate of breast conservation were also investigated as additional parameters.

Methods Search strategy

We carried out searches of <u>ClinicalTrials.gov</u> and PubMed for randomized clinical trials. The keywords used included breast cancer, trastuzumab, lapatinib, and Her2. We also used some selected studies for inclusion in the analyses.

Study criteria

The randomized Phase II or III clinical trials divided patients into groups with interventions using NAC with trastuzumab, lapatinib, or both in accordance with the inclusion criteria. Further inclusion criteria were that the patients should have Her2-positive operable breast cancer, with a primary endpoint of pCR rates. We included the chemotherapy regimen in every study and ensured homogeneity between studies.

Data extraction

After the exclusion criteria were met, eight studies met all the criteria. We extracted the following data from each eligible study: author's name, trial phase, year of publication, number of patients enrolled, chemotherapy regimens used, treatment arms, HR status, and the endpoints.

Assessment of risk of bias between included studies

The random sequence generation, sample size, blinding procedure, loss to follow-up, dropout, and intentions to treat were used to assess the risk of bias between included studies. Jadad scoring was used to assess the quality of each study.

Outcome definition

The main objective of this analysis was to determine the pCR rate after adding trastuzumab, lapatinib, or both to NAC, to estimate the efficacy of different methods in anti-Her2 therapy. Two definitions of pCR were used in the included studies, no invasive tumors in breast only, or in breast and axillary nodes. We therefore adopted both as the endpoints. Other objectives, such as evaluating the safety of the drug, the influence of HR status, comparing the clinical responses, and the rates of breast conservation were also included.

Statistical analyses

We extracted the number of patients achieving pCR and the total number in each included trial, and then estimated the odds ratio (OR) between comparable groups and the 95% confidence interval (CI). In every trial, OR was calculated to evaluate the relative advantage of a group receiving NAC plus trastuzumab, lapatinib, or both. Assuming study variations existed, we used fixed effects or random effects model to complete the data analyses.

Cochran Q (significant cutoff point: P=0.10) and I^2 ($I^2 > 50\%$, strong heterogeneity) statistics were used to test the heterogeneity between studies.

All the analyses and graphs were obtained using RevMan 5.3 (The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen, Denmark, <u>https://tech.cochrane.org</u>).

Results

Study selection and exclusion

The primary search yielded a total of 52 relevant studies: 42 randomized clinical trials from PubMed and ten studies from additional references. The strategies used for selecting eligible studies are shown in Figure 1. Among the eliminated studies, the RC0639 study took disease-free survival and overall survival as the endpoints, not the pCR rate.⁶

The clinical trial described by Davies et al⁷ had a purpose inconsistent with our study.

Study characteristics

Table 1 summarizes the baseline characteristics of the eight clinical trials that met the inclusion criteria and included 2.349 patients. The characteristics of the studies show that the eight studies were randomized control trials; the number of cases ranged from 100 to 700 cases. Six trials had three groups, which compared the addition of trastuzumab versus lapatinib versus their combination added to NAC; while the other two trials compared only trastuzumab versus lapatinib. Trastuzumab was used at a 4 mg/kg loading dose followed by 2 mg/kg in another six studies, while the other two studies used an 8 mg/kg loading dose followed by 6 mg/kg. The dose of lapatinib ranged from 1,000 to 1,500 mg given daily. Regarding the combination groups, lapatinib was administered at 1,000 mg. The Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016) suggested that lapatinib was well tolerated at doses ranging

Figure I Flowchart of study search for the meta-analysis.

Abbreviations: NAC, neoadjuvant chemotherapy; pCR, pathologically complete response; RCTs, randomized controlled trials.

Clinical trial	Recruitment period	No of patients	Her2 status	Chemotherapy	Arms	HR status (no of patients)	(no of	Anti-Her2 therapy
						Positive	Negative	
CHER-LOB ¹³	August 2006–	121	IHC 3+ or FISH +	Weekly P 12 weeks→FEC ×4	T group	21	15	T 4 mg/kg→2 mg/kg
	November 2010			(every 3 weeks), totally 26 weeks	_		1	once weekly
					L group	24 20	<u>5</u>	L 1,500 mg orally daily
					I +L group	87	8	I 4 mg/kg→2 mg/kg + L
		001			T	70	20	1,000 mg orally daily
	October 2010-	128	INC 3+/2+ and FISH +,	Doc ×3 weekiy→r∈C ×3 (every 3 …ooloo)	I group	17	97	I 4 mg/kg→2 mg/kg
	ciuz y filual			J WEEKS)		2	۵	UILE WEEKIY
					L group T+L group	25 25	o 26	L 1,000 mg orany dany T 4 me/ke→2 me/ke + L
					0	ł	ł	I 000 mg orally daily
Holmes et al ²³	August 2007–	001	IHC 3+ or FISH	FEC $ imes$ 4 (every 3 weeks) $ ightarrow$	T group	15	81	T 4 mg/kg→2 mg/kg
(2013)	February 2010		(ratio > 2.2)	weekly P 12 weeks				once weekly
					L group	14	20	L 1,500 mg→1,250 mg
					T-I Zurona	ç	5	orally daily
					i ⊤∟ group	77	2	I + III8/K8→2 III8/K8 + L
GEICAM	February 2009–	102	IHC 3+ or FISH +	EC ×4→doc ×4 weekly	T group	30	20	1,000 mg orally daıly T 8 mg/kg→6 mg/kg
	October 2010							once weekly
					L group	31	21	L 1,250 mg orally daily
Gepar Quinto,	November 2007–	614	HercepTest or in-situ	EC ×4→doc ×4 weekly	T group	170	137	T 8 mg/kg→6 mg/kg
GBG44 ¹²	July 2010		hybridization (ratio \geq 2.0)					once weekly
					L group	171	137	L 1,250 mg orally daily
NeoALTTO ¹⁴	January 2008–	455	IHC 3+ or FISH +	Weekly P 12 weeks	T group	75	74	T 4 mg/kg→2 mg/kg
	May 2010							once weekly
					L group	80	774	L 1,500 mg orally daily
					I+L group	11	75	T 4 mg/kg→2 mg/kg + L
NIC A B D24		E C J			T among		Ľ	1,000 mg orally daily T 4 ممرابع کی ممرابع
	Jury 2007 – 100 Zuri	H 7C			u group	771	60	1 → 1118/K8→4 1118/K8
	Juie 2011				Leroup	101	73	once weekly L I.500 mg→I.000 mg
					-			orally daily
					T+L group	108	66	T 4 mg/kg→2 mg/kg + L
								I,000 mg orally daily
CALGB 40601 27	December 2008–	305	IHC 3+ or FISH +	Weekly P 16 weeks	T group	70	48	T 4 mg/kg $ ightarrow$ 2 mg/kg
	February 2012							once weekly
					L group	37	27	L 1,500 mg orally daily
					T+L group	69	48	T 4 mg/kg→ 2 mg/kg + L
								I,000 mg orally daily

3236

from 500 to 1,600 mg given once daily, and clinical activity was observed most frequently at 900–1,200 mg.⁸ The clinical choice of dose was related to the tolerance to toxicities and there was no correlation between clinical response and different doses.

Assessment of the methodological quality

All trials had definitely established inclusion and exclusion criteria. All patients with Her2-positive breast cancer were randomized to receive different anti-Her2 therapy, including trastuzumab, lapatinib, or their combination. The anti-HER2 therapy was carried out simultaneously with NAC, and included fluorouracil–epirubicine–cyclophosphamide, and doxorubicin-cyclophosphamide. HER2 amplification was confirmed by immunohistochemistry or fluorescent in situ hybridization, and HR status was recorded for every trial. Study quality was assessed using the five-item Jadad score (seven points), with a score range of 4–7 (Table 2).

The pCR rate of trastuzumab versus lapatinib

Seven trials, including 1,694 patients (n=887 in the trastuzumab group and n=807 in the lapatinib group), were analyzed for the pCR rate after addition of trastuzumab versus lapatinib compared to NAC in breast only. The absolute pCR rate was estimated to be 41% in the trastuzumab group compared to 33% in the lapatinib group. The pCR rate tended to be higher in the trastuzumab group versus the lapatinib group (OR, 1.41, 95% CI 1.14–1.73, P=0.001) (Figure 2A).

Eight trials including 1,752 patients (n=915 in trastuzumab group and n=837 in the lapatinib group) were compared for the pCR rates in breast and lymph nodes. The absolute pCR rate was estimated to be 38% in the trastuzumab group and 29% in the lapatinib group. There were significant differences between the two groups, and the probability to achieve pCR was higher for the trastuzumab group versus the lapatinib group (OR, 1.50, 95% CI 1.22–1.85, *P*=0.0001) (Figure 2B).

The pCR rate of the combination treatment versus trastuzumab alone

For this comparison, data were available from five trials, providing the endpoints of the rates of pCR in breast alone. Overall, 1,057 patients enrolled (n=535 in the combination group and n=522 in the trastuzumab group), and the pCR rate was significantly higher in the combination group than that in the trastuzumab group (57.6% versus 44.6%, OR, 1.70, 95% CI 1.33–2.19, P<0.0001) (Figure 3A).

The pCR rate in breast and lymph nodes could be obtained from five trials (1,017 patients; 510 patients treated with lapatinib plus trastuzumab and 507 patients treated with trastuzumab alone). It is noteworthy that the dual HER2targeted combination treatment achieved the higher rate of pCR in breast and lymph nodes (54% versus 41%, OR, 1.80, 95% CI 1.39–2.32, P<0.00001) (Figure 3B).

Subgroup analysis: the influence of HR status

Considering that the evaluation of biomarkers is highly recommended for the best management and therapeutic decision of breast cancer patient treatment, we divided patients into subgroups according to HR status in two comparisons, although the differences were small. The result showed that HR status contributed to the efficacy of different anti-Her2 therapies. In patients with HR-negative tumors, the pCR rate for the trastuzumab group, in breast only or in breast and lymph nodes, was significantly higher than for the lapatinib group. However, there was no significant difference in patients with HR-positive tumors (Figure 2). Similar outcomes were obtained with the comparison between the combination group and the trastuzumab group (Figure 3).

The clinical response

There were six trials providing comparison data of clinical response status between patients in the trastuzumab group and the lapatinib group. Four trials provided results comparing patients treated with trastuzumab plus lapatinib versus those treated using trastuzumab only. The percentage of patients

Table 2 The Jadad scale

Clinical trials	CHER-LOB ¹³	EORTC 10054 ¹⁰	Holmes et al ²³	GEICAM	GeparQuinto, GBG44 ¹²	NeoALTTO ¹⁴	NSABP ²⁴	CALGB 40601 ²⁷
Randomization	2	2	2	I	2	2	2	1
Concealment of allocation	2	2	0	0	2	2	2	0
Double blinding	2	2	2	2	2	2	2	2
Withdrawals and dropouts	0	I	I	I	I	I	I	I
Jadad score ^a	6	7	5	4	7	7	7	4

Notes: *Methodological quality of meditative movements studies reviewed using Jadad scoring criteria. Total score is 7. Scores 1–3 considered as low quality; Scores 4–7 considered as high quality.

Study or subgroup	Trastuz group Events		Lapatin group Events		Weight (%)	Odds ratio M–H fixed, 95% Cl	,	Odds ratio M–H, fixed, 95% Cl	
Hormone receptor-positive									
CALGB 4060127	28	69	10	35	5.1	1.71 (0.71, 4.10)			
EORTC 10054 ¹⁰	14	27	8	15	3.2	0.94 (0.27, 3.34)			
NeoALTTO ¹⁴	17	75	13	80	6.3	1.51 (0.68, 3.37)			
NSABP ²⁴	57	122	48	100	18.3	0.95 (0.56, 1.61)			
	57	293	40	230	33.0	,		<u> </u>	
Subtotal (95% CI) Total events	116	293	79	230	33.0	1.17 (0.81, 1.71)			
Heterogeneity: χ^2 =1.81, <i>df</i> =3 (Test for overall effect: <i>Z</i> =0.84 (P=0.61);	^{/2} =0%	10						
Hormone receptor-negative						/ /			
CALGB 4060127	26	48	10	27	3.8	2.01 (0.76, 5.28)			
EORTC 10054 ¹⁰	13	26	2	8	1.0	3.00 (0.51, 17.71)		
NeoALTTO ¹⁴	27	74	25	74	10.3	1.13 (0.57, 2.21)		_	
NSABP ²⁴	36	55	43	71	8.5	1.23 (0.59, 2.56)			
Subtotal (95% CI)	00	203		180	23.6	1.39 (0.91, 2.12)			
Total events	102	203	80	100	23.0	1.55 (0.51, 2.12)			
Heterogeneity: χ^2 =1.76, <i>df</i> =3 (Test for overall effect: <i>Z</i> =1.51 (P=0.62);	^{/2} =0%	00						
Hormone state unclassified									
CHER-LOB ¹³	15	36	14	38	5.2	1.22 (0.48, 3.12)			
GEICAM ¹¹	25	48	13	51	3.9	3.18 (1.36, 7.41)		·	
GeparQuinto, GBG4412	105	307	80	308	34.2	1.48 (1.05, 2.10)			
Subtotal (95% CI)	-	391		397	43.4	1.60 (1.19, 2.17)		•	
Total events	145		107					-	
Heterogeneity: χ^2 =3.02, <i>df</i> =2 (Test for overall effect: <i>Z</i> =3.07 (P=0.22);	^{/2} =34%							
Total (95% CI)	363	887	266	807	100	1.41 (1.15, 1.73)		•	
Total events		12 00/	200						
Heterogeneity: χ^2 =8.20, <i>df</i> =10		12=0%					0.01 0.1	1 10	
Test for overall effect: Z=3.28 (P=0.001)								
Test for subgroup differences:	$\chi^2 = 1.62, a$	lf=2 (P=	0.44); <i>1</i> ²=	=0%			Favors (lap	atinib) Favors (trastuz	uma
Study or subgroup	T	h	Lanat	inih	Maint	t Odda ratia M I		Odds ratio M H	
Study or subgroup		tuzumat	•		-	t Odds ratio M–H	1,	Odds ratio M–H,	
Study or subgroup	grou	р	group		(%)	t Odds ratio M–H fixed, 95% Cl	ł,	Odds ratio M–H, fixed, 95% Cl	
Study or subgroup	grou		group		(%)		1,	-	
Study or subgroup	grou	р	group		(%)		1,	-	
	grou	р	group		(%)	fixed, 95% CI		-	
Hormone receptor-positive CALGB 40601 ²⁷	grou Even	p Its Tota 69	group Il Event	s Tota 35	(%) I 5.0	fixed, 95% Cl 1.86 (0.76, 4.56)	-	
Hormone receptor-positive CALGB 40601 ²⁷ EORTC 10054 ¹⁰	grou Even 27 14	p its Tota 69 27	group Il Event	s Tota 35 15	(%) I 5.0 2.5	fixed, 95% Cl 1.86 (0.76, 4.56 1.62 (0.45, 5.81)	-	
Hormone receptor-positive CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³	grou Even 27 14 6	p 15 Tota 69 27 15	group Il Event 9 6 4	s Tota 35 15 14	(%) 1 5.0 2.5 1.7	fixed, 95% Cl 1.86 (0.76, 4.56 1.62 (0.45, 5.81 1.67 (0.35, 7.88)	-	
Hormone receptor-positive CALGB 40601 ²⁷ EORTC 10054 ¹⁰	grou Even 27 14	p its Tota 69 27	group Il Event	s Tota 35 15	(%) 5.0 2.5 1.7 17.1	fixed, 95% Cl 1.86 (0.76, 4.56 1.62 (0.45, 5.81)	-	
Hormone receptor-positive CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³	grou Even 27 14 6	p 15 Tota 69 27 15	group Il Event 9 6 4	s Tota 35 15 14	(%) 1 5.0 2.5 1.7	fixed, 95% Cl 1.86 (0.76, 4.56 1.62 (0.45, 5.81 1.67 (0.35, 7.88)))	-	
Hormone receptor-positive CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% CI)	grou Even 27 14 6 55	p 69 27 15 121	group Il Event 9 6 4 42	5 Tota 35 15 14 100	(%) 5.0 2.5 1.7 17.1	fixed, 95% Cl 1.86 (0.76, 4.56 1.62 (0.45, 5.81 1.67 (0.35, 7.88 1.15 (0.67, 1.96)))	-	
Hormone receptor-positive CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% CI) Total events	grou Even 27 14 6 55 102	p 1ts Tota 69 27 15 121 232	group Il Event 9 6 4	5 Tota 35 15 14 100	(%) 5.0 2.5 1.7 17.1	fixed, 95% Cl 1.86 (0.76, 4.56 1.62 (0.45, 5.81 1.67 (0.35, 7.88 1.15 (0.67, 1.96)))	-	
Hormone receptor-positive CALGB 406012 ⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% CI)	grou Even 27 14 6 55 102 (P=0.81);	p 1ts Tota 69 27 15 121 232	group Il Event 9 6 4 42	5 Tota 35 15 14 100	(%) 5.0 2.5 1.7 17.1	fixed, 95% Cl 1.86 (0.76, 4.56 1.62 (0.45, 5.81 1.67 (0.35, 7.88 1.15 (0.67, 1.96)))	-	
Hormone receptor-positive CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =0.97, <i>df</i> =3 Test for overall effect: <i>Z</i> =1.46 Hormone receptor-negative	grou Even 27 14 6 55 102 (P=0.81); (P=0.14)	p hts Tota 69 27 15 121 232 /²=0%	9 6 4 42 61	s Tota 35 15 14 100 164	(%) 5.0 2.5 1.7 17.1 26.4	fixed, 95% Cl 1.86 (0.76, 4.56 1.62 (0.45, 5.81 1.67 (0.35, 7.88 1.15 (0.67, 1.96 1.36 (0.90, 2.06))))	-	
Hormone receptor-positive CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =0.97, <i>df</i> =3 Test for overall effect: <i>Z</i> =1.46 Hormone receptor-negative CALGB 40601 ²⁷	grou 27 14 6 55 102 (P=0.81); (P=0.14) 24	p ts Tota 69 27 15 121 232 /²=0% 48	9 6 4 42 61	s Tota 35 15 14 100 164 27	(%) 5.0 2.5 1.7 17.1 26.4 3.5	fixed, 95% Cl 1.86 (0.76, 4.56 1.62 (0.45, 5.81 1.67 (0.35, 7.88 1.15 (0.67, 1.96 1.36 (0.90, 2.06))))	-	
Hormone receptor-positive CALGB 406012 ⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =0.97, <i>df</i> =3 Test for overall effect: <i>Z</i> =1.46 Hormone receptor-negative CALGB 40601 ²⁷ EORTC 10054 ¹⁰	grou 27 14 6 55 102 (P=0.81); (P=0.14) 24 13	p hts Tota 69 27 15 121 232 / ² =0% 48 26	group 11 Event 9 6 4 42 61 8 2	s Tota 35 15 14 100 164 27 8	(%) 5.0 2.5 1.7 17.1 26.4 3.5 1.0	fixed, 95% Cl 1.86 (0.76, 4.56 1.62 (0.45, 5.81 1.67 (0.35, 7.88 1.15 (0.67, 1.96 1.36 (0.90, 2.06 2.38 (0.87, 6.46 3.00 (0.51, 17.7))))))	-	
Hormone receptor-positive CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% Cl) Total events Heterogeneity: χ^2 =0.97, <i>df</i> =3 Test for overall effect: <i>Z</i> =1.46 Hormone receptor-negative CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³	grou 27 14 6 55 (P=0.81); (P=0.14) 24 13 13	p ts Tota 69 27 15 121 232 /²=0% 48	9 6 4 42 61	s Tota 35 15 14 100 164 27	(%) 5.0 2.5 1.7 17.1 26.4 3.5 1.0 2.3	fixed, 95% Cl 1.86 (0.76, 4.56 1.62 (0.45, 5.81 1.67 (0.35, 7.88 1.15 (0.67, 1.96 1.36 (0.90, 2.06 2.38 (0.87, 6.46 3.00 (0.51, 17.7 1.40 (0.35, 5.57))))) 1)	-	
Hormone receptor-positive CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% Cl) Total events Heterogeneity: χ^2 =0.97, <i>df</i> =3 Test for overall effect: <i>Z</i> =1.46 Hormone receptor-negative CALGB 40601 ²⁷ EORTC 10054 ¹⁰	grou 27 14 6 55 102 (P=0.81); (P=0.14) 24 13	p hts Tota 69 27 15 121 232 / ² =0% 48 26	group 11 Event 9 6 4 42 61 8 2	s Tota 35 15 14 100 164 27 8	(%) 5.0 2.5 1.7 17.1 26.4 3.5 1.0	fixed, 95% Cl 1.86 (0.76, 4.56 1.62 (0.45, 5.81 1.67 (0.35, 7.88 1.15 (0.67, 1.96 1.36 (0.90, 2.06 2.38 (0.87, 6.46 3.00 (0.51, 17.7))))) 1)	-	
Hormone receptor-positive CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =0.97, <i>df</i> =3 Test for overall effect: <i>Z</i> =1.46 Hormone receptor-negative CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴	grou 27 14 6 55 (P=0.81); (P=0.14) 24 13 13	p hts Tota 69 27 15 121 232 / ² =0% 48 26 18	group 9 6 4 42 61 8 2 13	s Tota 35 15 14 100 164 27 8 20	(%) 5.0 2.5 1.7 17.1 26.4 3.5 1.0 2.3	fixed, 95% CI 1.86 (0.76, 4.56 1.62 (0.45, 5.81 1.67 (0.35, 7.88 1.15 (0.67, 1.96 1.36 (0.90, 2.06 2.38 (0.87, 6.46 3.00 (0.51, 17.7 1.40 (0.35, 5.57 1.14 (0.56, 2.32))))))))))	-	
Hormone receptor-positive CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% Cl) Total events Heterogeneity: χ^2 =0.97, <i>df</i> =3 Test for overall effect: <i>Z</i> =1.46 Hormone receptor-negative CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³	grou 27 14 6 55 (P=0.81); (P=0.14) 24 13 13 32 82 (P=0.58);	p hts Tota 69 27 15 121 232 / ² =0% 48 26 18 55 147	group 9 6 4 42 61 8 2 13	s Tota 35 15 14 100 164 27 8 20 71	(%) 5.0 2.5 1.7 17.1 26.4 3.5 1.0 2.3 9.7	fixed, 95% Cl 1.86 (0.76, 4.56 1.62 (0.45, 5.81 1.67 (0.35, 7.88 1.15 (0.67, 1.96 1.36 (0.90, 2.06 2.38 (0.87, 6.46 3.00 (0.51, 17.7 1.40 (0.35, 5.57))))))))))	-	
Hormone receptor-positive CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% Cl) Total events Heterogeneity: χ^2 =0.97, <i>df</i> =3 Test for overall effect: <i>Z</i> =1.46 Hormone receptor-negative CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% Cl) Total events Heterogeneity: χ^2 =1.96, <i>df</i> =3 Test for overall effect: <i>Z</i> =1.71	grou 27 14 6 55 102 (P=0.81); (P=0.14) 24 13 32 82 (P=0.58); (P=0.09)	p hts Tota 69 27 15 121 232 / ² =0% 48 26 18 55 147	group 9 6 4 42 61 8 2 13 39	s Tota 35 15 14 100 164 27 8 20 71	(%) 5.0 2.5 1.7 17.1 26.4 3.5 1.0 2.3 9.7	fixed, 95% CI 1.86 (0.76, 4.56 1.62 (0.45, 5.81 1.67 (0.35, 7.88 1.15 (0.67, 1.96 1.36 (0.90, 2.06 2.38 (0.87, 6.46 3.00 (0.51, 17.7 1.40 (0.35, 5.57 1.14 (0.56, 2.32))))))))))	-	
Hormone receptor-positive CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =0.97, <i>df</i> =3 Test for overall effect: <i>Z</i> =1.46 Hormone receptor-negative CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =1.96, <i>df</i> =3 Test for overall effect: <i>Z</i> =1.71 Hormone state unclassified	grou 27 14 6 55 (P=0.81); (P=0.14) 24 13 32 82 (P=0.58); (P=0.09)	p hts Tota 69 27 121 232 /2=0% 48 26 18 55 147 / ² =0%	group 9 6 4 42 61 8 2 13 39 62	s Tota 35 15 14 100 164 27 8 20 71 126	(%) 5.0 2.5 1.7 17.1 26.4 3.5 1.0 2.3 9.7 16.6	fixed, 95% Cl 1.86 (0.76, 4.56 1.62 (0.45, 5.81 1.67 (0.35, 7.88 1.15 (0.67, 1.96 1.36 (0.90, 2.06 2.38 (0.87, 6.46 3.00 (0.51, 17.7 1.40 (0.35, 5.57 1.14 (0.56, 2.32 1.55 (0.94, 2.58))))))))	-	
Hormone receptor-positive CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =0.97, <i>df</i> =3 Test for overall effect: <i>Z</i> =1.46 Hormone receptor-negative CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =1.96, <i>df</i> =3 Test for overall effect: <i>Z</i> =1.71 Hormone state unclassified CHER-LOB ¹³	grou 27 14 6 55 (P=0.81); (P=0.14) 24 13 32 82 (P=0.58); (P=0.09) 9	p hts Tota 69 27 121 232 /2=0% 48 26 18 55 147 /2=0% 36	group 9 6 4 42 61 8 2 13 39 62 10	s Tota 35 15 14 100 164 27 8 20 71 126 38	(%) 5.0 2.5 1.7 17.1 26.4 3.5 1.0 2.3 9.7 16.6 5.0	fixed, 95% Cl 1.86 (0.76, 4.56 1.62 (0.45, 5.81 1.67 (0.35, 7.88 1.15 (0.67, 1.96 1.36 (0.90, 2.06) 2.38 (0.87, 6.46 3.00 (0.51, 17.7 1.40 (0.35, 5.57 1.14 (0.56, 2.32 1.55 (0.94, 2.58 0.93 (0.33, 2.65))))))))	-	
Hormone receptor-positive CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =0.97, <i>df</i> =3 Test for overall effect: <i>Z</i> =1.46 Hormone receptor-negative CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =1.96, <i>df</i> =3 Test for overall effect: <i>Z</i> =1.71 Hormone state unclassified	grou 27 14 6 55 102 (P=0.81); (P=0.14) 24 13 13 32 (P=0.58); (P=0.09) 9 23	p hts Tota 69 27 15 121 232 /2=0% 48 26 18 55 147 / ² =0% 36 48	group 9 6 4 42 61 8 2 13 39 62 10 12	s Tota 35 15 14 100 164 27 8 20 71 126	(%) 5.0 2.5 1.7 17.1 26.4 3.5 1.0 2.3 9.7 16.6	fixed, 95% Cl 1.86 (0.76, 4.56 1.62 (0.45, 5.81 1.67 (0.35, 7.88 1.15 (0.67, 1.96 1.36 (0.90, 2.06 2.38 (0.87, 6.46 3.00 (0.51, 17.7 1.40 (0.35, 5.57 1.14 (0.56, 2.32 1.55 (0.94, 2.58)))))))))	-	
Hormone receptor-positive CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =0.97, <i>df</i> =3 Test for overall effect: <i>Z</i> =1.46 Hormone receptor-negative CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =1.96, <i>df</i> =3 Test for overall effect: <i>Z</i> =1.71 Hormone state unclassified CHER-LOB ¹³	grou 27 14 6 55 (P=0.81); (P=0.14) 24 13 32 82 (P=0.58); (P=0.09) 9	p hts Tota 69 27 121 232 /2=0% 48 26 18 55 147 /2=0% 36	group 9 6 4 42 61 8 2 13 39 62 10	s Tota 35 15 14 100 164 27 8 20 71 126 38	(%) 5.0 2.5 1.7 17.1 26.4 3.5 1.0 2.3 9.7 16.6 5.0	fixed, 95% Cl 1.86 (0.76, 4.56 1.62 (0.45, 5.81 1.67 (0.35, 7.88 1.15 (0.67, 1.96 1.36 (0.90, 2.06) 2.38 (0.87, 6.46 3.00 (0.51, 17.7 1.40 (0.35, 5.57 1.14 (0.56, 2.32 1.55 (0.94, 2.58 0.93 (0.33, 2.65))))))))	-	
Hormone receptor-positive CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^{2} =0.97, <i>df</i> =3 Test for overall effect: <i>Z</i> =1.46 Hormone receptor-negative CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^{2} =1.96, <i>df</i> =3 Test for overall effect: <i>Z</i> =1.71 Hormone state unclassified CHER-LOB ¹³ GEICAM ¹¹ GeparQuinto, GBG44 ¹²	grou 27 14 6 55 102 (P=0.81); (P=0.14) 24 13 13 32 (P=0.58); (P=0.09) 9 23	p hts Tota 69 27 15 121 232 /2=0% 48 26 18 55 147 / ² =0% 36 48	group 9 6 4 42 61 8 2 13 39 62 10 12 70	s Tota 35 15 14 100 164 27 8 20 71 126 38 51 308	(%) 5.0 2.5 1.7 17.1 26.4 3.5 1.0 2.3 9.7 16.6 5.0 4.1 33.3	fixed, 95% Cl 1.86 (0.76, 4.56 1.62 (0.45, 5.81 1.67 (0.35, 7.88 1.15 (0.67, 1.96 1.36 (0.90, 2.06 2.38 (0.87, 6.46 3.00 (0.51, 17.7 1.40 (0.35, 5.57 1.14 (0.56, 2.32 1.55 (0.94, 2.58 0.93 (0.33, 2.65 2.99 (1.27, 7.06 1.48 (1.03, 2.12)))))))))	-	
Hormone receptor-positive CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =0.97, df=3 Test for overall effect: Z=1.46 Hormone receptor-negative CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =1.96, df=3 Test for overall effect: Z=1.71 Hormone state unclassified CHER-LOB ¹³ GEICAM ¹¹ GeparQuinto, GBG44 ¹² NeoALTTO ¹⁴	grou 27 14 6 55 102 (P=0.81); (P=0.14) 24 13 13 32 (P=0.58); (P=0.09) 9 23 93	p Tota 69 27 15 121 232 /2=0% 48 26 18 55 147 /2=0% 36 48 307 145	group 9 6 4 42 61 8 2 13 39 62 10 12	s Tota 35 15 14 100 164 27 8 20 71 126 38 51 308 150	(%) 5.0 2.5 1.7 17.1 26.4 3.5 1.0 2.3 9.7 16.6 5.0 4.1 33.3 14.6	fixed, 95% Cl 1.86 (0.76, 4.56 1.62 (0.45, 5.81 1.67 (0.35, 7.88 1.15 (0.67, 1.96 1.36 (0.90, 2.06 2.38 (0.87, 6.46 3.00 (0.51, 17.7 1.40 (0.35, 5.57 1.14 (0.56, 2.32 1.55 (0.94, 2.58 0.93 (0.33, 2.65 2.99 (1.27, 7.06 1.48 (1.03, 2.12 1.52 (0.89, 2.62))))))))))	-	
Hormone receptor-positive CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =0.97, <i>df</i> =3 Test for overall effect: <i>Z</i> =1.46 Hormone receptor-negative CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =1.96, <i>df</i> =3 Test for overall effect: <i>Z</i> =1.71 Hormone state unclassified CHER-LOB ¹³ GEICAM ¹¹ GeparQuinto, GBG44 ¹² NeoALTTO ¹⁴ Subtotal (95% CI)	grou 27 14 6 55 (P=0.81); (P=0.14) 24 13 13 32 (P=0.58); (P=0.09) 9 23 93 40	p hts Tota 69 27 15 121 232 /2=0% 48 26 18 55 147 / ² =0% 36 48 307	group 9 6 4 42 61 8 2 13 39 62 10 12 70 30	s Tota 35 15 14 100 164 27 8 20 71 126 38 51 308	(%) 5.0 2.5 1.7 17.1 26.4 3.5 1.0 2.3 9.7 16.6 5.0 4.1 33.3 14.6	fixed, 95% Cl 1.86 (0.76, 4.56 1.62 (0.45, 5.81 1.67 (0.35, 7.88 1.15 (0.67, 1.96 1.36 (0.90, 2.06 2.38 (0.87, 6.46 3.00 (0.51, 17.7 1.40 (0.35, 5.57 1.14 (0.56, 2.32 1.55 (0.94, 2.58 0.93 (0.33, 2.65 2.99 (1.27, 7.06 1.48 (1.03, 2.12))))))))))	-	
Hormone receptor-positive CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =0.97, <i>df</i> =3 Test for overall effect: <i>Z</i> =1.46 Hormone receptor-negative CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =1.96, <i>df</i> =3 Test for overall effect: <i>Z</i> =1.71 Hormone state unclassified CHER-LOB ¹³ GEICAM ¹¹ GeparQuinto, GBG44 ¹² NeoALTTO ¹⁴ Subtotal (95% CI) Total events	grou 27 14 6 55 (P=0.81); (P=0.14) 24 13 32 82 (P=0.58); (P=0.09) 9 23 93 40 165	p hts Tota 69 27 121 232 /2=0% 48 26 18 55 147 / ² =0% 36 48 307 145 536	group 9 6 4 42 61 8 2 13 39 62 10 12 70	s Tota 35 15 14 100 164 27 8 20 71 126 38 51 308 150	(%) 5.0 2.5 1.7 17.1 26.4 3.5 1.0 2.3 9.7 16.6 5.0 4.1 33.3 14.6	fixed, 95% Cl 1.86 (0.76, 4.56 1.62 (0.45, 5.81 1.67 (0.35, 7.88 1.15 (0.67, 1.96 1.36 (0.90, 2.06 2.38 (0.87, 6.46 3.00 (0.51, 17.7 1.40 (0.35, 5.57 1.14 (0.56, 2.32 1.55 (0.94, 2.58 0.93 (0.33, 2.65 2.99 (1.27, 7.06 1.48 (1.03, 2.12 1.52 (0.89, 2.62))))))))))	-	
Hormone receptor-positive CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =0.97, <i>df</i> =3 Test for overall effect: <i>Z</i> =1.46 Hormone receptor-negative CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =1.96, <i>df</i> =3 Test for overall effect: <i>Z</i> =1.71 Hormone state unclassified CHER-LOB ¹³ GEICAM ¹¹ GeparQuinto, GBG44 ¹² NeoALTTO ¹⁴ Subtotal (95% CI)	grou 27 14 6 55 (P=0.81); (P=0.14) 24 13 32 (P=0.58); (P=0.09) 9 23 93 40 165 (P=0.36); (P=0.36);	p hts Tota 69 27 15 121 232 /2=0% 48 26 18 55 147 /2=0% 36 48 307 145 536 /2=7%	group 9 6 4 42 61 8 2 13 39 62 10 12 70 30	s Tota 35 15 14 100 164 27 8 20 71 126 38 51 308 150	(%) 5.0 2.5 1.7 17.1 26.4 3.5 1.0 2.3 9.7 16.6 5.0 4.1 33.3 14.6	fixed, 95% Cl 1.86 (0.76, 4.56 1.62 (0.45, 5.81 1.67 (0.35, 7.88 1.15 (0.67, 1.96 1.36 (0.90, 2.06 2.38 (0.87, 6.46 3.00 (0.51, 17.7 1.40 (0.35, 5.57 1.14 (0.56, 2.32 1.55 (0.94, 2.58 0.93 (0.33, 2.65 2.99 (1.27, 7.06 1.48 (1.03, 2.12 1.52 (0.89, 2.62))))))))))	-	
Hormone receptor-positive CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =0.97, <i>df</i> =3 Test for overall effect: <i>Z</i> =1.46 Hormone receptor-negative CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =1.96, <i>df</i> =3 Test for overall effect: <i>Z</i> =1.71 Hormone state unclassified CHER-LOB ¹³ GEICAM ¹¹ GeparQuinto, GBG44 ¹² NeoALTTO ¹⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =3.22, <i>df</i> =3 Test for overall effect: <i>Z</i> =3.16 Total (95% CI)	grou Even 27 14 6 55 (P=0.81); (P=0.14) 24 13 13 32 (P=0.58); (P=0.58); (P=0.09) 9 23 93 40 165 (P=0.36); (P=0.002)	p hts Tota 69 27 15 121 232 /2=0% 48 26 18 55 147 /2=0% 36 48 307 145 536 /2=7%	group 9 6 4 42 61 8 2 13 39 62 10 12 70 30 122	s Tota 35 15 14 100 164 27 8 20 71 126 38 51 308 150	(%) 5.0 2.5 1.7 17.1 26.4 3.5 1.0 2.3 9.7 16.6 5.0 4.1 33.3 14.6	fixed, 95% Cl 1.86 (0.76, 4.56 1.62 (0.45, 5.81 1.67 (0.35, 7.88 1.15 (0.67, 1.96 1.36 (0.90, 2.06 2.38 (0.87, 6.46 3.00 (0.51, 17.7 1.40 (0.35, 5.57 1.14 (0.56, 2.32 1.55 (0.94, 2.58 0.93 (0.33, 2.65 2.99 (1.27, 7.06 1.48 (1.03, 2.12 1.52 (0.89, 2.62))))))))))	-	
Hormone receptor-positive CALGB 40601 ²⁷ EORTC 1005 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: $\chi^{2}=0.97$, <i>df</i> =3 Test for overall effect: <i>Z</i> =1.46 Hormone receptor-negative CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: $\chi^{2}=1.96$, <i>df</i> =3 Test for overall effect: <i>Z</i> =1.71 Hormone state unclassified CHER-LOB ¹³ GEICAM ¹¹ GeparQuinto, GBG44 ¹² NeoALTTO ¹⁴ Subtotal (95% CI) Total events Heterogeneity: $\chi^{2}=3.22$, <i>df</i> =3 Test for overall effect: <i>Z</i> =3.16	grou 27 14 6 55 (P=0.81); (P=0.14) 24 13 32 (P=0.58); (P=0.09) 9 23 93 40 165 (P=0.36); (P=0.36);	p hts Tota 69 27 15 121 232 /2=0% 48 26 18 55 147 / ² =0% 36 48 307 145 536 / ² =7%	group 9 6 4 42 61 8 2 13 39 62 10 12 70 30	s Tota 35 15 14 100 164 27 8 20 71 126 38 51 308 150 547	(%) 5.0 2.5 1.7 17.1 26.4 3.5 1.0 2.3 9.7 16.6 5.0 4.1 33.3 14.6 57.0	fixed, 95% Cl 1.86 (0.76, 4.56 1.62 (0.45, 5.81 1.67 (0.35, 7.88 1.15 (0.67, 1.96 1.36 (0.90, 2.06) 2.38 (0.87, 6.46 3.00 (0.51, 17.7 1.40 (0.35, 5.57 1.14 (0.56, 2.32 1.55 (0.94, 2.58 0.93 (0.33, 2.65 2.99 (1.27, 7.06 1.48 (1.03, 2.12 1.52 (0.89, 2.62 1.55 (1.18, 2.04))))))))))	-	
Hormone receptor-positive CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% Cl) Total events Heterogeneity: χ^2 =0.97, <i>df</i> =3 Test for overall effect: <i>Z</i> =1.46 Hormone receptor-negative CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% Cl) Total events Heterogeneity: χ^2 =1.96, <i>df</i> =3 Test for overall effect: <i>Z</i> =1.71 Hormone state unclassified CHER-LOB ¹³ GEICAM ¹¹ GeparQuinto, GBG44 ¹² NeoALTTO ¹⁴ Subtotal (95% Cl) Total events Heterogeneity: χ^2 =3.22, <i>df</i> =3 Test for overall effect: <i>Z</i> =3.16 Total (95% Cl) Total events	grou 27 14 6 55 (P=0.81); (P=0.14) 24 13 32 (P=0.58); (P=0.09) 9 23 93 40 (P=0.36); (P=0.02) 349	p Tota 69 27 15 121 232 /2=0% 48 26 18 55 147 /2=0% 36 48 307 145 536 /2=7% 915	group 9 6 4 42 61 8 2 13 39 62 10 12 70 30 122	s Tota 35 15 14 100 164 27 8 20 71 126 38 51 308 150 547	(%) 5.0 2.5 1.7 17.1 26.4 3.5 1.0 2.3 9.7 16.6 5.0 4.1 33.3 14.6 57.0	fixed, 95% Cl 1.86 (0.76, 4.56 1.62 (0.45, 5.81 1.67 (0.35, 7.88 1.15 (0.67, 1.96 1.36 (0.90, 2.06) 2.38 (0.87, 6.46 3.00 (0.51, 17.7 1.40 (0.35, 5.57 1.14 (0.56, 2.32 1.55 (0.94, 2.58 0.93 (0.33, 2.65 2.99 (1.27, 7.06 1.48 (1.03, 2.12 1.52 (0.89, 2.62 1.55 (1.18, 2.04))))))))))	-	
Hormone receptor-positive CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =0.97, <i>df</i> =3 Test for overall effect: <i>Z</i> =1.46 Hormone receptor-negative CALGB 40601 ²⁷ EORTC 10054 ¹⁰ Holmes et al ²³ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =1.96, <i>df</i> =3 Test for overall effect: <i>Z</i> =1.71 Hormone state unclassified CHER-LOB ¹³ GEICAM ¹¹ GeparQuinto, GBG44 ¹² NeoALTTO ¹⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =3.22, <i>df</i> =3 Test for overall effect: <i>Z</i> =3.16 Total (95% CI)	grou Even 27 14 6 55 (P=0.81); (P=0.41); (P=0.41); (P=0.58); (P=0.09) 9 23 93 40 (P=0.36); (P=0.02); (P=0.84) 1 (P=0.84)	p hts Tota 69 27 121 232 /2=0% 48 26 18 55 147 /2=0% 36 48 307 145 536 /2=7% 915 ; /2=0%	group 9 6 4 42 61 8 2 13 39 62 10 12 70 30 122	s Tota 35 15 14 100 164 27 8 20 71 126 38 51 308 150 547	(%) 5.0 2.5 1.7 17.1 26.4 3.5 1.0 2.3 9.7 16.6 5.0 4.1 33.3 14.6 57.0	fixed, 95% Cl 1.86 (0.76, 4.56 1.62 (0.45, 5.81 1.67 (0.35, 7.88 1.15 (0.67, 1.96 1.36 (0.90, 2.06) 2.38 (0.87, 6.46 3.00 (0.51, 17.7 1.40 (0.35, 5.57 1.14 (0.56, 2.32 1.55 (0.94, 2.58 0.93 (0.33, 2.65 2.99 (1.27, 7.06 1.48 (1.03, 2.12 1.52 (0.89, 2.62 1.55 (1.18, 2.04))))))))))	-	

Figure 2 Forest plots of pCR rates: trastuzumab versus lapatinib, defined as no invasive disease in the breast only (A) or no invasive disease in the breast and lymph nodes (B). Abbreviations: Cl, confidence interval; df, degrees of freedom; M–H, Mantel–Haenszel; pCR, pathologically complete response. Α

	group		group	umab	Weight (%)	Odds ratio M–H fixed, 95% Cl	fixed, S	atio M–H, 95% Cl
	Events	Total	Events	Total	()	,		
Hormone receptor-positive								
CALGB 4060127	28	69	28	69	17.5	1.00 (0.51, 1.97)	_	.
EORTC 10054 ¹⁰	12	25	14	27	7.4	0.86 (0.29, 2.55)		•
NeoALTTO ¹⁴	32	77	17	75	10.6	2.43 (1.20, 4.91)		
NSABP ²⁴	60	108	57	112	26.1	1.21 (0.71, 2.05)		_ _
Subtotal (95% CI)		279		283	61.6	1.32 (0.94, 1.85)		•
Total events	132		116					•
Heterogeneity: χ^2 =4.22, <i>df</i> =3 (<i>P</i> =0) Test for overall effect: Z=1.59 (<i>P</i> =0)		9%						
Hormone receptor-negative								
CALGB 4060127	37	47	26	48	5.8	3.13 (1.27, 7.70)		
EORTC 10054 ¹⁰	16	26	13	26	5.3	1.60 (0.53, 4.82)	-	
NeoALTTO ¹⁴	46	75	27	74	11.0	2.76 (1.42, 5.36)		
NSABP ²⁴	46	63	36	55	10.9	1.43 (0.65, 3.14)		
Subtotal (95% CI)		211		203	33.0	2.20 (1.46, 3.30)		•
Total events	145		102			(<i>, , ,</i>		•
Heterogeneity: $\chi^2=2.52$, $df=3$ ($P=0$ Test for overall effect: Z=3.80 ($P=0$		6						
Hormone state unclassified								
CHER-LOB ¹³	31	45	15	36	5.5	3.10 (1.24, 7.74)		
Subtotal (95% CI)		45		36	5.5	3.10 (1.24, 7.74)		
Total events	31		15					
Heterogeneity: Not applicable Test for overall effect: Z=2.42 (P=	0.02)							
Total (95% CI)		535		522	100	1.70 (1.33, 2.19)		•
Total events	308		233			,		
Heterogeneity: χ^2 =12.12, df=8 (P= Test for overall effect: Z=4.20 (P<		4%					0.02 0.1	1 10 50
Test for subgroup differences: χ^2 =		(P=0.07): $l^2 = 63.09$	6		-	vors (trastuzumab)	Favors (combina

Study or subgroup	Combin group Events		group		Weight (%)	Odds ratio M–H, fixed, 95% Cl		Odds ratio M–H, fixed, 95% Cl
Hormone receptor-positive								
CALGB 4060127	28	69	27	69	18.2	1.06 (0.54, 2.10)		
Holmes et al ²³	15	20	6	15	1.9	4.50 (1.06, 19.11)		
NSABP ²⁴	59	108	55	121	26.7	1.44 (0.86, 2.43)		+ - -
Subtotal (95% CI)		197		205	46.8	1.42 (0.96, 2.11)		◆
Total events	102		88					
Heterogeneity: χ^2 =3.14, <i>df</i> =2 (<i>F</i> Test for overall effect: <i>Z</i> =1.75 (<i>F</i>		36%						
Hormone receptor-negative								
CALGB 4060127	32	47	24	48	8.6	2.13 (0.93, 4.91)		
Holmes et al ²³	10	13	13	18	2.9	1.28 (0.25, 6.69)		
NSABP ²⁴	44	63	32	55	11.7	1.66 (0.78, 3.56)		+
Subtotal (95% CI)		123		121	23.1	1.79 (1.05, 3.05)		◆
Total events	86		69					
Heterogeneity: χ^2 =0.36, <i>df</i> =2 (<i>F</i> Test for overall effect: <i>Z</i> =2.15 (<i>F</i>)%						
Hormone state unclassified								
CHER-LOB ¹³	21	45	9	36	6.0	2.63 (1.01, 6.82)		
NeoALTTO ¹⁴	68	145	40	145	24.1	2.32 (1.42, 3.78)		
Subtotal (95% CI)		190		181	30.1	2.38 (1.54, 3.68)		•
	89		49					
Total events								
Total events Heterogeneity: χ^2 =0.05, <i>df</i> =1 (<i>F</i> Test for overall effect: Z=3.91 (<i>F</i>	P=0.82); /2=0	0%						
Heterogeneity: χ^2 =0.05, df=1 (F	P=0.82); /2=0)% 510		507	100	1.80 (1.39, 2.32)		•
Heterogeneity: χ^2 =0.05, <i>df</i> =1 (<i>F</i> Test for overall effect: <i>Z</i> =3.91 (<i>F</i>	P=0.82); /2=0		206	507	100	1.80 (1.39, 2.32)		•
Heterogeneity: χ^2 =0.05, df =1 (<i>F</i> Test for overall effect: Z=3.91 (<i>F</i> Total (95% CI) Total events Heterogeneity: χ^2 =6.51, df =7 (<i>F</i>	P=0.82); <i>I</i> ² =(P<0.0001) 277 P=0.48); <i>I</i> ² =(510	206	507	100	1.80 (1.39, 2.32)	Ļ	•
Heterogeneity: χ^2 =0.05, <i>df</i> =1 (<i>F</i> Test for overall effect: <i>Z</i> =3.91 (<i>F</i> Total (95% CI) Total events	P=0.82); <i>I</i> ² =(P<0.0001) 277 P=0.48); <i>I</i> ² =(510	206	507	100	1.80 (1.39, 2.32)	0.01 0	+

Figure 3 Forest plots of pCR rates: combination versus trastuzumab, defined as no invasive disease in the breast only (A) or no invasive disease in the breast and lymph nodes (B).

Abbreviations: CI, confidence interval; df, degrees of freedom; M–H, Mantel–Haenszel; pCR, pathologically complete response.

who achieved a clinically complete response was similar in patients treated with trastuzumab or lapatinib (82.8% versus 82.4%, OR, 0.99, 95% CI 0.75–1.32, *P*=0.95) (Figure 4A). A similar result was observed for patients who were given dual Her2 block treatment or trastuzumab only (85.4% versus 82.2%, OR, 1.34, 95% CI 0.91–1.98, *P*=0.14) (Figure 4B).

The rate of breast conservation

Surgery was planned after the last chemotherapy administration and the candidates underwent breast conservation, or alternately, total mastectomy. The choice of surgery depended on the results obtained after chemical drug treatments. The rate of breast conservation between the groups showed no significant difference, either in the comparison groups of trastuzumab and lapatinib (50.5% versus 47.5%, OR, 1.812, 95% CI 0.91–1.38, P=0.27) (Figure 5A) or in that of the combination group and trastuzumab-alone group (45.7% versus 44.3%, OR, 1.05, 95% CI 0.79–1.40, P=0.73) (Figure 5B).

Toxicity studies

The main grade 3 and 4 toxic effects are summarized in Tables 3 and 4, and in Figure 6. After statistical analyses, the results showed that patients treated with lapatinib had more diarrhea, skin disorders, hepatic biochemical changes, infections, and inflammation (P < 0.05) (Table 3, Figure 6). For the combination group, diarrhea, other digestive tract symptoms, hepatic biochemical changes, and skin disorders occurred much more than in patients treated with trastuzumab alone (Tables 3 and 4, Figure 6).

Discussion

This study provides an analysis of the efficacy and safety of adding trastuzumab, lapatinib, or both to NAC in Her2-positive breast cancer patient treatments. Previous meta-analyses performed by Hicks et al⁹ showed an improvement in the pCR rate when lapatinib was combined with trastuzumab in patients receiving NAC. However, further analyses of the subgroups based on different HR status have not been performed. Furthermore, the toxic effects and breast conversation rates were not reported. In this study, we have updated the analysis by adding studies^{10–12} including the GEICAM/2006-14 trial, the GeparQuinto, GBG44 trial, and the EORTC 10054 study. In addition to including the pCR rates, we included the clinical responses, toxic effects, and the rates of breast conservation in the comparison analyses.

The overall pCR rate in the dual blockade of Her2 treatment groups was above 50%, while the CALGB 40601¹³ and NeoALTTO¹⁴ studies reported 46.7% and 46.9%, respectively. The different definitions of the pCR rate and statistical

Figure 4 Forest plots of clinical complete response rates: trastuzumab versus lapatinib (**A**); combination versus trastuzumab (**B**). Abbreviations: CI, confidence interval; *df*, degrees of freedom; M–H, Mantel–Haenszel.

bias might be the causes of the discrepancy in these results. In our analyses of the combination groups, the pCR rates, both in breast and in breast with lymph nodes, were 57.6% and 54% respectively, and were found to be superior to the single-agent treated groups. In addition, the pCR rate of the trastuzumab group was reported in articles that compared the effects of trastuzumab versus lapatinib. In our analyses, trastuzumab gave higher efficacy compared to lapatinib. The results suggest an advantage of adding trastuzumab to NAC as a more effective method, versus lapatinib alone, and showed elevated pCR rates either in breast or in breast and lymph nodes. These results could be explained by the lower ability of lapatinib to block the HER2 pathway, the lower drug dose of lapatinib used, and the greater ability

 Table 3 Selected toxic effects in the trastuzumab group and lapatinib group

Toxic effect	Studies	Participants	Odds ratio (M–H, fixed, 95% CI)
Diarrhea	8	1,769	0.11* (0.07, 0.18)
Other digestive	6	1,284	0.92 (0.59, 1.44)
tract symptoms			
Febrile neutropenia	5	1,289	0.85 (0.54, 1.34)
Neutropenia	7	1,694	0.90 (0.69, 1.15)
Hepatic	8	1,769	0.60* (0.39, 0.92)
Skin disorder	7	1,703	0.14* (0.08, 0.26)
CHF	3	1,041	0.76 (0.29, 2.03)
Hemoglobin	4	1,107	0.93 (0.57, 1.50)
LVSD	4	1,143	1.66 (0.98, 2.81)
Fatigue	5	1,218	0.83 (0.55, 1.26)
Dehydration	2	417	0.25 (0.03, 2.24)
Infection and	6	1,284	0.52* (0.29, 0.94)
inflammation			
Neuropathy sensory	5	1,298	0.69 (0.36, 1.31)
Dyspnea	3	492	1.27 (0.34, 4.71)

Note: *P<0.05.

Abbreviations: CHF, congestive heart failure; CI, confidence interval; LVSD, left ventricular systolic dysfunction; M–H, Mantel–Haenszel.

Table 4 Selected	toxic	effects	in	the	combination	group	and
trastuzumab group							

Toxic effect	Studies	Participants	Odds ratio (M–H, fixed, 95% CI)
Diarrhea	6	1,135	14.38* (8.02, 25.78)
Other digestive	4	599	2.11* (1.17, 3.82)
tract symptoms			
Febrile neutropenia	4	517	0.92 (0.46, 1.85)
Neutropenia	5	1,053	1.37 (0.93, 2.02)
Hepatic	6	1,135	2.63* (1.51, 4.59)
Skin disorder	5	1,072	4.97* (2.56, 9.61)
CHF	2	454	0.14 (0.02, 1.17)
Hemoglobin	3	517	2.80 (0.74, 10.67)
LVSD	2	454	0.73 (0.28, 1.90)
Fatigue	3	536	1.01 (0.51, 2.01)
Dehydration	3	517	3.15 (0.32, 30.76)
Infection and	4	599	2.26 (0.82, 6.29)
inflammation			
Neuropathy sensory	4	771	1.97 (0.95, 4.11)
Dyspnea	3	517	0.84 (0.24, 2.96)

Note: *P<0.05.

Abbreviations: CHF, congestive heart failure; CI, confidence interval; LVSD, left ventricular systolic dysfunction; M–H, Mantel–Haenszel.

	Events	nab Total	Lapatinib Events	Total	Weight (%)	Odds ratio M–H, fixed, 95% Cl	Odds ratio M–H, fixed, 95% Cl
Diarrhea		440		<u></u>	44.0	0.00/0.01 0.00	
CALGB 4060127	2	118	14	64	11.8	0.06 (0.01, 0.28)	•
CHER-LOB ¹³	3	36	20	39	11.6	0.09 (0.02, 0.33)	
EORTC 1005410	1	53	2	22	1.8	0.19 (0.02, 2.24)	
Holmes et al ²³	0	32	2	34	1.6	0.20 (0.01, 4.33)	• • • • • • • • • • • • • • • • • • • •
GEICAM ¹¹	1	50	7	52	4.4	0.13 (0.02, 1.11)	
GeparQuinto, GBG4412		307	36	308	23.1	0.20 (0.09, 0.44)	
NeoALTTO ¹⁴	3	149	36	154	22.9	0.07 (0.02, 0.22)	
NSABP ²⁴	4	178	35	173	22.9	0.09 (0.03, 0.26)	
Subtotal (95% CI)		923		846	100	0.11 (0.07, 0.18)	•
Total events	22		152				
Heterogeneity: χ^2 =4.10 Test for overall effect: 2			1%				
Other digestive tract	symptoms						
CHER-LOB ¹³	20	36	18	39	18.8	1.46 (0.59, 3.62)	_
EORTC 1005410	2	53	2	22	6.6	0.39 (0.05, 2.98)	
Holmes et al ²³	0	32	1	34	3.5	0.34 (0.01, 8.74)	
GEICAM ¹¹	0	50	3	52	8.3	0.14 (0.01, 2.78)	• • • • • • • • • • • • • • • • • • • •
GeparQuinto, GBG4412	² 20	307	16	308	36.5	1.27 (0.65, 2.50)	_
NSABP ²⁴	6	178	11	173	26.3	0.51 (0.19, 1.42)	_ _
Subtotal (95% CI)		656		628	100	0.92 (0.59, 1.44)	
Total events	48	-	51	-			٦
Heterogeneity: χ^2 =5.68 Test for overall effect: 2	s, df=5 (P=0						
		,					
Febrile neutropenia	0	110			4.0	0.40 (0.04 4.45)	
CALGB 4060127	0	118	1	64	4.8	0.18 (0.01, 4.45)	• • • • • • • • • • • • • • • • • • • •
EORTC 1005410	8	53	5	22	15.0	0.60 (0.17, 2.11)	
Holmes et al ²³	3	32	0	34	1.1	8.19 (0.41, 165.03)	
GeparQuinto, GBG4412		307	30	308	69.4	0.72 (0.40, 1.27)	
NSABP ²⁴	7	178	4	173	9.7	1.73 (0.50, 6.02)	
Subtotal (95% CI)		688		601	100	0.85 (0.54, 1.34)	
Total events	40		40				
Heterogeneity: χ^2 =4.97 Test for overall effect: 2			20%				
Neutropenia							
CALGB 4060127	2	118	8	64	8.1	0.12 (0.02, 0.59)	
EORTC 1005410	22	53	10	22	6.5	0.85 (0.31, 2.32)	
Holmes et al ²³	3	32	0	34	0.3	8.19 (0.41, 165.03)	
GEICAM ¹¹	10	50	13	52	8.1	0.75 (0.29, 1.91)	
GeparQuinto, GBG4412	² 237	307	222	308	40.0	1.31 (0.91, 1.89)	- - -
NeoALTTO ¹⁴	4	149	24	154	18.2	0.15 (0.05, 0.44)	•
NSABP ²⁴	29	178	28	173	18.8	1.01 (0.57, 1.78)	
Subtotal (95% CI)		887		807	100	0.90 (0.69, 1.15)	•
Total events	307		305				
Heterogeneity: $\chi^2=23.2$	4, df=6 (P=	0.0007);					
Heterogeneity: χ^2 =23.2 Test for overall effect: 2	4, df=6 (P=	0.0007);					
Heterogeneity: χ^2 =23.2 Test for overall effect: 2 Hepatic	24, df=6 (P= Z=0.85 (P=0	0.0007);).39)	<i>I</i> ²=74%			0.08 (0.01, 0.70)	· · · · · · · · · · · · · · · · · · ·
Heterogeneity: χ^2 =23.2 Test for overall effect: 2 Hepatic CALGB 40601 ²⁷	24, <i>df</i> =6 (<i>P</i> = Z=0.85 (<i>P</i> =0	0.0007);).39) 118	l²=74% 6	64	14.3	0.08 (0.01, 0.70)	·
Heterogeneity: χ^2 =23.2 Test for overall effect: 2 Hepatic CALGB 40601 ²⁷ CHER-LOB ¹³	24, df=6 (P= Z=0.85 (P=0 1 2	0.0007); 0.39) 118 36	<i>I</i> ²=74% 6 11	64 39	14.3 18.5	0.15 (0.03, 0.73)	·
Heterogeneity: χ^2 =23.2 Test for overall effect: 2 Hepatic CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰	24, <i>df</i> =6 (<i>P</i> = Z=0.85 (<i>P</i> = 1 2 1	0.0007); 0.39) 118 36 53	6 11 0	64 39 22	14.3	0.15 (0.03, 0.73) 1.29 (0.05, 32.78)	·
Heterogeneity: χ^2 =23.2 Test for overall effect: 2 Hepatic CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ Holmes et al ²³	24, df=6 (P= Z=0.85 (P=(1 2 1 0	0.0007); 0.39) 118 36 53 32	6 11 0 0	64 39 22 34	14.3 18.5 1.3	0.15 (0.03, 0.73) 1.29 (0.05, 32.78) Not estimable	
Heterogeneity: χ^2 =23.2 Test for overall effect: 2 Hepatic CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ Holmes et al ²³ GEICAM ¹¹	24, df=6 (P= Z=0.85 (P=0 1 2 1 0 3	0.0007); 0.39) 118 36 53 32 50	6 11 0 0	64 39 22 34 52	14.3 18.5 1.3 0.8	0.15 (0.03, 0.73) 1.29 (0.05, 32.78) Not estimable 7.74 (0.39, 153.71)	
Heterogeneity: χ^2 =23.2 Test for overall effect: χ^2 Hepatic CAL GB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ Holmes et al ²³ GEICAM ¹¹ GeparQuinto, GBG44 ¹²	1 2=0.85 (<i>P</i> =0 1 2 1 0 3 2 14	0.0007); 0.39) 118 36 53 32 50 307	f2=74% 6 11 0 0 0 8	64 39 22 34 52 308	14.3 18.5 1.3 0.8 14.1	0.15 (0.03, 0.73) 1.29 (0.05, 32.78) Not estimable 7.74 (0.39, 153.71) 1.79 (0.74, 4.33)	
Heterogeneity: χ^2 =23.2 Test for overall effect: 2 Hepatic CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ Holmes et al ²³ GEICAM ¹¹ GeparQuinto, GBG44 ¹² NeoALTTO ¹⁴	14, <i>df</i> =6 (<i>P</i> = 2=0.85 (<i>P</i> = 1 2 1 0 3 ² 14 11	0.0007); 0.39) 118 36 53 32 50 307 149	6 11 0 0 8 28	64 39 22 34 52 308 154	14.3 18.5 1.3 0.8 14.1 47.3	0.15 (0.03, 0.73) 1.29 (0.05, 32.78) Not estimable 7.74 (0.39, 153.71) 1.79 (0.74, 4.33) 0.36 (0.17, 0.75)	
Heterogeneity: χ^2 =23.2 Test for overall effect: 2 Hepatic CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ Holmes et al ²³ GEICAM ¹¹ GeparQuinto, GBG44 ¹² NSABP ²⁴	1 2=0.85 (<i>P</i> =0 1 2 1 0 3 2 14	0.0007); 0.39) 118 36 53 32 50 307 149 173	f2=74% 6 11 0 0 0 8	64 39 22 34 52 308 154 178	14.3 18.5 1.3 0.8 14.1 47.3 3.6	0.15 (0.03, 0.73) 1.29 (0.05, 32.78) Not estimable 7.74 (0.39, 153.71) 1.79 (0.74, 4.33) 0.36 (0.17, 0.75) 1.55 (0.26, 9.41)	
Heterogeneity: $\chi^2=23.2$ Test for overall effect: χ^2 Hepatic CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ Holmes et al ²³ GEICAM ¹¹ GeparQuinto, GBG44 ¹² NeoALTTO ¹⁴ NSABP ²⁴ Subtotal (95% CI)	24, <i>df</i> =6 (<i>P</i> = Z=0.85 (<i>P</i> =(1 2 1 0 3 ² 14 11 3	0.0007); 0.39) 118 36 53 32 50 307 149	6 11 0 0 8 28 2 2	64 39 22 34 52 308 154	14.3 18.5 1.3 0.8 14.1 47.3	0.15 (0.03, 0.73) 1.29 (0.05, 32.78) Not estimable 7.74 (0.39, 153.71) 1.79 (0.74, 4.33) 0.36 (0.17, 0.75)	
Heterogeneity: $\chi^2=23.2$ Test for overall effect: χ^2 Hepatic CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ Holmes et al ²³ GEICAM ¹¹ GeparQuinto, GBG44 ¹² NSABP ²⁴ Subtotal (95% CI) Total events	24, <i>df</i> =6 (<i>P</i> = 2=0.85 (<i>P</i> = 1 2 1 0 3 2 14 11 3 35	0.0007); 0.39) 118 36 53 32 50 307 149 173 918	6 11 0 0 8 28 2 55	64 39 22 34 52 308 154 178	14.3 18.5 1.3 0.8 14.1 47.3 3.6	0.15 (0.03, 0.73) 1.29 (0.05, 32.78) Not estimable 7.74 (0.39, 153.71) 1.79 (0.74, 4.33) 0.36 (0.17, 0.75) 1.55 (0.26, 9.41)	
Heterogeneity: χ^2 =23.2 Test for overall effect: 2 Hepatic CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ Holmes et al ²³ GEICAM ¹¹ GeparQuinto, GBG44 ¹² NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =18.0	24, df=6 (P= Z=0.85 (P= 1 2 1 0 3 ² 14 11 3 35 18, df=6 (P=	0.0007); 0.39) 118 36 53 32 50 307 149 173 918 0.006); <i>I</i>	6 11 0 0 8 28 2 55	64 39 22 34 52 308 154 178	14.3 18.5 1.3 0.8 14.1 47.3 3.6	0.15 (0.03, 0.73) 1.29 (0.05, 32.78) Not estimable 7.74 (0.39, 153.71) 1.79 (0.74, 4.33) 0.36 (0.17, 0.75) 1.55 (0.26, 9.41)	
Heterogeneity: χ^2 =23.2 Test for overall effect: 2 Hepatic CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ Holmes et al ²³ GEICAM ¹¹ GeparQuinto, GBG44 ¹² NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =18.0 Test for overall effect: 2 Skin disorder	14, df=6 (P= 2=0.85 (P=(1 2 1 0 3 2 14 11 3 35 18, df=6 (P= 2=2.32 (P=(0.0007); 0.39) 118 36 53 32 50 307 149 173 918 0.006); <i>I</i>	6 11 0 0 8 28 2 55	64 39 22 34 52 308 154 178	14.3 18.5 1.3 0.8 14.1 47.3 3.6	0.15 (0.03, 0.73) 1.29 (0.05, 32.78) Not estimable 7.74 (0.39, 153.71) 1.79 (0.74, 4.33) 0.36 (0.17, 0.75) 1.55 (0.26, 9.41) 0.60 (0.39, 0.92)	
Heterogeneity: χ^2 =23.2 Test for overall effect: 2 Hepatic CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ Holmes et al ²³ GEICAM ¹¹ GeparQuinto, GBG44 ¹² NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =18.0 Test for overall effect: 2 Skin disorder	24, df=6 (P= 2=0.85 (P=(1 2 1 0 3 2 14 11 3 3 5 8, df=6 (P= 2 2	0.0007); 0.39) 118 36 53 32 50 307 149 173 918 0.006); <i>I</i>	6 11 0 0 8 28 2 2 55 ≈=67%	64 39 22 34 52 308 154 154 851 64	14.3 18.5 1.3 0.8 14.1 47.3 3.6	0.15 (0.03, 0.73) 1.29 (0.05, 32.78) Not estimable 7.74 (0.39, 153.71) 1.79 (0.74, 4.33) 0.36 (0.17, 0.75) 1.55 (0.26, 9.41) 0.60 (0.39, 0.92) 0.09 (0.02, 0.44)	
Heterogeneity: χ^2 =23.2 Test for overall effect: χ^2 Hepatic CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ Holmes et al ²³ GEICAM ¹¹ GeparQuinto, GBG44 ¹² NeoALTTO ¹⁴ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =18.0 Test for overall effect: χ^2 Skin disorder CALGB 40601 ²⁷ CHER-LOB ¹³	14, df=6 (P= 2=0.85 (P=(1 2 1 1 0 3 14 11 3 3 5 8, df=6 (P= 2 2 3	0.0007);).39) 118 36 53 32 50 307 149 173 918 0.006); <i>I</i>).02)	6 11 0 0 8 28 2 2 55 ≈=67%	64 39 22 34 52 308 154 178 851 64 39	14.3 18.5 1.3 0.8 14.1 47.3 3.6 100 17.0 24.6	0.15 (0.03, 0.73) 1.29 (0.05, 32.78) Not estimable 7.74 (0.39, 153.71) 1.79 (0.74, 4.33) 0.36 (0.17, 0.75) 1.55 (0.26, 9.41) 0.60 (0.39, 0.92)	
Heterogeneity: χ^2 =23.2 Test for overall effect: χ^2 Hepatic CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ Holmes et al ²³ GEICAM ¹¹ GeparQuinto, GBG44 ¹² NeoALTTO ¹⁴ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =18.0 Test for overall effect: χ^2 Skin disorder CALGB 40601 ²⁷ CHER-LOB ¹³	24, df=6 (P= 2=0.85 (P=(1 2 1 0 3 2 14 11 3 3 5 8, df=6 (P= 2 2	0.0007);).39) 118 36 53 32 50 307 149 173 918 0.006); /).02)	6 11 0 0 8 28 2 2 55 ≈=67%	64 39 22 34 52 308 154 154 851 64	14.3 18.5 1.3 0.8 14.1 47.3 3.6 100 17.0	0.15 (0.03, 0.73) 1.29 (0.05, 32.78) Not estimable 7.74 (0.39, 153.71) 1.79 (0.74, 4.33) 0.36 (0.17, 0.75) 1.55 (0.26, 9.41) 0.60 (0.39, 0.92) 0.09 (0.02, 0.44)	
Heterogeneity: χ^2 =23.2 Test for overall effect: χ^2 Hepatic CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ Holmes et al ²³ GEICAM ¹¹ GeparQuinto, GBG44 ¹² NeoALTTO ¹⁴ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =18.0 Test for overall effect: χ^2 Skin disorder CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ GEICAM ¹¹	24, df=6 (P= 2=0.85 (P=(1 2 1 1 2 1 1 0 3 ² 14 11 3 35 8, df=6 (P= 2 3 2 0	0.0007); 0.39) 118 36 53 32 50 307 149 173 918 0.006); <i>I</i> 0.02) 118 36	6 11 0 0 8 28 2 55 55 55 55 55 55 55 55 67%	64 39 22 34 52 308 154 178 851 64 39	14.3 18.5 1.3 0.8 14.1 47.3 3.6 100 17.0 24.6	0.15 (0.03, 0.73) 1.29 (0.05, 32.78) Not estimable 7.74 (0.39, 153.71) 1.79 (0.74, 4.33) 0.36 (0.17, 0.75) 1.55 (0.26, 9.41) 0.60 (0.39, 0.92) 0.09 (0.02, 0.44) 0.08 (0.02, 0.30)	
Heterogeneity: χ^2 =23.2 Test for overall effect: χ^2 Hepatic CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ Holmes et al ²³ GEICAM ¹¹ GeparQuinto, GBG44 ¹² NeoALTTO ¹⁴ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =18.0 Test for overall effect: χ^2 Skin disorder CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ GEICAM ¹¹	24, df=6 (P= 2=0.85 (P=(1 2 1 1 2 1 1 0 3 ² 14 11 3 35 8, df=6 (P= 2 3 2 0	0.0007);).39) 118 36 53 32 50 307 149 173 918 0.006); <i>I</i> 0.02) 118 36 53	6 11 0 0 8 28 2 55 ≈67%	64 39 22 34 52 308 154 178 851 64 39 22	14.3 18.5 1.3 0.8 14.1 47.3 3.6 100 17.0 24.6 0.9	0.15 (0.03, 0.73) 1.29 (0.05, 32.78) Not estimable 7.74 (0.39, 153.71) 1.79 (0.74, 4.33) 0.36 (0.17, 0.75) 1.55 (0.26, 9.41) 0.60 (0.39, 0.92) 0.09 (0.02, 0.44) 0.08 (0.02, 0.30) 2.18 (0.10, 47.36) 0.11 (0.01, 2.04)	
Heterogeneity: χ^2 =23.2 Test for overall effect: χ^2 Hepatic CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ Holmes et al ²³ GEICAM ¹¹ GeparQuinto, GBG44 ¹² NeoALTTO ¹⁴ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =18.0 Test for overall effect: χ^2 Skin disorder CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ GEICAM ¹¹ GeparQuinto, GBG44 ¹²	24, df=6 (P= 2=0.85 (P=(1 2 1 1 2 1 1 0 3 ² 14 11 3 35 8, df=6 (P= 2 3 2 0	0.0007); 0.39) 118 36 53 32 50 307 149 173 918 0.006); <i>I</i> 0.006); <i>I</i> 118 36 53 50 50	P=74% 6 11 0 0 8 28 2 8 2 55 55 ≈67% 10 21 0 4	64 39 22 308 154 178 851 64 39 22 52	14.3 18.5 1.3 0.8 14.1 47.3 3.6 100 17.0 24.6 0.9 5.8	0.15 (0.03, 0.73) 1.29 (0.05, 32.78) Not estimable 7.74 (0.39, 153.71) 1.79 (0.74, 4.33) 0.36 (0.17, 0.75) 1.55 (0.26, 9.41) 0.60 (0.39, 0.92) 0.09 (0.02, 0.44) 0.08 (0.02, 0.30) 2.18 (0.10, 47.36)	
Heterogeneity: χ^2 =23.2 Test for overall effect: χ^2 Hepatic CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ Holmes et al ²³ GEICAM ¹¹ GeparQuinto, GBG44 ¹² NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =18.0 Test for overall effect: χ^2 Skin disorder CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ GEICAM ¹¹ GeparQuinto, GBG44 ¹²	24, df=6 (P= 2=0.85 (P=(1 2 1 2 1 0 3 2 14 11 3 3 5 8, df=6 (P= 2 3 2 2 2 2 2 2	0.0007); 0.39) 118 36 53 32 50 307 149 0.02) 118 36 53 50 307 149	$P^{2}=74\%$ 6 11 0 0 8 28 2 55 55 55 55 55 55 2 67% 10 21 0 4 22	64 39 22 34 52 308 154 178 851 64 39 22 52 308 154	14.3 18.5 1.3 0.8 14.1 47.3 3.6 100 17.0 24.6 0.9 5.8 29.1 12.8	0.15 (0.03, 0.73) 1.29 (0.05, 32.78) Not estimable 7.74 (0.39, 153.71) 1.79 (0.74, 4.33) 0.36 (0.17, 0.75) 1.55 (0.26, 9.41) 0.60 (0.39, 0.92) 0.09 (0.02, 0.44) 0.08 (0.02, 0.30) 2.18 (0.10, 47.36) 0.11 (0.01, 2.04) 0.09 (0.22, 0.37) 0.40 (0.12, 1.30)	
GeparQuinto, GBG44 ¹⁷ NeoALTTO ¹⁴ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: <i>2</i> ² =18.0 Test for overall effect: 2 Skin disorder CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ GEICAM ¹¹ GeparQuinto, GBG44 ¹⁷ NeoALTTO ¹⁴ NSABP ²⁴	14, df=6 (P= 2=0.85 (P=(1 2 1 0 3 1 1 0 3 1 1 0 3 1 4 4 11 3 3 5 8, df=6 (P= 2 3 2 0 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4	0.0007); 0.39) 118 36 53 32 50 307 149 173 918 0.006); <i>I</i> 0.02) 118 36 53 50 307 149 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 918 173 917 1 73 918 1 73 1 75 1 75	6 11 0 0 8 28 2 55 55 55 55 55 55 55 55 55 67% 10 21 0 4 22 10	64 39 22 308 154 178 851 64 39 22 52 308 154 178	14.3 18.5 1.3 0.8 14.1 47.3 3.6 100 17.0 24.6 0.9 5.8 29.1 12.8 9.8	0.15 (0.03, 0.73) 1.29 (0.05, 32.78) Not estimable 7.74 (0.39, 153.71) 1.79 (0.74, 4.33) 0.36 (0.17, 0.75) 1.55 (0.26, 9.41) 0.60 (0.39, 0.92) 0.60 (0.39, 0.92) 0.60 (0.02, 0.44) 0.08 (0.02, 0.30) 2.18 (0.10, 47.36) 0.11 (0.01, 2.04) 0.09 (0.02, 0.37) 0.40 (0.12, 1.30) 0.07 (0.00, 1.16)	
Heterogeneity: χ^2 =23.2 Test for overall effect: χ^2 Hepatic CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ Holmes et al ²³ GEICAM ¹¹ GeparQuinto, GBG44 ¹² NeoALTTO ¹⁴ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =18.0 Test for overall effect: χ^2 Skin disorder CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ GEICAM ¹¹ GeparQuinto, GBG44 ¹² NeoALTTO ¹⁴ NSABP ²⁴ Subtotal (95% CI)	24, df=6 (P= 2=0.85 (P=(1 2 1 1 0 3 2 14 11 3 3 5 8, df=6 (P= 2 3 2 2 2 2 4 0 2 2 4 0	0.0007); 0.39) 118 36 53 32 50 307 149 0.02) 118 36 53 50 307 149	P = 74% 6 11 0 0 8 28 2 55 5=67% 10 21 0 4 22 10 7	64 39 22 34 52 308 154 178 851 64 39 22 52 308 154	14.3 18.5 1.3 0.8 14.1 47.3 3.6 100 17.0 24.6 0.9 5.8 29.1 12.8	0.15 (0.03, 0.73) 1.29 (0.05, 32.78) Not estimable 7.74 (0.39, 153.71) 1.79 (0.74, 4.33) 0.36 (0.17, 0.75) 1.55 (0.26, 9.41) 0.60 (0.39, 0.92) 0.09 (0.02, 0.44) 0.08 (0.02, 0.30) 2.18 (0.10, 47.36) 0.11 (0.01, 2.04) 0.09 (0.22, 0.37) 0.40 (0.12, 1.30)	
Heterogeneity: χ^2 =23.2 Test for overall effect: χ^2 Hepatic CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ Holmes et al ²³ GEICAM ¹¹ GeparQuinto, GBG44 ¹⁷ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =18.0 Test for overall effect: χ^2 Skin disorder CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ GEICAM ¹¹ GeparQuinto, GBG44 ¹⁷ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =7.77	14, df=6 (P= 2=0.85 (P=(1 2 1 0 3 4 4 11 3 35 8, df=6 (P= 2 3 2 0 2 4 0 13 c, df=6 (P=(1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0007); 0.39) 118 36 53 32 50 307 149 173 918 0.006); <i>I</i> 0.02) 118 36 53 50 307 149 173 886 173 886 0.26); <i>F=2</i>	$P^{2}=74\%$ 6 11 0 0 8 28 2 55 55 55 55 55 67% 10 21 0 4 22 10 7 74	64 39 22 308 154 178 851 64 39 22 52 308 154 178	14.3 18.5 1.3 0.8 14.1 47.3 3.6 100 17.0 24.6 0.9 5.8 29.1 12.8 9.8	0.15 (0.03, 0.73) 1.29 (0.05, 32.78) Not estimable 7.74 (0.39, 153.71) 1.79 (0.74, 4.33) 0.36 (0.17, 0.75) 1.55 (0.26, 9.41) 0.60 (0.39, 0.92) 0.60 (0.39, 0.92) 0.60 (0.02, 0.44) 0.08 (0.02, 0.30) 2.18 (0.10, 47.36) 0.11 (0.01, 2.04) 0.09 (0.02, 0.37) 0.40 (0.12, 1.30) 0.07 (0.00, 1.16)	
Heterogeneity: χ^2 =23.2 Test for overall effect: 2 Hepatic CALGB 40601 ²⁷ CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ Holmes et al ²³ GEICAM ¹¹ GeparQuinto, GBG44 ¹² NeoALTTO ¹⁴ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =18.0 Test for overall effect: 2 Skin disorder CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ GEICAM ¹¹ GEICAM ¹¹ GEICAM ¹¹ GEICAM ¹¹ Subtotal (95% CI) Total events Heterogeneity: χ^2 =7.77 Test for overall effect: 2	14, df=6 (P= 2=0.85 (P=(1 2 1 0 3 4 4 11 3 35 8, df=6 (P= 2 3 2 0 2 4 0 13 c, df=6 (P=(1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0007); 0.39) 118 36 53 32 50 307 149 173 918 0.006); <i>I</i> 0.02) 118 36 53 50 307 149 173 886 173 886 0.26); <i>F=2</i>	$P^{2}=74\%$ 6 11 0 0 8 28 2 55 55 55 55 55 67% 10 21 0 4 22 10 7 74	64 39 22 308 154 178 851 64 39 22 52 308 154 178	14.3 18.5 1.3 0.8 14.1 47.3 3.6 100 17.0 24.6 0.9 5.8 29.1 12.8 9.8	0.15 (0.03, 0.73) 1.29 (0.05, 32.78) Not estimable 7.74 (0.39, 153.71) 1.79 (0.74, 4.33) 0.36 (0.17, 0.75) 1.55 (0.26, 9.41) 0.60 (0.39, 0.92) 0.60 (0.39, 0.92) 0.60 (0.02, 0.44) 0.08 (0.02, 0.30) 2.18 (0.10, 47.36) 0.11 (0.01, 2.04) 0.09 (0.02, 0.37) 0.40 (0.12, 1.30) 0.07 (0.00, 1.16)	
Heterogeneity: χ^2 =23.2 Test for overall effect: 2 Hepatic CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ Holmes et al ²³ GeparQuinto, GBG44 ¹² NeoALTTO ¹⁴ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =18.0 Test for overall effect: 2 Skin disorder CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ GEICAM ¹¹ GeparQuinto, GBG44 ¹² NeoALTTO ¹⁴ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =7.77 Test for overall effect: 2 CHF	14, df=6 (P= 2=0.85 (P=(1 2 1 0 3 2 14 11 3 35 2 4 0 2 3 2 2 4 0 13 (P=(2 3 2 2 4 0 12 1 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0007); 0.39) 118 36 53 32 50 307 149 173 918 0.006); <i>I</i> 0.02) 118 36 53 50 307 149 173 886 .26); <i>F=2</i> 0.00001)	P=74% 6 11 0 0 8 28 2 55 =67% 10 21 0 4 22 10 7 74 23%	64 39 22 308 154 178 851 64 39 22 52 308 154 178 817	14.3 18.5 1.3 0.8 14.1 47.3 3.6 100 17.0 24.6 0.9 5.8 29.1 12.8 9.8	0.15 (0.03, 0.73) 1.29 (0.05, 32.78) Not estimable 7.74 (0.39, 153.71) 1.79 (0.74, 4.33) 0.36 (0.17, 0.75) 1.55 (0.26, 9.41) 0.60 (0.39, 0.92) 0.09 (0.02, 0.44) 0.08 (0.02, 0.30) 2.18 (0.10, 47.36) 0.11 (0.01, 2.04) 0.09 (0.02, 0.37) 0.40 (0.12, 1.30) 0.07 (0.00, 1.16) 0.14 (0.08, 0.26)	
Heterogeneity: χ^2 =23.2 Test for overall effect: χ^2 Hepatic CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ Holmes et al ²³ GEICAM ¹¹ GeparQuinto, GBG44 ¹² NeoALTTO ¹⁴ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =18.0 Test for overall effect: χ^2 Skin disorder CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ GEICAM ¹¹ GeparQuinto, GBG44 ¹² NeoALTTO ¹⁴ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =7.77 Test for overall effect: χ^2 CHF EORTC 10054 ¹⁰	24, df=6 (P= 2=0.85 (P=(1 2 1 0 3 2 14 11 3 35 8, df=6 (P= 2 3 2 2 4 0 13 (, df=6 (P=(2 3 2 4 0 1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0007); 0.39) 118 36 53 32 50 307 149 173 918 0.006); <i>I</i> 0.02) 118 36 53 50 307 149 173 886 1/23 886 1/23 886	P = 74% 6 11 0 0 8 28 2 55 5=67% 10 21 0 4 22 10 7 74 23% 0	64 39 22 308 154 178 851 64 39 22 52 308 154 178 817	14.3 18.5 1.3 0.8 14.1 47.3 3.6 100 17.0 24.6 0.9 5.8 29.1 12.8 9.8 100	0.15 (0.03, 0.73) 1.29 (0.05, 32.78) Not estimable 7.74 (0.39, 153.71) 1.79 (0.74, 4.33) 0.36 (0.17, 0.75) 1.55 (0.26, 9.41) 0.60 (0.39, 0.92) 0.09 (0.02, 0.44) 0.08 (0.02, 0.30) 2.18 (0.10, 47.36) 0.11 (0.01, 2.04) 0.09 (0.02, 0.37) 0.40 (0.12, 1.30) 0.07 (0.00, 1.16) 0.14 (0.08, 0.26) Not estimable	
Heterogeneity: χ^2 =23.2 Test for overall effect: χ^2 Hepatic CALGB 40601 ²⁷ CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ Holmes et al ²³ GEICAM ¹¹ GeparQuinto, GBG44 ¹² NeoALTTO ¹⁴ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =18.0 Test for overall effect: χ^2 Skin disorder CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ GEICAM ¹¹ GeparQuinto, GBG44 ¹² NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =7.77 Test for overall effect: χ^2 CHF EORTC 10054 ¹⁰ GeparQuinto, GBG44 ¹²	24, df=6 (P= 2=0.85 (P=(1 2 1 0 3 2 14 11 3 35 2 14 11 3 35 8, df=6 (P= 2 3 2 2 4 0 2 2 4 0 2 2 4 0 2 2 4 0 2 2 4 0 2 2 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0007); 0.39) 118 36 53 32 50 307 149 173 918 0.006); <i>I</i> 0.02) 118 36 53 307 149 173 886 2.26); <i>F=</i> 2 0.00001) 53 307	P = 74% 6 11 0 0 8 28 2 55 55 55 55 55 55 67% 10 21 0 4 22 10 7 74 23% 0 2	64 39 22 308 154 178 851 64 39 22 52 308 154 178 817 22 308	14.3 18.5 1.3 0.8 14.1 47.3 3.6 100 17.0 24.6 0.9 5.8 29.1 12.8 9.8 100	0.15 (0.03, 0.73) 1.29 (0.05, 32.78) Not estimable 7.74 (0.39, 153.71) 1.79 (0.74, 4.33) 0.36 (0.17, 0.75) 1.55 (0.26, 9.41) 0.60 (0.39, 0.92) 0.09 (0.02, 0.44) 0.60 (0.39, 0.92) 0.09 (0.02, 0.30) 2.18 (0.10, 47.36) 0.11 (0.01, 2.04) 0.09 (0.02, 0.37) 0.40 (0.12, 1.30) 0.07 (0.00, 1.16) 0.14 (0.08, 0.26) Not estimable 0.20 (0.01, 4.17)	
Heterogeneity: χ^2 =23.2 Test for overall effect: 2 Hepatic CALGB 40601 ²⁷ CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ Holmes et al ²³ GEICAM ¹¹ GeparQuinto, GBG44 ¹⁵ NeoALTTO ¹⁴ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =18.0 Test for overall effect: 2 Skin disorder CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ GEICAM ¹¹ ReparQuinto, GBG44 ¹⁵ NeoALTTO ¹⁴ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =7.77 Test for overall effect: 2 CHF EORTC 10054 ¹⁰ GeparQuinto, GBG44 ¹⁵ NeoALTTO ¹⁴	24, df=6 (P= 2=0.85 (P=(1 2 1 0 3 2 14 11 3 35 8, df=6 (P= 2 3 2 2 4 0 13 (, df=6 (P=(2 3 2 4 0 1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0007); 0.39) 118 36 53 32 50 307 149 173 918 0.006); <i>I</i> 0.02) 118 36 53 50 307 149 173 886 1.26); <i>F=2</i> 0.00001) 53 307 178	P = 74% 6 11 0 0 8 28 2 55 5=67% 10 21 0 4 22 10 7 74 23% 0	64 39 22 308 154 178 851 64 39 22 52 308 154 178 817 22 308 154 173	14.3 18.5 1.3 0.8 14.1 47.3 3.6 100 17.0 24.6 0.9 5.8 29.1 12.8 9.8 100	0.15 (0.03, 0.73) 1.29 (0.05, 32.78) Not estimable 7.74 (0.39, 153.71) 1.79 (0.74, 4.33) 0.36 (0.17, 0.75) 1.55 (0.26, 9.41) 0.60 (0.39, 0.92) 0.09 (0.02, 0.44) 0.08 (0.02, 0.30) 2.18 (0.10, 47.36) 0.11 (0.01, 2.04) 0.09 (0.02, 0.37) 0.40 (0.12, 1.30) 0.07 (0.00, 1.16) 0.14 (0.08, 0.26) Not estimable 0.20 (0.01, 4.17) 0.97 (0.33, 2.83)	
Heterogeneity: χ^2 =23.2 Test for overall effect: χ^2 Hepatic CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ Holmes et al ²³ GeparQuinto, GBG44 ¹⁷ NeoALTTO ¹⁴ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =18.0 Test for overall effect: χ^2 Skin disorder CALGB 40601 ²⁷ CHER-LOB ¹³ EORTC 10054 ¹⁰ GEICAM ¹¹ GeparQuinto, GBG44 ¹⁷ NeoALTTO ¹⁴ NSABP ²⁴ Subtotal (95% CI) Total events Heterogeneity: χ^2 =7.77 Test for overall effect: χ^2 CHF EORTC 10054 ¹⁰	24, df=6 (P= 2=0.85 (P=(1 2 1 0 3 2 14 11 3 35 2 14 11 3 35 8, df=6 (P= 2 3 2 2 4 0 2 2 4 0 2 2 4 0 2 2 4 0 2 2 4 0 2 2 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0007); 0.39) 118 36 53 32 50 307 149 173 918 0.006); <i>I</i> 0.02) 118 36 53 307 149 173 886 2.26); <i>F=</i> 2 0.00001) 53 307	P = 74% 6 11 0 0 8 28 2 55 55 55 55 55 55 67% 10 21 0 4 22 10 7 74 23% 0 2	64 39 22 308 154 178 851 64 39 22 52 308 154 178 817 22 308	14.3 18.5 1.3 0.8 14.1 47.3 3.6 100 17.0 24.6 0.9 5.8 29.1 12.8 9.8 100	0.15 (0.03, 0.73) 1.29 (0.05, 32.78) Not estimable 7.74 (0.39, 153.71) 1.79 (0.74, 4.33) 0.36 (0.17, 0.75) 1.55 (0.26, 9.41) 0.60 (0.39, 0.92) 0.09 (0.02, 0.44) 0.60 (0.39, 0.92) 0.09 (0.02, 0.30) 2.18 (0.10, 47.36) 0.11 (0.01, 2.04) 0.09 (0.02, 0.37) 0.40 (0.12, 1.30) 0.07 (0.00, 1.16) 0.14 (0.08, 0.26) Not estimable 0.20 (0.01, 4.17)	

Figure 6 (Continued)

Hemoglobin						
EORTC 1005410 1	53	0	22	2.0	1.29 (0.05, 32.78)	
Holmes et al ²³		0	34	1.4	3.29 (0.13, 83.63)	
GeparQuinto, GBG44 ¹² 6		9	308	26.0	0.66 (0.23, 1.88)	
	28 178 570	28	173 537	70.6 100	0.97 (0.55, 1.71)	
Subtotal (95% CI)	570	37	537	100	0.93 (0.57, 1.50)	-
Total events 3 Heterogeneity: $\chi^2=1.04$, 6						
Test for overall effect: Z=	. ,.	-070				
	0.01 (. 0.10)					
LVSD						
EORTC 1005410 0		1	22	9.5	0.13 (0.01, 3.42)	• • •
GEICAM ¹¹ 2		1	52	4.3	2.13 (0.19, 24.20)	
GeparQuinto, GBG44 ¹² 4 NSABP ²⁴	307 5 178	1 22	308 173	4.5 81.7	4.05 (0.45, 36.47) 1.68 (0.94, 3.00)	
Subtotal (95% CI)	50 178 588	22	555	100	1.66 (0.94, 3.00)	
	1	25				-
Heterogeneity: χ^2 =2.99, o						
Test for overall effect: Z=						
Fatigue		0	00	0.4	4 00 (0 40 4 40)	
CHER-LOB ¹³ 7		6	39	9.4	1.33 (0.40, 4.40)	
EORTC 10054 ¹⁰ 2 GEICAM ¹¹ 6		2 2	22 52	5.5 3.5	0.39 (0.05, 2.98)	
GeparQuinto, GBG44 ¹² 2		2 30	52 308	3.5 56.4	3.41 (0.65, 17.77) 0.68 (0.38, 1.22)	
	0 178	13	173	25.2	0.73 (0.31, 1.72)	
Subtotal (95% CI)	624		594	100	0.83 (0.55, 1.26)	•
	6	53				-
Heterogeneity: χ^2 =4.46, o	df=4 (P=0.35); I ⁴	² =10%				
Test for overall effect: Z=	0.86 (<i>P</i> =0.39)					
Dehydration						
Holmes et al ²³) 32	1	34	36.2	0.34 (0.01, 8.74)	
NSABP ²⁴		2	173	63.8	0.19 (0.01, 4.03)	← ■
Subtotal (95% CI)	210		207	100	0.25 (0.03, 2.24)	
Total events 0		3				
Heterogeneity: $\chi^2=0.07$, o		² =0%				
Test for overall effect: Z=	1.24 (<i>P</i> =0.21)					
Infection and inflamma	tion					
CHER-LOB ¹³ 2		4	39	11.3	0.51 (0.09, 3.00)	
EORTC 10054 ¹⁰ 2	2 53	2	22	8.5	0.39 (0.05, 2.98)	
Holmes et al ²³ 1		2	34	5.9	0.52 (0.04, 5.99)	
GEICAM ¹¹ C		2	52	7.6	0.20 (0.01, 4.27)	·
GeparQuinto, GBG44 ¹² 1		18	308	54.0	0.66 (0.31, 1.38)	
NSABP ²⁴ 1 Subtotal (95% CI)	178 656	4	173 628	12.6 100	0.24 (0.03, 2.16)	
• •	8	32	020	100	0.52 (0.29, 0.94)	
Heterogeneity: χ^2 =1.29, o						
Test for overall effect: Z=						
Neuropathy sensory	440	2	64	16 7	0.71 (0.45.0.00)	
CALGB 40601 ²⁷ 4 CHER-LOB ¹³ 0		3 2	64 39	16.7 10.5	0.71 (0.15, 3.29) 0.21 (0.01, 4.43)	
EORTC 10054 ¹⁰ 1		2	39 22	3.0	1.29 (0.05, 32.78)	,
GeparQuinto, GBG44 ¹² 6		7	308	30.5	0.86 (0.28, 2.58)	
NSABP ²⁴ 6		9	173	39.2	0.64 (0.22, 1.83)	_
Subtotal (95% CI)	692		606	100	0.69 (0.36, 1.31)	
Total events 1	7	21				
Heterogeneity: $\chi^2=0.91$,		² =0%				
Test for overall effect: Z=	1.13 (<i>P</i> =0.26)					
Dyspnoea						
EORTC 1005410 0		1	22	51.4	0.13 (0.01, 3.42)	←──── ─ ───
Holmes et al ²³		0	34		Not estimable	
NSABP ²⁴ 5		2	173	48.6	2.47 (0.47, 12.91)	
Subtotal (95% CI)	263	2	229	100	1.27 (0.34, 4.71)	
Total events 5		3				
Heterogeneity: χ^2 =2.47, or Test for overall effect: Z=		-00%				
	. ,					
Test for subgroup different	nces: $\chi^2 = 109.29$, <i>df</i> =13 (<i>P</i> <0	.00001); <i>l</i> ²	=88.1%		
						0.01 0.1 1 10 100
						Favors (trastuzumab) Favors (lapatinib)

Study or subgroup	Combin Events		Trastuzi Events		Weight (%)	Odds ratio M–H, fixed, 95% Cl	Odds ratio M–H, fixed, 95% Cl
Diarrhea							
CALGB 4060127	25	117	2	118	16.6	15.76 (3.64, 68.28)	
CHER-LOB ¹³	28	46	3	36	14.0	17.11 (4.56, 64.18)	
EORTC 1005410	9	50	1	53	8.5	11.41 (1.39, 93.79)	
Holmes et al ²³	2	31	0	32	4.8	5.51 (0.25, 119.50)	
NeoALTTO ¹⁴	32	152	3	149	25.4	12.98 (3.88, 43.43)	_
NSABP ²⁴	46	173	4	178	30.7	15.76 (5.53, 44.89)	
Subtotal (95% CI)		569		566	100	14.38 (8.02, 25.78)	•
Total events Heterogeneity: $\chi^2=0$ Test for overall effect							

Figure 6 (Continued)

Other digestive trac CHER-LOB ¹³	32	oms 46	20	36	44.2	1 92 (0 74 4 54)	
						1.83 (0.74, 4.54)	
EORTC 1005410	3	50	3	53	17.7	1.06 (0.20, 5.53)	
Holmes et al ²³	4	31	0	32	2.7	10.64 (0.55, 206.40)	
NSABP ²⁴	13	173	6	176	35.4	2.33 (0.86, 6.27)	
Subtotal (95% CI)		300		299	100	2.11 (1.17, 3.82)	-
Total events	52	(D-0 E0)	29				
Heterogeneity: $\chi^2=1$. Test for overall effect							
Febrile neutropenia	1						
EORTC 1005410	5	50	8	53	42.9	0.63 (0.19, 2.06)	_
Holmes et al23	2	31	3	32	17.0	0.67 (0.10, 4.29)	_
NSABP ²⁴	9	173	7	178	40.1	1.34 (0.49, 3.68)	
Subtotal (95% CI)	-	254	-	263	100	0.92 (0.46, 1.85)	-
Total events	16		18				
Heterogeneity: $\chi^2=1$.		(P=0.59)					
Test for overall effect							
Neutropenia							
CALGB 4060127	8	117	2	118	4.2	4.26 (0.88, 20.49)	+
EORTC 1005410	23	50	22	53	26.4	1.20 (0.55, 2.62)	
Holmes et al23	1	31	3	32	6.5	0.32 (0.03, 3.28)	
NeoALTTO ¹⁴	13	152	4	149	8.4	3.39 (1.08, 10.65)	_
NSABP ²⁴	29	173	29	178	54.4	1.03 (0.59, 1.82)	
Subtotal (95% CI)		523		530	100	1.37 (0.93, 2.02)	•
Total events	74		60				•
Heterogeneity: $\chi^2=6$. Test for overall effect							
Hepatic							
CALGB 4060127	10	117	1	118	5.4	10.93 (1.38, 86.85)	
CHER-LOB ¹³	10	46	2	36	9.9		
						6.00 (1.25, 28.86)	
EORTC 10054 ¹⁰	4	50	1	53	5.3	4.52 (0.49, 41.92)	
Holmes et al ²³	1	31	0	32	2.8	3.20 (0.13, 81.50)	
NeoALTTO ¹⁴	16	152	11	149	59.3	1.48 (0.66, 3.30)	
NSABP ²⁴	4	173	3	178	17.2	1.38 (0.30, 6.26)	
Subtotal (95% CI)		569	40	566	100	2.63 (1.51, 4.59)	-
Total events Heterogeneity: $\chi^2=5$. Test for overall effect							
		(,				
Skin disorder	40		•	410	47.0	0.40 (0.00, 40.00)	
CALGB 4060127	16	117	2	118	17.8	9.19 (2.06, 40.93)	
CHER-LOB ¹³	21	46	3	36	19.0	9.24 (2.48, 34.47)	
EORTC 1005410	3	50	2	53	18.9	1.63 (0.26, 10.17)	
NeoALTTO ¹⁴	10	152	4	149	39.2	2.55 (0.78, 8.33)	
NSABP ²⁴	2	173	0	178	5.0	5.20 (0.25, 109.18)	
Subtotal (95% CI)		538		534	100	4.97 (2.56, 9.61)	
Total events	52	(11				
Heterogeneity: $\chi^2=4$. Test for overall effect							
CHF							
EORTC 10054 ¹⁰	0	50	0	53		Not estimable	
NSABP ²⁴	1	173	7	178	100	0.14 (0.02, 1.17)	
Subtotal (95% CI)	'	223	,	231	100	0.14 (0.02, 1.17) 0.14 (0.02, 1.17)	
Total events	1	223	7	231	100	0.14 (0.02, 1.1 <i>1)</i>	
Heterogeneity: Not a	•	÷	'				
Test for overall effect)				
Hemoglobin							
EORTC 1005410	1	50	1	53	33.0	1.06 (0.06, 17.44)	
Holmes et al23	0	31	1	32	50.5	0.33 (0.01, 8.50)	_
NSABP ²⁴	6	173	0	178	16.5	13.85 (0.77, 247.82)	-
Subtotal (95% CI)	-	254	-	263	100	2.80 (0.74, 10.67)	
Total events Heterogeneity: $\chi^2=3$.		(<i>P</i> =0.19)			-	· · · · · /	
Test for overall effect	: ∠=1.51	(<i>P</i> =0.13))				
	3	FO	0	EO	AE	7 88 (0 40 456 60)	
EORTC 1005410	3	50	0	53	4.5	7.88 (0.40, 156.60)	
NSABP ²⁴	4	173	10	178	95.5	0.40 (0.12, 1.29)	
D		223		231	100	0.73 (0.28, 1.90)	
Subtotal (95% CI) Total events	7	225	10	201	100	0110 (0120, 1100)	

Figure 6 (Continued)

Figure 6 Forest plots of the toxic effect, trastuzumab versus lapatinib (A); combination versus trastuzumab (B). Abbreviations: CHF, congestive heart failure; CI, confidence interval; df, degrees of freedom; LVSD, left ventricular systolic dysfunction; M–H, Mantel–Haenszel.

of trastuzumab to recruit immune cells that are responsible for antibody-dependent cytotoxicity¹⁵ and inhibition of angiogenesis.¹⁶

The use of the dual blockade of Her2 is supported by biological and clinical data. Trastuzumab and lapatinib are well-known drugs that inhibit the function of Her2 by different mechanisms.¹⁷ The expression product of the *Her2* gene is an oncogenic membrane-spanning protein that is processed externally at membrane sites. Because of its specific overexpression in tumor cells, it can be used as a target antigen for breast cancer therapy. Trastuzumab, a monoclonal antibody to Her2, combines with the extracellular domain of Her2,¹⁸ thereby inducing the growth arrest of cells in G1

and the decrease of cell amplification. Regarding lapatinib, it can inhibit the tyrosine-kinase activity of both the epidermal growth factor receptor and ErbB-2 (Her2). This dual inhibitory activity can effectively prevent downstream signal transduction, thus preventing the proliferation of tumor cells. Taking the different mechanisms of drug action of trastuzumab and lapatinib into consideration, we suggest that the combination of these two drugs can provide a more optimal clinical curative effect.

Whether pCR can be used as a surrogate for disease-free survival rates in HER2-positive breast carcinomas, particularly those that are HR-positive, remains to be determined. Studies have confirmed that the higher the pCR rates, the better the disease-free survival and overall survival can be achieved; but this effect may be limited to HR-negative tumors.¹⁹ However, within the same group of Her2-positive patients, when accepting the same method of anti-Her2 therapy, the outcome (pCR) could vary. The differences in results obtained in the included studies were not due to statistical errors. Untch et al¹² reported that the absence of HR expression was an important predictor of pCR. Therefore, we hypothesize that a relationship between HR state and the drug effects exists. Interestingly, when we set the subgroups according to HR status, a significant difference for the pCR was found only in the HR-negative subgroups. This indicated that some relationships existed between HR and Her2, or that resistance to anti-Her2 agents existed. A previous study²⁰ showed impaired survival in patients with estrogen receptor-negative tumors. Estrogen receptor negativity has been reported to have a negative prognostic impact in breast cancer patients with Her2-positive tumors.^{21,22} Further exploration of interactions between HR and Her2 will help to evaluate prognosis and to guide future treatment strategies.

Regarding toxicity of the drugs, some grade 3 and 4 toxic effects, such as diarrhea and skin disorder were more common in the lapatinib and dual-drug treated groups. This suggests both advantages and disadvantages to the patients, with some severe toxic effects from treatments.

Some trials reported additional operative procedures^{10-12,14,23,24} for patients after NAC with anti-Her2 therapy. Although dual Her2 inhibition provides better pCR rates, this provides no significant improvement in the rate of breast conservation. Breast conservative therapy (BCT) is reported to provide long-term survival rates equivalent to those of total mastectomy.²² Tan et al²⁵ performed a retrospective analysis in patients with breast malignancies and found that BCT was achieved in 85% of the patients with multifocal and multicentric breast cancer without evidence of poorer local control. Benediktsson and Perbeck²⁶ reported a series of 216 patients who underwent conservative mastectomy with a long follow-up (median 13 years). The 10-year frequency of local recurrence rate was 8.5% when patients accepted radio therapy according to international guidelines. Because BCT provides better cosmetic results and improves the quality of life, it is necessary to identify the indications for BCT. In our analyses, there was no relationship between anti-Her2 therapy and BCT. However, considering the limited studies included here, further investigations are needed.

Conclusion

In our study, we found that the combination of trastuzumab and lapatinib was superior to single-agent treatment for improved pCR rate. However, combination treatment was not effective in improving the rate of breast conservation. Furthermore, a higher risk for toxicity was associated with combined administration. There are limitations to this study. First, only English language literature was included. Second, although we chose only the randomized clinical trials, there was relative heterogeneity in the study, especially when it came to analyzing the toxicity effects. Finally, the chemotherapy regimens used in the included articles were not the same, and this could be a cause of the differences in reported pCR rates among the included groups. Based on clinical requirements, a larger study, including more evidence to verify the conclusions proposed here, is required.

Disclosure

The authors report no conflicts of interest in this work.

References

- Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi GN. The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. *Oncologist*. 2009;14:320–368.
- Olson EM. Maximizing human epidermal growth factor receptor 2 inhibition: a new oncologic paradigm in the era of targeted therapy. *J Clin Oncol*. 2012;30:1712–1714.
- Pegram MD, Finn RS, Arzoo K, Beryt M, Pietras RJ, Slamon DJ. The effect of HER-2/neu overexpression on chemotherapeutic drug sensitivity in human breast and ovarian cancer cells. *Oncogene*. 1997;15: 537–547.
- Konecny GE, Venkatesan N, Yang G, et al. Activity of lapatinib a novel HER2 and EGFR dual kinase inhibitor in human endometrial cancer cells. *Br J Cancer*. 2008;98:1076–1084.
- Fisher B, Bryant J, Wolmark N, et al. Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. *J Clin Oncol.* 1998;16:2672–2685.
- Moreno-Aspitia A, Dueck AC, Ghanem-Canete I, et al. RC0639: phase II study of paclitaxel, trastuzumab, and lapatinib as adjuvant therapy for early stage HER2-positive breast cancer. *Breast Cancer Res Treat*. 2013;138:427–435.
- Davies BR, Greenwood H, Dudley P, et al. Preclinical pharmacology of AZD5363, an inhibitor of AKT: pharmacodynamics, antitumor activity, and correlation of monotherapy activity with genetic background. *Mol Cancer Ther.* 2012;11:873–887.
- Burris HR, Hurwitz HI, Dees EC, et al. Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. *J Clin Oncol.* 2005;23:5305–5313.
- Hicks M, Macrae ER, Abdel-Rasoul M, et al. Neoadjuvant dual HER2targeted therapy with lapatinib and trastuzumab improves pathologic complete response in patients with early stage HER2-positive breast cancer: a meta-analysis of randomized prospective clinical trials. *Oncologist.* 2015;20:337–343.

- Bonnefoi H, Jacot W, Saghatchian M, et al. Neoadjuvant treatment with docetaxel plus lapatinib, trastuzumab, or both followed by an anthracycline-based chemotherapy in HER2-positive breast cancer: results of the randomised phase II EORTC 10054 study. *Ann Oncol.* 2015;26:325–332.
- 11. Alba E, Albanell J, de la Haba J, et al. Trastuzumab or lapatinib with standard chemotherapy for HER2-positive breast cancer: results from the GEICAM/2006-14 trial. *Br J Cancer*. 2014;110:1139–1147.
- 12. Untch M, Loibl S, Bischoff J, et al. Lapatinib versus trastuzumab in combination with neoadjuvant anthracycline-taxane-based chemo-therapy (GeparQuinto, GBG 44): a randomised phase 3 trial. *Lancet Oncol.* 2012;13:135–144.
- Guarneri V, Frassoldati A, Bottini A, et al. Preoperative chemotherapy plus trastuzumab, lapatinib, or both in human epidermal growth factor receptor 2-positive operable breast cancer: results of the randomized phase II CHER-LOB study. *J Clin Oncol.* 2012;30:1989–1995.
- Baselga J, Bradbury I, Eidtmann H, et al. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): a randomised, open-label, multicentre, phase 3 trial. *Lancet*. 2012;379:633–640.
- Weiner LM, Adams GP. New approaches to antibody therapy. Oncogene. 2000;19:6144–6151.
- Viloria-Petit A, Crombet T, Jothy S, et al. Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis. *Cancer Res.* 2001;61: 5090–5101.
- Konecny GE, Pegram MD, Venkatesan N, et al. Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. *Cancer Res.* 2006;66: 1630–1639.
- Ahmed S, Sami A, Xiang J. HER2-directed therapy: current treatment options for HER2-positive breast cancer. *Breast Cancer*. 2015; 22:101–116.
- Hamy-Petit AS, Belin L, Bonsang-Kitzis H, et al. Pathological complete response and prognosis after neoadjuvant chemotherapy for HER2positive breast cancers before and after trastuzumab era: results from a real-life cohort. *Br J Cancer*. 2016;114:44–52.

- Duchnowska R, Wysocki PJ, Korski K, et al. Immunohistochemical prediction of lapatinib efficacy in advanced HER2-positive breast cancer patients. *Oncotarget*. 2016;7(1):550–564.
- Kennecke H, Yerushalmi R, Woods R, et al. Metastatic behavior of breast cancer subtypes. J Clin Oncol. 2010;28:3271–3277.
- Clarke M, Collins R, Darby S, et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. *Lancet*. 2005;366:2087–2106.
- Holmes FA, Espina V, Liotta LA, et al. Pathologic complete response after preoperative anti-HER2 therapy correlates with alterations in PTEN, FOXO, phosphorylated Stat5, and autophagy protein signaling. *BMC Res Notes*. 2013;6:507.
- Robidoux A, Tang G, Rastogi P, et al. Lapatinib as a component of neoadjuvant therapy for HER2-positive operable breast cancer (NSABP protocol B-41): an open-label, randomised phase 3 trial. *Lancet Oncol.* 2013;14:1183–1192.
- Tan MP, Sitoh NY, Sitoh YY. Optimising breast conservation treatment for multifocal and multicentric breast cancer: a worthwhile endeavour? *World J Surg.* 2016;40:315–322.
- Benediktsson KP, Perbeck L. Survival in breast cancer after nipplesparing subcutaneous mastectomy and immediate reconstruction with implants: a prospective trial with 13 years median follow-up in 216 patients. *Eur J Surg Oncol.* 2008;34:143–148.
- 27. Carey LA, Berry DA, Cirrincione CT, et al. Molecular heterogeneity and response to neoadjuvant human epidermal growth factor receptor 2 targeting in CALGB 40601, a randomized phase III trial of paclitaxel plus trastuzumab with or without lapatinib. *J Clin Oncol.* 2016;34(6):542–549.

OncoTargets and Therapy

Publish your work in this journal

OncoTargets and Therapy is an international, peer-reviewed, open access journal focusing on the pathological basis of all cancers, potential targets for therapy and treatment protocols employed to improve the management of cancer patients. The journal also focuses on the impact of management programs and new therapeutic agents and protocols on

Submit your manuscript here: http://www.dovepress.com/oncotargets-and-therapy-journal

Dovepress

patient perspectives such as quality of life, adherence and satisfaction. The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.