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Abstract: Lung macrophages link innate and adaptive immune responses during allergic 

airway inflammatory responses. Alveolar macrophages (AMs) and interstitial macro-

phages are two different phenotypes that differentially exert immunological function under 

 physiological and pathological conditions. Exposure to pathogen induces polarization of 

AM cells into classically activated macrophages (M1 cells) and alternatively activated 

macrophages (M2 cells). M1 cells dominantly express proinflammatory cytokines such as 

TNF-α and IL-1 β and induce lung inflammation and tissue damage. M2 cells are further 

divided into M2a and M2c subsets. M2a cells dominantly produce allergic cytokines IL-4 and 

IL-13, but M2c cells dominantly produce anti-inflammatory cytokine IL-10. M2a and M2c 

cells are differently involved in initiation, inflammation resolution, and tissue remodeling 

in the different stages of asthma. Microenvironment dynamically influences polarization 

of AM cells. Cytokines, chemokines, and immune-regulatory cells interplay and affect the 

balance between the polarization of M1 and M2 cells, subsequently influencing disease 

progression. Thus, modulation of AM phenotypes through molecular intervention has 

therapeutic potential in the treatment of asthma and other allergic inflammatory diseases. 

This review updated recent advances in polarization and functional specialization of these 

macrophage subtypes with emphasis on modulation of polarization of M2 cells in asthma 

of human subjects and animal models.

Keywords: asthma, macrophage polarization, alternatively activated macrophages, M2 cells, 

cytokines

Introduction
Lung macrophages are a heterogenic population of mononuclear phagocytes that are 

divided into alveolar macrophages (AMs) and interstitial macrophages (IMs).1,2 AMs 

reside in the lung inner surfaces and have both proinflammatory and anti-inflammatory 

properties, whereas IMs reside in the interstitial area, maintain immune homeostasis in 

the respiratory tract, and exert immune tolerance to harmless antigens.1,3 According to 

different cell surface markers and cytokine expression levels, AMs are further divided 

into two major subtypes M1 and M2 cells (Figure 1).4 M1 cells are classically activated 

phenotype cells, expressing high levels of proinflammatory cytokines such as inducible 

nitric oxide synthase (iNOS), IL-1 β, and TNF-α and responsible for inflammation and 

protection against invading pathogens5, whereas M2 cells are alternatively activated 

phenotype cells and can be further divided into alternative activated cells (M2a), 

type II alternatively activated cells (M2b), or acquired deactivated cells (M2c) and 
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M2d cells (Table 1).6,7 However, identification and dynamic 

changes of these M2 subtypes are not well documented in 

the asthmatic mouse model and human subjects so far.8–10 

These cell subtypes express specific cell surface markers and 

several anti-inflammatory mediators and chemokines, such 

as IL-10, IL-13, and CCL-17.11–13 They are critically involved 

in the initiation and resolution of lung inflammation during 

allergic immune responses. Their polarization and function 

are greatly influenced by the microenvironment, such as 

several cytokines and chemokines. This review updates the 

recent advances of polarization of lung macrophages and 

their specialized function in asthmatic animal models and 

patients with asthma.

Macrophages in asthma
Asthma is a heterogeneous lung allergic disorder and is 

divided into atopic and nonatopic phenotypes, which share 

common features of lung hypersensitivity. Atopic asthma 

is mediated by IgE and is usually caused by allergens, air 

pollution, and genetic factors; however, nonatopic asthma is 

not mediated by IgE and is usually caused by virus infection, 

drugs, chemical irritants, cigarette smoking, stress, etc. The 

activated Th2 cells and type 2 innate lymphoid cells together 

with basophils drive infiltration of eosinophils in asthmatic 

lungs, but in some cases, neutrophils and Th17 cells are 

largely present and are controlled by the Th17 cell subset.14 As 

a first line of the cell component, mononuclear macrophages 
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Figure 1 Schematic diagram of subtypes of lung macrophages during allergic immune responses after exposure to allergen.
Notes: Exposure to allergens activates lung epithelial cells and other innate immune cells. The activated cells release a variety of cytokines and distinctly affect AM 
polarization and migration. Classically activated macrophages (M1 cells) can be activated by IFN-γ and LPS, inducing nonallergic immune responses through releasing TNF-α 
and IL-1 β. Alternatively, activated macrophages (M2 cells) are divided into M2a and M2c cells. M2a cells can be activated by IL-4, IL-13, and IL-33, inducing allergic immune 
responses through releasing IL-4 and IL-13. M2c cells can be activated by IL-10 and TGF-β, inducing lung inflammation resolution and tissue repair through releasing IL-10. 
Bone marrow-derived stromal cells and regulatory T cells also drive M2c cell polarization through IDO and IL-10. M2c cells have low activation markers and are more potent 
in phagocytosis of invading pathogens than other macrophage phenotypes.
Abbreviations: AM, alveolar macrophage; LPS, lipopolysaccharide; IDO, indoleamine 2,3-dioxygenase.

Table 1 Characteristics and molecular release from activated macrophages

Subtypes Inducers Cell markers Cytokines Chemokines Function

M1 IFN-γ, LPS, bacteria 
GM-CSF, oxidative 
fatty acid/LDL, HMGB1

CCR7, CD25, CD86, 
CD127, MHCII, ROS, 
iNOS, arginase-2

TNF-α, IL-1 β,  
NO, IP-10,  
IL-6/8/12/15/17/23

RANTES, 
CCL-8/15/19/20, 
CXCL-9/10/11/13

Proinflammatory function 
Pathogen clearance, tissue 
damage

M2a IL-4, IL-13, M-CSF, 
NLRP3

CD206, CD209, Fizzl, 
Ym1/2, RELM-α, arginase-1

IL-4/10/13/33/35,  
MMP-9, MMP-14, IGF-1

CCL-8/13/14, 
CCL-17/18/23/26

Allergic inflammation

M2b LPS, IL-1 β, immune 
complex/IL-1Ra

CD206, CD209, Fizzl, 
Ym1/2, RELM-α, arginase-1

IL-10, TGF-β, 
CCL-1/20, CXCL-1/2/3

CCL-1/20, 
CXCL 1/2/3

Tissue remodeling, fibrosis

M2c TGF-β, IL-10, PGE2, 
Tregs, BM-MSC, 
ADSCs, IDO

CD163, CD206, Fizzl, 
Ym1/2, arginase-1,  
PPAR-delta, SRA-1 TLR1/8

IL-10, TGF-β, IGF-1, 
PGE-2

CCL-8/17/18/22/24 Anti-inflammatory function 
Phagocytosis, tissue remodeling, 
fibrosis

Notes: M1 cells are classically activated macrophages; alternatively activated macrophages (M2 cells) can be divided into subtypes of M2a, M2b, and M2c.
Abbreviations: LPS, lipopolysaccharide; GM-CSF, granulocyte-macrophage colony-stimulating factor; LDL, low-density lipoprotein; HMGB1, high-mobility group box 1; 
iNOS, inducible nitric oxide synthase; Tregs, regulatory T cells; ADSCs, adipose tissue-derived stromal cells; IDO, indoleamine 2,3-dioxygenase; PPAR, peroxisome 
proliferator-activated receptor; SRA-1, scavenger receptor A-1; PGE2, prostaglandin E2.
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are activated and proliferated during the early phase of disease 

and play a pivotal role in the clearance of pathogens, initiation 

of lung inflammation, and inflammation resolution during 

later phases. The study of Ji et al3 in bleomycin-induced lung 

injury mouse model showed that circulating Ly6C(hi) mono-

cytes peaked on day 3 and their magnitude was positively 

associated with pulmonary inflammatory response, whereas 

M2-like AMs (F4/80+CD11c+CD206+) peaked on day 14 

and were positively correlated with the magnitude of lung 

fibrosis. Although lung-resident macrophages are well inves-

tigated, the cell origin is still elusive. A recent study suggested 

that resident AMs are derived from Csf1r(+) erythro-myeloid 

progenitors and yolk sac but myeloid-derived macrophages 

cells originate and renew from bone marrow hematopoietic 

stem cells.15 Their development and renewal into a distinct 

macrophage phenotype require granulocyte-macrophage 

colony-stimulating factor16 and expression of discrete tissue-

selective transcription factors such as MafB and c-Maf.17–21

Recent reports showed that lung macrophages in different 

compartments have proinflammatory and anti-inflammatory 

functions. Lung-resident macrophages are reported to have 

immune regulatory function because depletion of AMs by 

clodronate liposomes can cause Th2-type allergic immune 

responses in the mice sensitized by house dust mite (HDM)22 

and adoptive transfer of AMs from naïve animal can com-

pletely abolish Th2 cell polarization and lung dendritic 

 cell-mediated allergen capture and migration to the lymph,23 

but the data are contradictory to the report by Lee et al24 show-

ing that depletion of AMs in a mouse allergic asthma model 

attenuated Th2-type allergic lung inflammation and airway 

remodeling, accompanied by the enhanced Th1 immune 

responses. In addition, the number of circulating-derived 

monocytes increased in the inflamed lung and participated 

in lung allergic immune responses. Zaslona et al25 recently 

observed that depletion of circulating monocytes can attenuate 

allergic inflammation. Therefore, macrophages in different 

compartments exert distinct biological functions in the allergic 

responses. Further investigation should be performed to define 

the underlying molecular and immunological mechanisms.

Classically activated macrophages 
(M1 cells) in asthma
M1 cells play an important role in host defense against 

pathogen invasion via phagocytosis and release many proin-

flammatory cytokines and chemokines. This cell phenotype 

is characterized by expression of high levels of MHCII 

and CD86.5,26,27 It was reported that M1 cells were greatly 

increased in nonallergic lung inflammation after exposure to 

farm dust extract, in association with increased Th1 and Th17 

cell population.28 The increased polarization of M1 cells has 

properties of antiallergic responses because patients with less 

severe asthma have more M1 cell population than those with 

severe asthma.29 Multiple factors affect polarization of M1 

cells, from either naïve M0 or polarized M2 cells. In vitro 

studies showed that the polarized cells can be switched back 

to M0 state in a cytokine-deficient medium for 12 days or 

switched to another cell phenotype after culture in an alterna-

tive polarizing medium.30

The polarized M1 cells can efficiently activate Th1 cells 

by secreting IP-10, IFN-γ, IL-8, IL-23p40/p19, TNF-α, IL-1 

β, and RANTES, but not IL-12 (p40/p35) after pathogen 

infection, including (myco)bacteria.30,31 Lipopolysaccharide, 

IFN-γ, and granulocyte- macrophage colony-stimulating 

factor are potent inducers for the polarization of M1 cells.32 

Mice that lack IFN-γ have low M1 cells but have a large 

amount of M2 cells, with the decreased ratio of iNOS to 

arginase.33 Other mediators such as oxidized low-density 

lipoprotein, fatty acid, caveolin-1 (Cav-1), and high-mobility 

group box 1 (HMGB1) protein were also involved in M1 

cell-biased polarization.34–37 van Tits et al34 reported that the 

oxidized low-density lipoprotein-loaded macrophages can 

enhance macrophage chemotactic protein expression via a 

downregulating Krüppel-like factor 2, a nuclear transcription 

factor.34 Cav-1, a membrane scaffolding protein, can promote 

the polarization of M1 cells. Shivshankar et al36 reported 

that Cav-1 null macrophages had a more pronounced M2 

profile activation in response to IL-4 stimulation. HMGB1 

protein is released from IMs and can significantly induce the 

expression of M1 marker iNOS, while decreasing M2 marker 

IL-10 in kidney injury and fibrosis animal model. However, 

it remains unknown whether there are similar effects in the 

asthma mouse model.

Alternatively activated 
macrophages (M2 cells) in asthma
M2 cells are potent macrophage subtypes and have multiple 

functions in different diseases and disease phases. The vari-

able function is related to the distinct cytokine expression 

profile and activation status of the cells. It is reported that M1 

cells are predominantly presented 1–3 days after the nitrogen 

mustard-induced lung injury, whereas M2 macrophages were 

significantly increased at 28 days.38 However, the dynamic 

changes of M2 cells in asthma is still not well identified in 

animal models and patients with asthma. In asthmatic ani-

mals, this cell phenotype is characterized by low expression 

of MHCII, CD86, and iNOS2 but high levels of arginase-1, 
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family proteins chitinase-like Ym1/2 and Fizz1/RELM-α 

(found in inflammatory zone 1), and cell surface receptors 

such as macrophage mannose receptor, also called CD206. 

CD206 has an important function in the phagocytosis of M2 

cells via increasing efferocytosis of invading pathogens and 

apoptotic cells.5,9,39–42 It is reported that CD206 facilitates the 

scavenging and degradation of ricin. CD206-deficient mice 

were more susceptible to toxin-induced death than wild-

type mice due to compromised efferocytosis activity of M2 

cells.43 Therefore, high levels of CD206 would be beneficial 

to phagocytosis and pathogen clearance of M2 cells; which 

may explain the underlying mechanisms of higher potency 

of M2 cells in the binding and more uptake of pathogens 

than the M1 cells.31 Among M2a and M2c subtypes, M2c 

cells have lower NF-kB activation and lower expression of 

antigen-presenting and costimulatory molecules (HLA-DR, 

CD86, and CD40)31 but greater expression of IL-10 than M2a 

cells in the renal injury animal model.44 Our previous results 

also revealed that lipoprotein-associated phospholipase A2 

deficiency increased macrophage phagocytosis and IL-10 

expression in M2c cells in Aspergillus fumigatus-sensitized 

mice.45,46 Similar results are also observed in the asthmatic 

mouse model with surfactant protein A deficiency, in which a 

high level of IL-13 was expressed in M2a cells.47 Thus, M2c 

cell subtype is considered a major subtype in the initiation of 

inflammation resolution. The upregulated CD163 (a member 

of hemoglobin scavenger receptor of cysteine-rich family) 

and CD206 on M2 cells might participate in the process. 

However, it was reported that lipopolysaccharide, IFN-γ, and 

TNF-α from M1 cells and other activated cells can suppress 

CD163 expression, whereas IL-6 and anti-inflammatory 

IL-10 can increase CD163 expression in monocytes and 

macrophages, indicating that the role of cytokine microen-

vironment affects polarization of M2 cells possibly through 

regulation of key cell scavenger receptors.48 Therefore, M2c 

cells can be a useful cell target in the treatment of lung 

inflammatory diseases such as asthma.

Different from M2c cells, M2a cells are characterized 

by expression of high levels of IL-13, a cytokine critically 

involved in allergic immune responses and mucus produc-

tion.49 In addition, CCL-17, CCL-18, CCL-22, and eotaxin-2 

(CCL-24) are highly expressed from M2 cells and facilitate 

Th2 and eosinophil infiltration into the inflamed lungs.12,30,50 

However, recent findings reveal that these mediators and M2 

cell-specific transcription factors are responsible for lung tis-

sue remodeling and fibrosis. IL-13 can increase expression 

of MUC5AC and TGF-β 2 while decreasing beta IV Tubulin 

in human bronchial epithelial cells.51 Forced  expression of 

recombinant Fizz1 in rat lung fibroblast cell line can enhance 

production of collagen type I and α-smooth muscle actin.52 

Therefore, lung fibrosis can be controlled by modulation 

of M2 cell phenotype during the early stages of airway 

remodeling.

Polarization of M2 cells
Cytokines and other mediators
Owing to the distinct role of M1 and M2 cells in the patho-

genesis of asthma, it has become important to maintain an 

optimal balance between the population of M1 and M2 cells. 

Modulation of polarization of M1 and M2 cells has thera-

peutic potential. It is documented that IL-13,30 IL-33,8 and 

M-CSF32 are potent inducers of M2 cell-biased polarization. 

IL-13 was greatly increased in M2 cell-dominant allergic 

mice, in association with upregulation of Fizz1/RELM-α 

and YM1.5,53,54 In IL-13 transgenic mice, a greater amount of 

M2 cells was also observed after Cryptococcus neoformans 

infection.55 In addition, IL-33 is involved in the polarization 

of M2 cells. Lung epithelial cells are a major source of IL-33 

after the first allergen challenge, but after the third challenge, 

~20% and ~10% respectively, of the IL-33-producing cells in 

the lungs were M2 macrophages and conventional dendritic 

cells.56 The increased M2 cell-biased polarization by IL-33 

was possibly mediated by upregulation of IL-4, IL-5, IL-13, 

CCL-17, CCL-18, and CCL-24 after binding to the IL-33 

receptor ST2.57,58 Moreover, there are elevated levels of serum 

IL-35, IL-17A, basophil activation marker basogranulin, 

and eosinophilic airway inflammation biomarker periostin 

in allergic asthmatic patients, but it is unclear whether or 

not they have direct effects on the polarization of M2 cells.59 

Recently, Draijer et al reported that prostaglandin E2 (PGE2) 

can promote IL-10-expressing M2c cells in HDM-induced 

asthmatic mice. The effects were further confirmed by direct 

free PGE2 treatment or adoptive transfer of PGE2-treated 

macrophages, in which the treated mice had fewer infiltrat-

ing eosinophils in lungs.9 Therefore, it would be a promising 

strategy in asthma therapy to induce M2c-biased polarization 

through molecular intervention.

Transcription factors
Recent studies have indicated that transcription factors and 

intracellular proteins, such as tuberous sclerosis complex 1 

(TSC1) ,60 stress-responsive activating transcription factor 7 

(ATF 7) ,61 STIP1 homology and U-Box containing protein 

1 (STUB1) ,62 ten eleven translocation (Tet) methylcytosine 

dioxygenase (Tet2),63 microRNA (MiR-511),64 docosahexae-

noic acid, peroxisome proliferator-activated receptor gamma 
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(PPARγ) ,42 and programmed cell death protein 4 (Pdcd4)40 

can modulate polarization of M2 cells by influencing gene 

expression. NLRP3 (also known as Nacht, Lrp, and Pyd 

domain-containing protein 3, NALP3, or cryopyrin) is an 

intracellular protein and forms protein NALP3 inflamma-

some complexes with ASC and pro-caspase-1 that drive 

the activation of inflammatory caspases. Recent studies 

indicated that NLRP3 inflammasome has been implicated in 

the pathogenesis of several acquired inflammatory diseases 

including asthma. NLRP3 can promote IL-4 expression by 

Th2 cells via binding to IL-4 promoter in conjunction with 

the transcription factor IRF4.65,66 Although there is no report 

so far about the effects of NLRP3 on the polarization of M2 

cells, we expect that NLRP3 may drive M2a cell-biased 

polarization through IL-4 upregulation. Downregulation of 

NLRP3 expression may attenuate allergic responses as well 

as suppress cell pyroptosis.67 In addition, jumonji domain 

containing-3 (Jmjd3; also known as Kdm6b) is a histone 3 

Lys27 (H3K27) demethylase. Satoh et al previously reported 

that Jmjd3 is essential for polarization of M2 macrophages in 

response to helminth infection and chitin. The effects depend 

on demethylase activity of Jmjd3 and downstream Irf4, a key 

transcription factor. Overexpression or activation of Jmjd3 is 

beneficial to host defense against helminth infection and the 

alleviation of asthma.68 Therefore, Jmjd3-mediated H3K27 

demethylation is crucial for regulating the development of 

M2 macrophages leading to anti-helminth host responses.

Immune-regulatory cells
In addition to Th2 cells, some immune-regulatory cells, such 

as CD4+CD25+ regulatory T (Treg) cells and stem cells, are 

able to drive M2 cell-biased polarization. For example, mice 

infused with syngeneic CD4+CD25+ Treg cells have more 

population of CD206+ peritoneal macrophages, with low lev-

els of CD80 and MHCII.69 Macrophages cocultured with Treg 

cells have increased CD206, CD163, and CCL-18 as well as 

an enhanced phagocytic capacity. CD4+CD25+CD127(low)

Foxp3+ Tregs produced IL-10, IL-4, and IL-13, partially 

responsible for the upregulation of CD163, CCL-18, and 

phagocytosis, respectively.70 Furthermore, it is well docu-

mented that bone marrow-derived mesenchymal stem cells 

(BM-MSCs) have immune-regulatory property. A recent 

study also indicated that BM-MSCs can induce M2 cell-

biased polarization.71 Intravenous injection of BM-MSCs can 

normalize and stabilize lung function in the HDM-induced 

asthmatic mouse model. A further study indicated that the 

beneficial effects are associated with M2-biased polarization 

of resident macrophages after resident macrophages engulfed 

the injected MSC in vivo.72 Similarly, Yin et al also recently 

reported that polarization of M2 cells can be enhanced by 

adipose tissue-derived stromal cells. The macrophages have 

downregulated IL-6, TNF-α, iNOS, and CD86 but increased 

Arg1, CD206, Fizz1, Ym1/2, and IL-10 after coculture with 

adipose tissue-derived stromal cells.73 The effects might be 

mediated by the released immune-regulatory mediators, such 

as IL-10 and indoleamine 2,3-dioxygenase from stromal 

cells.74,75 Therefore, adoptive transfer MSCs have therapeutic 

potential in the treatment of inflammatory diseases, such 

as asthma, through increasing M2 cell-biased polarization.

Conclusion and therapeutic 
perspectives
Lung M1 and M2 cells are distinct cell subtypes and partici-

pate in the pathogenesis of asthma. M1 cells express high 

levels of proinflammatory cytokines, and M2 cells express 

high levels of Th2-type cytokines. Owing to their different 

cytokine expression profiles, M1 and M2 cells play different 

roles in the pathogenesis of asthma. A variety of regulatory 

cytokines, chemokines, mediators, and immune-regulatory 

cells affect polarization and chemotaxis of lung macrophages. 

These mediators interplay and influence disease duration and 

severity through the altered polarization of M1 and M2 cells. 

Therefore, modulation of phenotypes of lung macrophage 

has therapeutic potential in the treatment of asthma and other 

lung inflammatory diseases.
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