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Abstract: The development of biosensors that produce time series data will facilitate improve-

ments in biomedical diagnostics and in personalized medicine. The time series produced by these 

devices often contains characteristic features arising from biochemical interactions between the 

sample and the sensor. To use such characteristic features for determining sample class, similarity-

based classifiers can be utilized. However, the construction of such classifiers is complicated by the 

variability in the time domains of such series that renders the traditional distance metrics such as 

Euclidean distance ineffective in distinguishing between biological variance and time domain vari-

ance. The dynamic time warping (DTW) algorithm is a sequence alignment algorithm that can be 

used to align two or more series to facilitate quantifying similarity. In this article, we evaluated the 

performance of DTW distance-based similarity classifiers for classifying time series that mimics 

electrical signals produced by nanotube biosensors. Simulation studies demonstrated the positive 

performance of such classifiers in discriminating between time series containing characteristic 

features that are obscured by noise in the intensity and time domains. We then applied a DTW 

distance-based k-nearest neighbors classifier to distinguish the presence/absence of mesenchymal 

biomarker in cancer cells in buffy coats in a blinded test. Using a train–test approach, we find 

that the classifier had high sensitivity (90.9%) and specificity (81.8%) in differentiating between 

EpCAM-positive MCF7 cells spiked in buffy coats and those in plain buffy coats.

Keywords: buffy coats, cancer detection, breast cancer, epcam, MCF7, k-nn classifier, biosen-

sors, time series, instance-based learning

Introduction
Biosensors that produce electrical signals or other time series data present a unique 

challenge for researchers attempting to use such sensors to classify biological samples. 

The analysis of such data is complicated by the undesirable variation in the time domain 

between samples of the same class in addition to variability in the characteristic patterns 

that may be shared between samples of the same class. In this article, we develop a clas-

sification methodology applicable to time series data produced by biosensors. A pseudo-

distance metric known as dynamic time warping (DTW) is utilized to quantify the 

similarity between series in order to construct a classifier. The advantage of this methodol-

ogy is that it manipulates the time domain of samples in order to better facilitate pattern 

detection. The use of DTW for quantifying the similarity between time series has been 

successfully applied in areas such as speech identification1–3 and medical diagnostics.4,5 

After describing the methodology, we evaluate the performance of such a classifier using 

simulation studies. Finally, we apply the classification methodology to breast cancer cell 

detection using a novel single-walled carbon nanotube (CNT) biosensor device.
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Methods
The goal of this methodology is to effectively classify time 

series data for which the class is unknown by utilizing a set of 

reference time series data for which the class is known. The 

construction of a similarity-based k-nearest neighbors (k-nn) 

classifier follows the following steps: 1) a suitable distance 

metric (or pseudo-metric) for quantifying the dissimilarity 

between two time series is defined; 2) k-fold cross-validation 

is used to select classifier’s tuning parameters using training 

data; and 3) the classifier’s performance is evaluated on an 

independent set of observations. We represent an individual 

time series as y = {y
t
 : t ∈ T}, where T is a time index. We 

consider T to be a discrete index, which is a valid assumption 

given that most biosensors sample at some fixed interval. 

When sample annotation is explicitly shown, y
i,j,t

 denotes the 

value of a series from the i th sample of the j th class at time 

T = t. Since the symbol k is traditionally used to represent 

an integer in both cross-validation and in nearest neighbors 

classifiers, we use k to describe the cross-validation parameter 

and κ to describe the classifier parameter.

Dynamic time warping
The first step we propose in developing the classifier for 

biosensor data is the identification of a suitable dissimilarity 

measure. Time series data from familiar biosensor devices such 

as  Electrocardiographs (ECGs) as well as newer devices such 

as the CNT biosensors are marked by the occurrence of proto-

typical features that herald the class of the series. Often the time 

domain of such series is irrelevant and complicates automatic 

feature detection. As an example, two time series with similar 

features are shown in Figure 1A. The red series is a phase shift 

of the blue series with a slight vertical lift. In this situation, a 

traditional distance metric such as Euclidean distance would 

conclude that the series are very dissimilar. Yet with respect 

to the prototypical feature, these series are quite similar. As a 

result, “warping” of the time domains of one or both of the 

series (through the insertions of gaps) is necessary for aligning 

the series for proper quantification of dissimilarity.

DTW is a class of dynamic programming algorithms that 

have been developed in order to align time series in such a 

manner so that a traditional distance metric can be used to 

quantify dissimilarity. The resulting alignment of the two 

series by DTW is shown in Figure 1B.

The utilization of a distance metric on the new warped 

series, henceforth referred to as a DTW distance, does not 

satisfy the properties required to be considered as a distance 

metric. However, DTW distance can still be effectively 

employed as a dissimilarity measure for constructing clas-

sifiers as will be shown later. To calculate the DTW distance 

between two time series, we utilize the methods presented by 

Sakoe and Chiba whose original introduction of DTW meth-

odology provides a nice resource for researchers interested 

in DTW.6 Starting with two series, y
1
 of length m and y

2
 of 

length n, we first construct an m × n grid of nodes representing 

a matching of time points from both time indices as illustrated 

in Figure 2. A warping path,7 φ k t t k K( ) = ( ) ∈ …{ }′, : , , , ,1 2  

through the grid is then sought to minimize the DTW dis-

tance, which is defined as:

 
DTW d k k w k

k

K

y yy y y y1 2
1

1 21 2
, min ,( ) = ( )( ) ( )( )



 ( )

∈
=

∑φ
φ φ

Φ  
(1)

where d is a traditional distance metric such as the Euclidean 

metric and w(k) is a positive weight function. The value of 

the weight function depends on the slope of the line segment 

joining two points in the grid. Further constraints imposed 

on the warping path are:

1. Boundary constraints: φ (1) = (1, 1) and φ (K) = (m, n).

2. Step size constraint: φ (k) − φ (k − 1) = {(0, 1), (1, 0), 

(1, 1)}.
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Figure 1 Dynamic time warping for time series alignment.
Notes: (A) Two qualitatively similar series. Red is a phase shift of blue with a slight vertical lift. Gray dashed line shows the vertical difference. (B) The same series after 
dynamic time warping alignment.
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Note that condition 2 does imply that the warping function 

φ (k) is monotonically increasing. This is important as it 

avoids loops or other strange warping functions. While there 

are an infinite number of choices for step weights, in this 

article we have chosen to explore only two common step pat-

terns that assume that “similar” signals are symmetric. The 

first choice of weights, Symmetric 1, gives an equal weight 

for all permissible steps, that is, w(k) = 1∀k. Symmetric 2 

weights on the other hand are defined by:

 

1 1 0 1 1 0

2 1 1 1

, , ,

,

if

if

φ φ

φ φ

k k

k k

( ) − −( ) ∈ ( ) ( ){ }
( ) − −( ) = ( )












 (2)

A dynamic programming solution to solving Equation 1 

has been previously proposed.7 To determine the solution, 

two matrices ∆ ∈ ×Rm n and ΓΓ m n+( )× +( )1 1  are computed. The 

first matrix ∆ has entries representing the pairwise distances 

between points in each time series, that is,

 δ t t d y yt t, ,, ,′( ) = ( )′1 2
 (3)

where d is a distance metric. The second matrix Γ represents 

the cumulative cost matrix that determines how the two series 

should be aligned. To define the second matrix Γ, we begin 

with stipulating that γ (0,0) = 0, γ (t,0) = ∞, ∀t∈ {1,2, …, m} 

and γ (0,t´) = ∞, ∀ t´∈ {1,2, …, n}.

To determine the remaining entries of Γ, we use one of 

the two following recurrence relations (the first applies to 

Symmetric 1 and the second to Symmetric 2).

γ
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Once Γ has been defined, the reverse of the warping path 

φ (k) can be found by back-tracing from (m,n) to (1,1). This 

trace is governed by requiring unit step size either horizon-

tally, vertically, or diagonally – whichever selects the minimal 

entry in the next step.

k-Nearest neighbors classifiers
With the definition of a pseudo-distance metric (DTW distance) 

for measuring the dissimilarity of two series, a k-nn classifier is 

a straightforward choice of classifier.8 To build a k-nn classifier, 

where k ∈N, we denote series data as {(y
i
, c

i
) :i ∈1,2, …, N}, 

where y
i
 is a time series and c

i
 = g (g ∈ C denotes the known 

class of the series). For each observation (y
i
, c

i
), we find the 

neighborhood Nκ (yi
) of the κ series y

j
 with i ≠ j such that 

these series have minimal DTW(y
i
, y

j
). We then have empirical 

estimates of the probability of class membership for (y
i
, c

i
):

 
P̂g i

N
c g j

j i

j
y y

y y

( ) = ( )
∈ ( )

=∑1
1

κ
κ  

(6)

From this set of empirical probability estimates, we 

chose:

 
ˆ ˆarg maxc P yi

g C
g i= ( )

∈  
(7)

In the case that there are ties between two or more classes, 

the ties are broken at random. ĉi then represents the DTW 

distance-based k-nn classification of the observation (y
i
, c

i
). 

Of course, predicting the class of (y
i
, c

i
) given that c

i
 = g is 

already known is rarely of any interest. Instead, we wish to 

build a library of series of known class and use this library to 

predict the class of series for which the class is unknown.

k-Fold cross-validation
A DTW distance-based k-nn classifier has multiple tun-

ing parameters, such as: 1) method of normalizing or 

preprocessing the series; 2) the choice of weight function in 

the computation of DTW distances between series; and 3) the 

choice of k in the k-nn classifier. In order to determine the 

optimal values of these tuning parameters, we propose using 

a cross-validation approach.8 A training set is first used for 

k-fold cross-validation tuning parameter selection. While the 

parameter space for each of the three tuning parameters is 

infinite, we have restricted the search to values we consider 

n
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Figure 2 A grid for computing cumulative cost of alignment.
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reasonable. In this article, we consider two weight functions 

previously discussed (Symmetric 1 and Symmetric 2). We 

consider all integers less than the size of the training set 

as candidate values of k in the k-nn classifier. Finally, we 

consider two normalization methods: no normalization 

and mean–variance normalization such that each series has 

mean 0 and unit variance. Normalization is one feature of 

this methodology that warrants further exploration. k-fold 

cross-validation selection of tuning parameters requires a 

loss function to quantify the loss of a misclassification. For 

simplicity, we propose using a 0–1 loss function:

 
L c c

c c
i i

i i, 
( ) =

=



0

1

if

otherwise  

(8)

The choice of parameters is sought that minimizes the 

risk function – the joint expectation of the time series and 

class membership:

 
R c c L c ci i i i, , ( ) = ( )( )E

 
(9)

Since no functional form of the right-hand side of Equa-

tion 9 is available, it is estimated using cross-validation. 

Using the notation found by Hastie et al,8 we first randomize 

the training set data into K folds, which can be represented 

with the mapping κ :{1,2, …, N}→{1,2, …, K}. The k-fold 

cross-validation risk estimator is then:

 
CV ˆ ˆ, , ,c

N
L c c

i

N

i i
i

iαα αα( ) = ( )( )
=

− ( )∑1

1

κ y
 

(10)

where ĉi
k−  denotes the classification constructed with the k th 

fold removed given tuning parameters α. This process is illus-

trated in Figure 3. Practically, CV ĉ,αα( ) provides an estimate 

of the misclassification rate on an independent test set.

Simulation study
In order to evaluate the performance of a DTW distance 

k-nn classifier, we conducted a simulation study. For this 

study, we simulated an experiment in which a classifier 

that can differentiate between two classes of time series is 

desired, denoted by ξ and η. The simulation study sought 

to characterize how well such a classifier would perform 

in an experimental setting. Each class of time series has a 

different prototypical feature associated with it. To mimic 

“observed” series from a realistic setting, noise of random 

length is placed prior to and following the occurrence of the 

prototypical feature. Additionally, the feature itself is slightly 

perturbed by random noise. A set of 20 training time series 

with half belonging to class ξ and half belonging to class η 

is then used to train a k-nn classifier in which k-fold cross-

validation is used to select tuning parameters. Finally, a test 

set of 20 time series in which the probability of allocation 

to either class was equal to 0.5 is then used to evaluate the 

performance of the classifier. The prototype series for class 

ξ was defined in continuous time as:

 

f t
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The prototype series for class ξ was defined in continu-

ous time as:
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 (12)

Both prototype series are shown in Figure 4A. Two series 

y
1
 and y

2
 with differing values of the scale parameter c per-

turbing the prototype feature is presented in Figure 4B.

To simulate observed series rather than prototype signals, 

“intro” and “outro” random walks are generated, each having 

random length. More specifically, two integers m
1
 and m

2
 are 

drawn with replacement from the sequence {1,2, …, 40}. 

m
1
 and m

2
 random walk steps are then generated so that the 

steps are approximately N(0,1) distributed. The intro and 

outro random walks are then joined to the prototype feature 

that has been perturbed using the following equation:

 
y f t y t

k
kt t t= ( ) + + ∈ = …






−1 10

1 2 126ε , , , , ,
 

(13)

1

Test fold k-folds (all observations)

k–1 training folds

2

3

k

Figure 3 A schematic representation of k-fold cross-validation.
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where ε σt tN∼ ( )0 2, , with σ t c f t c= × ( ) ∈, R.

Simulated observed series from each class are shown in 

Figure 5 alongside the prototype feature for each class. This 

process for generating the observed series data was used to 

create the training set consisting of ten series of class η and 

ten of class ξ. Likewise, the test set was generated consist-

ing of 20 series with the number of series belonging to each 

class being random with equal class membership probability. 

A set of training and test series was generated in this manner 

10,000 times to simulate 10,000 experiments.

With each simulated experiment, fivefold cross-validation 

was used on the training set to determine three different tun-

ing parameters. The first tuning parameter considered was 

the choice of weight function (Symmetric 1 vs Symmetric 2). 

The second was the choice of k for the k-nn classifier. The 

final consideration was whether to construct the k-nn DTW 

distance-based classifier on the raw series or series normali-

zed to have mean 0 and unit variance. The cross-validation 

used the misclassification rate in order to select optimal 

tuning parameters. With each experiment, optimal tuning 

parameter values were found. Subsequently, an independent 

set of ten series was classified for quantification of error. 

This set of experiments was conducted for varying values 

of the scale parameter c. Increasing the value of c decreases 

the degree of qualitative similarity in the observed prototype 

feature between series of the same class.

Three scenarios of 10,000 simulated experiments were 

considered with increasing values of c. A low, medium, and 

high noise scenario was devised with c values of 0.15, 0.20, 

and 0.30, respectively. DTW distances were computed using 

algorithms from the dtw package in R.9

Simulation study results
The average cross-validation misclassification rate from the 

three scenarios of 10,000 simulated experiments is shown in 

Figure 6. For each scenario, the sample mean and variance 

of the misclassification rate are given in Table 1.

On the simulated training folds for each classifier, 

a 1-nearest neighbor classifier generally showed the lowest 

cross-validation misclassification rate. Slight dips in the 

cross-validation misclassification rate are observed at odd 

numbers, since no tie breaking occurs given an odd number 

of neighbors. On the simulated test sets, the classifiers per-

formed very well for c values of 0.15 and 0.20. Classifier 
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performance diminished by the value of c = 0.30; however, 

the prototype feature in these series was fairly well perturbed 

by noise.

Breast cancer cell detection by EpCAM-
CNT biosensors
It is becoming increasingly evident that circulating tumor 

cells (CTCs) in blood play a vital role in determining the 

spread of metastatic disease to distant sites. The detection of 

CTCs and their genetic makeup is therefore highly important 

for understanding the nature and advancement of the disease. 

Current technologies such as immunomagnetic methods10 

(Veridex) and CTC chips11,12 are the primary methods to 

detect CTCs in blood from patients. While these technolo-

gies are impressive, they are not necessarily optimal for rapid 

identification in clinic. A digital device by which small drops 

of blood could be rapidly analyzed by microarrays for the 

detection of CTCs in the clinic would thus have great util-

ity.13,14 We hypothesized that a CNT device functionalized 

with an antibody would allow for the rapid detection of CTCs. 

These devices rely on the principle that each cancer cell pos-

sesses thousands of overexpressed particular target receptors, 

so that cooperative binding to cognate antibodies would yield 

characteristic spikes in the electrical signal due to free energy 

change. The reduction in free energy for specific interactions 

is much higher than nonspecific interactions, and one can 

use CNT arrays to transduce the change in free energy into 

electrical signal.14 From such a CNT array, a characteristic 

signature indicating specific interactions (CTCs present) 

versus a characteristic signature indicating only nonspecific 

interactions (CTCs not present) could be captured. Details 

of the nanofabrication devices used in this article have been 

previously discussed by Khosravi et al.14

To evaluate if devices could differentiate between 

MCF-7-positive samples and MCF-7-negative samples, 

both were tested utilizing the nanotube microarrays.14 

Human Buffy Coats were used from Biorepositories at the 

University of Louisville. The study was approved by the 

University of Louisville Institutional Review Board (IRB) 

#10.0428 and the IRB at Worcester Polytechnic Institute 

IRB #00007374. The negative samples consisted of a buffy 

coat sample (a layer of centrifuged blood) without the pres-

ence of breast cancer cells. The positive samples consisted 

of a buffy coat sample that was spiked with MCF-7 breast 

cancer cells. The drain current from the CNT devices was 

recorded continuously throughout each experiment. The 

resulting data consisted of time series with characteristic 

“spikes” occurring after the application of the sample. 

Two MCF-7 positive and two MCF-7 negative samples 

are depicted in Figure 7.

A train–test approach was then used to construct a 

DTW distance-based k-nn classifier as discussed in. The 

training data consisted of ten buffy coat samples and 

17 spiked buffy coat samples. k-fold cross-validation 

parameter selection was conducted using tenfold cross-

validation on 10,000 bootstrapped samples from the 

training set of 27 signals for which the class (buffy vs 

spiked buffy) was known. The tuning parameters selected 

were those that minimized the mean and variance of the 

misclassification rate. Once tuning parameters had been 

selected, 22 test signals (of class unknown to the personnel 

constructing the classifier) were classified using a DTW 
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Table 1 Classifier performance during simulation study

Noise parameter (c) Misclassification rate

Mean Variance

0.15 0.074 0.069
0.20 0.131 0.114
0.30 0.230 0.177
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distance-based k-nn classifier using the training signals 

as reference signals. The test set misclassification rate, 

classifier sensitivity, and classifier specificity were then 

used as criteria to measure the success of the devices in 

discriminating between positive and negative samples. 

Sensitivity is defined as TP/P, where TP represents the 

number of correctly classified positive (MCF-7 spiked) 

samples and P represents the total number of positive 

samples. Similarly, specificity is defined as TN/N, where 

TN represents the number of correctly classified negative 

samples (plain buffy) and N represents the total number 

of negative samples.

Results
A heat map of the DTW signal distances and reference signals 

used in the k-fold cross-validation tuning parameter selection is 

shown in Figure 8. In the margins of this figure, a dendrogram 

of the complete-linkage agglomerative hierarchical clustering8 
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Figure 7 Plots of representative electrical signatures from samples used in the construction of a k-nn DTW distance-based classifier for breast cancer surface marker 
profiling.
Notes: (A) Two buffy coat samples. (B) Two spiked buffy coat samples.
Abbreviations: k-nn, k-nearest neighbors; DTW, dynamic time warping.

Figure 8 A heat map of training signals.
Abbreviation: DTW, dynamic time warping.
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of the same is shown. This demonstrates that on the training 

data, DTW distance as a dissimilarity measure naturally parti-

tions the sample data into two distinct clusters according to 

the sample class.

Tenfold cross-validation on the bootstrap samples resulted 

in a final DTW distance-based k-nn classifier utilizing a 

symmetric two-step pattern and three nearest neighbors. 

A confusion matrix for the test data is presented in Table 2. 

The classifier detected the MCF-7 positive samples with 

90.9% sensitivity, 81.8% specificity, and a misclassification 

rate of 13.6%.

Discussion
In this article, we have presented a classification methodology 

that allows for the discrimination of biological sample types 

by biosensors that produce electrical signals or other time 

series data. Such a classifier is well suited for determining 

the class of series in which there exists a prototypical feature 

that heralds the class the series belongs to, but the time index 

is either irrelevant, stretched, or compressed. We have used 

this methodology to discriminate MCF-7 breast cancer cells 

present in buffy coat from buffy coat samples without cancer 

cells by CNT biosensor devices. By demonstrating the ability 

of a k-nn DTW distance-based classifier to predict the class of 

the biological sample – whether breast cancer cells are pres-

ent or not – we have also demonstrated the efficacy of CNT 

devices for detecting spiked cancer cells in turbid media such 

as buffy coats. This technique could be useful for screening 

cancer cells from tissues, liquid biopsy samples, and CTCs 

in blood in a rapid manner. The handheld and portable nature 

of the device will be useful for clinical translation.

An important feature of this methodology is extensibility. 

Many alternative step sizes and alignment constraints have 

been proposed for the warping path used to minimize the 

DTW distance.6 Additionally, there are an infinite number 

of choices for the distance metric used in the computation 

of a DTW distance. While we have chosen Euclidean for 

its familiarity, other distance metrics may be better suited 

for specific time series data. Likewise, a k-nn classifier was 

chosen for simplicity. However, the use of metric multi-

dimensional scaling15 to map a DTW pseudo-distance matrix 

constructed from biological time series to a real coordinate 

space, Rn, would allow for the use of other classifiers such as 

linear discriminant analysis or support vector machines.
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Abbreviations: k-nn, k-nearest neighbors; DTW, dynamic time warping.
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