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Abstract: Absence of an upper limb leads to severe impairments in everyday life, which can 

further influence the social and mental state. For these reasons, early developments in cosmetic 

and body-driven prostheses date some centuries ago, and they have been evolving ever since. 

Following the end of the Second World War, rapid developments in technology resulted in 

powered myoelectric hand prosthetics. In the years to come, these devices were common on the 

market, though they still suffered high user abandonment rates. The reasons for rejection were 

trifold – insufficient functionality of the hardware, fragile design, and cumbersome control. 

In the last decade, both academia and industry have reached major improvements concerning 

technical features of upper limb prosthetics and methods for their interfacing and control. 

Advanced robotic hands are offered by several vendors and research groups, with a variety 

of active and passive wrist options that can be articulated across several degrees of freedom. 

Nowadays, elbow joint designs include active solutions with different weight and power options. 

Control features are getting progressively more sophisticated, offering options for multiple sen-

sor integration and multi-joint articulation. Latest developments in socket designs are capable 

of facilitating implantable and multiple surface electromyography sensors in both traditional 

and osseointegration-based systems. Novel surgical techniques in combination with modern, 

sophisticated hardware are enabling restoration of dexterous upper limb functionality. This article 

is aimed at reviewing the latest state of the upper limb prosthetic market, offering insights on 

the accompanying technologies and techniques. We also examine the capabilities and features 

of some of academia’s flagship solutions and methods.
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Introduction
A significant portion of the injuries treated in the emergency rooms around the globe 

involve upper extremities.1–3 The majority of them occur at home,2 during work,4,5 or 

when performing sports.6 Considering that almost all our everyday activities depend 

on manipulation by the hands, severe hand injuries can truly be devastating. Conse-

quences of such incidents can lead to long-term disabilities, also affecting the mental 

and social state, with difficult reintegration in the society.7,8

The severe consequences of upper limb loss have been recognized centuries ago,9 

and the ideas of artificial substitution have been since then very appealing. Transition 

from simple cosmetic prostheses to a more functional solution was inevitable and 

in high demand, resulting in the development of early body-powered and cable-driven 

systems. These simple devices proved themselves to be very useful and, with modern 
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materials, are still currently in use. Approximately half of 

the current market of upper limb prosthetics is indeed based 

on cable-driven systems.10

The first pneumatic hand was developed at the beginning 

of the 20th century, soon followed by the first electric-powered 

hand. At the end of the Second World War, early concepts 

of myoelectric prostheses were introduced.11 These devices, 

which linearly translated the electrical activity of the residual 

muscles of the stump into the velocity of closing and opening 

of gripers, started to be used in research laboratories and to 

be sold on the market in the late 1950s. The concept of direct 

proportional control is still present in current commercially 

available systems, due to its simplicity and robustness.

By the late 1960s, pneumatic prostheses were able to 

drive and control several joints and grip types. However, the 

control was inefficient and not robust enough, requiring spe-

cific anatomical features, dexterity, and cognitive effort of the 

patient.12 Myoelectric systems have tried to face these issues 

with state-based control. Accordingly, the patient would 

control the prosthesis using two control sites, as in the single 

degree of freedom (DoF) case. When there was the need to 

control a different joint or grip type, a co-contraction of the 

muscles under the two recording sites changed the control 

state of the prosthesis. This quite cognitively demanding sys-

tem is still dominant on the market of dexterous prosthetics, 

mostly due to its robustness.

Numerous studies have been conducted in the past two 

decades, still indicating high rejection rates of all types of 

upper limb prosthetic devices across a variety of users.13–18 

Depending on the study population, rejection rates vary 

from 25% to >50% for myolelectric and up to 35% for 

body-powered devices. However, these figures have leveled 

off with respect to previous periods,19,20 mainly due to mod-

ern technology. However, it is possible that the trend will 

eventually reverse.

Hand transplantation is an alternative to the prosthetic 

devices, offering functionality, superior visual appeal, and 

integrated sensory function.21 However, it is associated with 

the lifelong immunosuppressant therapy, lengthy rehabilita-

tion, loss of grip force, and high risk of complications, leading 

to the possible rejection.22 These issues are then combined 

with very high costs.

Advances in micromachining and material design have 

enabled construction of versatile lightweight prosthetic hands 

and wrists. These market products, in combination with 

precise, small-sized, low-consumption electromotors, cor-

responded to highly actuated systems. Development of high-

speed processing units with the top-end battery  management 

and large memories in small housing propelled the research 

into more advanced and intuitive control systems. Greater 

understanding of the human neuromuscular system yielded 

new surgical and reconstructive techniques, which now pro-

vide access to high-quality and intuitive electromyography 

(EMG) sources even in high-level amputations. Socket design 

has also benefited from this rapid development of technology 

and now can offer solutions that are able to host multiple sur-

face sensors, facilitate the use of implanted electrodes, and, 

in combination with surgical advancements, provide direct 

link with the skeletal system in the form of osseointegration. 

Finally, three-dimensional printing is quickly becoming a 

viable alternative for production of highly customizable 

products that are lightweight and inexpensive. Several open-

source hand prosthetic projects are available for personal 

printing, and an ever growing number of companies are 

already using this method for building certain components 

of their own products.

Considering the latest rate of innovation in the field of 

prosthetics, significant increase in funding, and the number 

of new competitors on the market, this review aims to present 

the latest state of functional, myoelectrically controlled upper 

limb prosthetic solutions. The goal is to make a literature 

overview of the new developments of representative hard-

ware, control algorithms, and interfaces from both the medi-

cal and technical perspective. Even though highly significant 

for prosthetic applications, solutions and research in the area 

of sensory feedback are beyond the scope of this review.

Hardware
The current market of actuated myoelectrically controlled 

upper limb prosthetic devices can roughly be divided into 

systems that address transradial/transcarpal, transhumeral, 

and shoulder disabilities. Each group features specific 

requirements, and, in general, the options for replacement 

are more advanced the more distal the level of impairment is.

Transradial/transcarpal solutions
Due to the complex anatomical nature of hands and yet cru-

cial role in object handling and manipulation, their prosthetic 

counterparts have undergone an important evolution and 

functional advances in recent years. Although simple grippers 

are still dominant in the market, multi-actuated hands that 

provide several grip types or even fully controllable individual 

digits and finger joints are now common (Figure 1).

Some of the current common characteristics of the most 

promising commercial hand products – i-limb Quantum by 

Touch Bionics, RSL Steeper’s BeBionic v3, and Ottobock’s 
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Figure 1 Examples of Ottobock prosthetic hands and cosmetics (from left to right): 
small System Inner Hand, small MyoHand VariPlus Speed, and medium Michelangelo hand.

Table 1 Features of three already established devices aiming at children population, transcarpal and transradial cases, and three 
commercially available flagship prosthetic hands

Product name Established devices Emerging devices

Child Myoelectric 
Hand by Centri94,95

Transcarpal-
Hand96

Select Electric 
Hand97,98

i-Limb 
Quantum99–102

BeBionic v353 Michelangelo59

Vendor Hosmer Dorrance 
Corp.

Ottobock 
Healthcare

Liberating 
Technologies

Touch Bionics RSL Steeper Ottobock 
Healthcare

Weight (g) 238 308 470–520 474 570–590 420–510
Size (mm) 171 184–210 184–210 154–182 190–200 177–210
Full closing time (s) 0.35 0.91 0.90 0.80 1.00 0.37
Maximal grip force (N) 63 90 – 136 140.1 70
Thumb rotation properties Static Static Static Passive and 

motorized
Passive Motorized

Digit dexterity First two digits 
coupled

First two digits 
coupled

First digit active Four individually 
motorized

Four individually 
motorized

First two digits 
coupled

Wrist options Passive rotation Passive flexion 
and active 
rotation

Passive rotation Active and passive 
rotation and passive 
flexion

Passive in all 
directions

Active and passive 
rotation and 
passive flexion

Michelangelo – are presented in Table 1. For the sake of put-

ting these products into perspective, the same table lists three 

different, already established, products aiming at children 

with hand disabilities, adult long stump cases, and usual tran-

sradial users – Centri Child Myoelectric Hand, Transcarpal-

Hand by Ottobock Healthcare, and Select Electric Hand by 

Liberating Technologies, respectively.

From Table 1, it is evident that the increase in functional-

ity did not significantly influence the size, the weight, and 

the power grasp force of prosthetic hands. Moreover, the 

listed products all offer certain wrist solutions, indicating 

an overall tendency of the market for further development 

of this joint. Besides the features listed, each of the hands in 

Table 1 is also equipped with a variety of product-specific 

features, mostly focusing on the different grasp types and 

safety measures (this is further discussed in the “Control 

strategies” section).

Prosthetic hand devices developed by smaller companies 

or research laboratories include the world’s first touch  sensing 

hand prosthesis from Vincent Systems, Evolution 2, and 

DARPA founded DEKA Arm RC. Evolution 2 combines the 

sensory feedback information with the individually motor-

ized digits and fully actuated thumb in a compact and light 

package (~400 g).23 The DEKA Arm RC is the heaviest of 

the products so far listed (1,270 g)24 and, in its third genera-

tion, offers highly actuated digits and thumb with an included 

compound wrist that can be actuated in three DoFs.25

In order to provide a more natural object manipulation and 

therefore increase functional benefits to the users,26 modern 

prosthetic hand devices are frequently accompanied by an 

actively or passively controllable wrist joint. Passive versions 

of prosthetic wrists can be manually adjusted by the user in 

order to be in either compliant mode or to lock in one of the 

predefined positions in flexion/extension direction (Ottobock 

AxonWrist, Touch Bionics Flexion Wrist, BeBionic Flexion-

Wrist) or along the rotation axis (Ottobock AxonRotation, 

Touch Bionics QWD, BeBionic Short Wrist). Additionally, 

certain vendors offer wrists that allow prosthetic hands to be 

positioned in any direction (MyolinoWrist 2000, BeBionic 

Multi-Flex). Commercial active units are almost exclusively 

focused on the wrist rotation (MC Wrist Rotator, Ottobock 

Electric Wrist Rotator).

Transhumeral and shoulder 
disarticulation solutions
The more proximal the upper limb impairment is, the greater 

the disability. In transhumeral amputations, the absence of an 

elbow requires an additional prosthetic joint to substitute the 

missing two DoFs. Even though the rotation of the forearm 

can be compensated using the wrist rotation unit, the major 

setback at this level of disability is the reduced number of 
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Table 2 Features of commercially available myoelectric elbows

Product name Vendor Weight (g) Maximum lift 
capacity (Nm)

Free swing Supported 
inputs

Terminal devices compatibility

Utah Arm 3+103,104 Fillauer 900–1,000 4.3 Yes 2 i-Limb, MC TDs, Sensor Speed
Arm System105 Boston Digital 965 14.2 Yes 2 BeBionic, i-Limb, MC TDs, Sensor Speed, 

Electric Greifer, Select Electric Hand
Dynamic Arm+106 Ottobock 

Healthcare
680–710 18.0 Yes 8 SensorHand Speed, MyoHand VariPlus 

Speed, Electric Greifer
NY Electric 
Elbow104,107

Hosmer Dorrance 
Corporation

439–453 3.4 Yes 2 Michigan Electric Hook, NY-Greifer,  
NU-VA Synergetic Claw

Figure 2 Example socket design with custom pattern, silicon liner, and Ottobock 
Energy Pack housing.

sources and methods for controlling all the necessary 

 prosthetic components. As for the wrist, prosthetic elbows can 

be passive or active with several locking positions. Passive 

or body-powered elbows are dominant on the market, though 

several major vendors also provide electrically powered, 

myoelectrically controllable devices. Some representative 

products and their characteristics are listed in Table 2. The 

DEKA Arm HC offers a motorized elbow solution with a 

limited range of motion to prevent reaching the face for 

safety reasons.25 This characteristics and the absence of the 

free swing mode have not been well received by the users.25

Even though improvements in academia have indicated 

possible solutions in designing elbow joints with anthromor-

phic characteristics,27 one of the current main challenges is 

the design of a device fully compliant with all the standards 

and yet light enough to be suited for children and frail adults.

Powered shoulder joints are more complex and currently 

not present on the market. Nonetheless, promising solutions 

have been presented in research laboratories.25,28 The DEKA 

arm HC has recently received Food and Drug Administra-

tion approval,29 and it offers four movement directions in the 

shoulder joint.25 Moreover, for exploring the full possibili-

ties of the targeted muscle reinnervation (TMR) approach, 

a modification of the LTI-Collier shoulder joint has been 

developed with an added electronic lock/unlock feature.28

Socket technology
The amount of time a user wears a prosthesis mainly depends 

on the socket fit and its design.30 Inadequate prosthetic fit 

might lead to limited range of motion, discomfort, and gen-

eral poor performance,31 usually resulting in the abandonment 

of the device.32

After the development of the Otto Bock Muenster style 

socket in the 1960s33 and the Northwestern University socket 

in 1972,34 the transradial powered prosthesis socket design 

has not significantly changed. The introduction of flexible 

thermoplastics has indeed been the only major improvement.35 

At the end of 1990s, silicon liners have been  introduced, and 

the transparent, moldable plastics allowed better analysis of 

the inside socket dynamics, resulting in a tighter contouring 

around the fitted stump30 (Figure 2). Nowadays, new textile 

materials allow better, more hygienic, and less obstructing har-

nesses to be developed and custom fit to higher level upper limb 

amputees. The general tendency over the past few years, which 

was enabled through these novel materials, is the design of 

anatomically contoured sockets for all levels of amputation.36

Based on the osseointegration technique introduced 

~60 years ago,37 an advanced mounting concept of the upper 

limb prosthesis has been developed and applied.38 The main 

idea behind this technique is to exploit the direct structural 

and functional connection between the skeletal bone and the 

surface of the titanium implant,39 which would further be 

connected to an additional implant penetrating the skin.40 In 

this way, a point for a direct, rigid connection of the pros-

thesis and the skeletal system is created.41 Osseointegration 

offers numerous advantages over the traditional sockets by 

providing a more intimate fit, increased range of motion, and 

osseoperception.42,43 However, it also requires additional sur-

gery and poses potential risks of infection, implant fracture, 

or incomplete integration requiring revision surgeries.44,45
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The introduction of implantable sensing technologies 

for EMG detection and control of prosthetic devices such as 

implantable myoelectric sensor46 requires certain revisions of 

the standard sockets. Namely, implantable myoelectric sen-

sor compatible shafts are equipped with transmitter/receiver 

coil capable of enclosing the stump and receiving the signal 

transmitted by the implanted EMG electrodes.47

Other, more research-oriented, invasive solutions, such 

as implantable electrode arrays,48 fine wire-based systems,49 

and epimysial electrodes,50 are at a prototype stage. Nerve 

interfacing solutions51 for efferent decoding remain currently 

highly complex without sufficient benefits.

Control strategies
Myoelectric prosthetic upper limbs have been known for 

over half a century.11 As previously elaborated, advances 

have been made in many aspects of these devices. Yet, the 

commercially available control systems up until recently 

have practically remained unchanged. The initial two-channel 

control allowing direct proportional steering of a single DoF 

has been extended to sequentially drivable multiple DoFs 

using a state machine approach.52 With this approach, the 

user can decide which DoF of the device to control by cycling 

through states using co-contractions or by quickly repeating 

a specific muscle activation pattern.53,54 For example, Michel-

angelo hand users may switch between DoFs by modulating 

the contraction speed.54 Regardless, all these approaches, 

even though quite robust, are unintuitive and cumbersome 

especially in the high-level amputation cases, which require 

articulation of numerous DoFs.55

Some prosthetic hand vendors proposed a decrease in 

the direct control by the user, with the introduction of sup-

portive technologies. For example, BeBionic v3 has a plain 

switch for alternating between groups of preset grip types.56 

Touch Bionics offers i-mo™ technology (Touch Bionics Inc., 

Livingston, UK) that utilizes gyroscopes in order to detect 

sudden, user-elicited direction changes of the device that is 

used to select preset gestures.57 Moreover, users of modern 

prosthetics are now given access to applications that can run on 

external devices capable of fine tuning and setting up gestures 

or gesture patterns.56,58,59 This allows high-level customization. 

Touch Bionics even proposed the exchange of control settings 

through QR codes.60 Finally, the same company introduced the 

so-called “grip chips” that can automatically preshape the hand 

once the prosthetic finds itself in the close proximity of one of 

these devices. Chips can then be placed in the characteristic 

spots within the user’s everyday environment.61 Even though 

promising, all these novel features are yet to be clinically 

tested and their impact on the improvement of the quality of 

life remains to be demonstrated.

Academia has been extensively working on numerous 

prosthetic control solutions in the form of machine-learning 

approaches that are mostly based on the assumption that 

distinguishable and repeatable signal patterns exist among 

different motor tasks.62,63 There are several classification 

schemes proposed in the past several decades. However, 

the transition from the laboratory tests to the clinical and 

everyday practice has been very challenging. Only recently, a 

first pattern recognition-based system, COAPT,64 has become 

commercially available, but it is yet to be seen how well this 

system will be accepted in the market.

The main issue of EMG pattern recognition-based 

 systems is that they rely on repeatable matching of the 

produced EMG patterns during prosthetic manipulation 

to those used for system training. On the other hand, these 

patterns tend to significantly change due to environmental 

factors such as sweat or electrode shift, as well as fatigue, 

load, limb position, or simply due to the user’s change of 

focus.65–69 Another drawback of these solutions is their lim-

ited ability to successfully cope with simultaneous motions, 

which makes them still not fully intuitive and somewhat 

cognitively demanding.70

In order to overcome some of these issues, a new direction 

in myoelectric control research has been taken and biologi-

cally inspired algorithms have been designed. They combine 

techniques of mathematical regression with physiologically 

based models that allow intuitive control.71,72 These systems 

may enable the users to intuitively control multiple DoFs in 

a simultaneous and proportional way.73,74 These techniques 

have shown promising potential, though they are limited in 

the number of DoFs that can be controlled, at least without 

relying on nonintuitive motions and high-density EMG 

recordings.75

Recently, a system that combines signal classification 

and regression for the control of the hand and wrist, respec-

tively, has been proposed,76 although full clinical testing is 

still lacking.77

Surgical techniques for improved 
prosthetic experience
The importance of a proper stump management has been 

recognized long time ago, and its influence on prosthetic 

fitting, control, and acceptance can be significant.78 Various 

surgical techniques have been used for salvation or restoration 

of the affected hand and arm function, thus enabling simpler 

and more efficient prosthetic solutions. Among others, these 
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 surgical methods include surgical tendon transfers,79,80 a variety 

of flaps,81–84 digit and toe transfers,85–87 and skin grafting.88,89

Mastering of the aforementioned techniques and broaden-

ing of the knowledge about nerve transfers in the past decade 

led to the development of TMR that transfers residual nerves 

that have lost their original targeted muscles to alternative 

muscle sites.90 By treating muscles as biological amplifiers 

of the signals transmitted through nerves,91 TMR allows ref-

ormation of several well-separated sources of intuitive EMG 

signals, which can be of high value for prosthetic control.92 

The Ottobock DynamicArm Plus in combination with the 

MyoHand Vari PlusSpeed terminal device accompanied by 

Wrist Rotator and a custom TMR socket enables the control 

of up to six DoFs following successful TMR procedure. 

To our knowledge, this is currently the only strictly TMR 

dedicated commercially available prosthetic solution on the 

market.

Recently, the concept of bionic reconstruction has been 

proposed for various scenarios after hand/arm trauma, 

extending the reconstructive options beyond the biological 

scope. In patients suffering from severe brachial plexus 

injuries presenting permanent hand dysfunction, which is 

beyond restoration using usual biological means alone, bionic 

reconstruction can offer a valid solution for restoring hand 

use where even the simplest of the aforementioned terminal 

devices are now allowing them to have better quality of life.93 

The success of this technique depends on numerous factors. 

One of the crucial aspects is the neurorehabilitation program 

that is delivered to the patients throughout the procedure.

Conclusion
By observing the current state of the upper limb prosthetic 

market, the most rapid development occurred during the 

last decade as the result of advances in technology, surgical 

techniques, and increased knowledge of human anatomy 

and physiology.

We have presented some of the latest prosthetic 

solutions on the market and have given insights in what 

academia is able to offer in the upcoming period. These 

systems offer numerous features when equipped with the 

state-of-the-art technology. Nowadays, prosthetic hands 

closely resemble the anatomical dimensions of their bio-

logical counterparts, while the solutions for higher level 

impairments are yet to match these specifications. Pros-

thetic solutions replacing certain DoFs, such as shoulder 

movements, are still missing.

The introduction of modern materials has allowed bet-

ter and more intimate socket design that enables improved 

prosthetic experience for the users. This facilitated devel-

opment of new socket fitting techniques allow orthopedic 

technicians to custom-match the residual limb anatomy of 

each user. Advances in implant design have come to a point 

where prosthetic fitting through osseointegration is a viable 

option. This kind of interface, directly coupled to the user’s 

skeletal system, provides increased range of motion and 

osseoperception. Following the advances of implantable 

sensor technologies, the new socket designs include features 

harvesting the significant potential of such solutions through 

embedded transmitter/receiver coils.

In order to improve the functional potential of upper 

limb-impaired patients, new surgical techniques have been 

recently proposed. TMR and bionic reconstruction, for 

example, provide important functional benefits to the user, in 

particular for high-level amputees and patients with brachial 

plexus injuries.

The current bottleneck of the upper limb prosthetic 

development seems to be the control of the robotic limbs. The 

majority of commercially available devices are still relying 

on the cumbersome mode-switching approaches dating some 

decades ago, while novel techniques seem to continuously 

fail in making a stable transition into the market. There are 

new solutions that have recently emerged but that have not 

yet been tested clinically on a large scale.

High prosthetic abandonment rates are still present, 

though they have been stagnating compared to the trends 

from about two decades ago. This can be attributed to the 

significant improvement in robustness and hardware design. 

Nevertheless, in order for these figures to start dropping, 

advances are still needed in prosthetic control, general system 

simplification, and custom, user-oriented solutions.
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