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Abstract: Performance of neuraxial blockade using a midline approach can be technically dif-

ficult. It is therefore important to optimize factors that are under the influence of the clinician 

performing the procedure. One of these factors might be the chosen point of insertion of the 

needle. Surprisingly few data exist on where between the tips of two adjacent spinous processes 

the needle should be introduced. A geometrical model was adopted to gain more insight into 

this issue. Spinous processes were represented by parallelograms. The length, the steepness 

relative to the skin, and the distance between the parallelograms were varied. The influence 

of the chosen point of insertion of the needle on the range of angles at which the epidural and 

subarachnoid space could be reached was studied. The optimal point of insertion was defined 

as the point where this range is the widest. The geometrical model clearly demonstrated, that 

the range of angles at which the epidural or subarachnoid space can be reached, is dependent on 

the point of insertion between the tips of the adjacent spinous processes. The steeper the spinous 

processes run, the more cranial the point of insertion should be. Assuming that the model is 

representative for patients, the performance of neuraxial blockade using a midline approach 

might be improved by choosing the optimal point of insertion.  
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Introduction
Neuraxial blockade using a midline approach can be technically difficult. This might 

be, eg, due to degenerative changes of the spine of the patient or due to a limited ability 

of the patient to flex his hips. It is usually performed after palpation of the tips of the 

spinous processes above and under the intended level of entry of the needle. Several 

factors have been implicated to determine the difficulty of the intended puncture. 

Both patient-related factors – eg, age,1 body mass index,1 deformities of the spine,2,3 

the ability of the patient to flex his back,3 palpability of bony landmarks2,3 – and non-

patient-related factors – eg, equipment used, experience of the person performing 

the procedure,4 patient position chosen by the clinician1 – have been described in the 

literature. It would be very useful to know, how to optimize factors that are under the 

influence of the clinician performing the procedure because repeated attempts increase 

the incidence of complications and patient discomfort.5- 7 One of these factors might 

be the optimal place to insert the needle.  To the best of our knowledge, surprisingly 

few data exist on where between the tips of the spinous processes the needle should be 

introduced to approach the subarachnoid (SAS) or epidural space (ES) without bone 

contact (for simplicity, in the subsequent text we mean both the SAS and the ES, where 
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only the ES is mentioned). Data on this subject would be very 

useful, eg, to instruct a resident how to perform neuraxial 

anesthesia when using a midline approach. 

For example, Pitkänen8 gives no hint for an optimal point 

of insertion in Cousins et al’s textbook of regional anesthesia. 

He advises to direct the needle at 10° when performing lum-

bar spinal anesthesia. The same textbook9 advises “[…] inser-

tion closer to the superior spinous process and with a slight 

upward angulation […]” for lumbar epidural anesthesia and 

“[…] extreme upward angulation […]” for epidural anesthe-

sia in the mid-thoracic region. No further details are provided 

here. For thoracic epidural anesthesia, Brull et al10 point out 

that the distance travelled by the needle is modified by a 

more perpendicular angle. However, they do not suggest an 

optimal point of insertion at the different levels.   According 

to Fettes et al, the needle should be introduced “[…] precisely 

in the mid-line, mid-way between the posterior spines […]” 

for lumbar puncture. This suggestion is not substantiated by 

clinical or experimental data.11 In one paper it is suggested 

that puncture at the lumbar region should involve insertion 

of the needle at the superior aspect of the spinous process 

that lies inferior to the space to be entered.12 Here, too, the 

authors provide no further explanation for this approach.

We hypothesize that the point of insertion of the needle 

determines the range of angles at which the ES can be reached 

(explained in Figure 1). It is assumed, that the larger this range 

is, the bigger the chance of successfully reaching this space 

in one attempt. We have tested this hypothesis in a simple 

geometrical model. 

Methods
Geometrical model
Figure 1 represents the model. Two adjacent spinous pro-

cesses of two vertebrae (A) are represented by two paral-

lelograms ([B], shaded areas). 

The following variables were chosen in the model 

( Figure 1):

1. the angle (θ) of the spinous processes relative to the 

virtual skin (Sk).

2. The distance between two adjacent spinous processes (d).

3. The length of the spinous processes (L) perpendicular 

to the Sk.

The point where the needle is inserted is P
i
. The range 

of angles at which the ES can be reached by the tip of the 

needle is represented by a (Figure 1).

Calculation of a, Figure 2: Sk represents the patient’s 

skin surface. Points A, B, C, and D represent the boundar-

ies of the space between two adjacent spinous processes. 

Variables x and y were attributed to A, B, C, and D; for 

point A x
A
 and y

A
 , and similarly for B, C, and D. The needle 

is inserted at point P
i
 (x

Pi
, y

Pi
). All points were placed in a 

grid. The range of angles at which the ES can be reached 

is represented by a:

Figure 1 The adopted geometrical model: two adjacent spinous processes represented by two parallelograms.
Notes: Two adjacent spinous processes (A) are represented by two parallelograms (B). The following variables were chosen in the model: θ, d, and L, representing the 
angle of the spinous process relative to the skin (Sk), the distance between two adjacent spinous processes and the length of the spinous process perpendicular to the skin, 
respectively. a represents the range of angles at which it is possible to reach the epidural space by a needle inserted at point Pi.

Spinous
process

Sk

Pi

d
a

q
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 a = b - g;� (1)
 tan b = Y

1
/L ⇔ b= tan-1 {Y

1
/L}, where Y

1
=y

C
-y

Pi
; (2)

and
 tan g = Y

2
/L ⇔ g = tan-1 (Y

2
/L), where Y

2
=y

B
-y

Pi
 (3)

The variables θ, d, and L were varied over a wide range, in 

order to be able to make solid statements of their effects on 

a; θ varied from 0˚ to 72˚. Calculations were performed in 

Excel spreadsheets (Microsoft Office, 2007). In all these 

various cases, a (y-axis) was plotted as a function of the 

points of insertion (x-axis, P
i
 ) in diagrams. A total number 

of 196 spreadsheets were made. A representative selection 

of the results is shown in the results section. Data sets are 

available on request by email. 

Results
In Figure 3A, C, E, G (left part) the angle θ (explained in 

Figure 1) is varied, resulting in a horizontal (Figure 3A) to 

steep (Figure 3G) position of the spinous processes relative 

to the Sk. In all these cases, a is maximal when P
i
 is chosen 

at the point that is the projection of the point halfway between 

points b and c on the skin (explained more extensively in the 

figure). This optimal point of insertion is represented by P
i, opt

 

in Figure 3C, E and G.  

The corresponding plots, which vary in shape, are shown 

in Figure 3B, D, F, H (right part). When the spinous processes 

run horizontally, a is maximal when the point of insertion is 

chosen halfway between points a and d ( Figure 3B). When θ 

increases, the point of insertion where a is maximal gradu-

ally shifts cranially, ie, P
i, opt

 approaches point d. 

In Figure 3E the point of insertion where a is maximal 

corresponds with point d. This means that when steeper 

angles θ are chosen than in this particular situation, P
i, opt

 is 

consistently at point d, ie, the most cranial point between two 

adjacent spinous processes (Figure 3G).

According to this model, the chosen point of insertion 

between the spinous processes determines the value of a. 

This dependency is most pronounced when the spinous pro-

cesses run steeply. In the situation of Figure 3H, the absolute 

increase of a – when it is compared to the least favorable point 

of insertion, ie, point a (compare Figure 3E) is 9° (from 18° 

to 27°), which is a relative increase of 50%. For the situations 

of Figure 3B, D, and F, these numbers are 1° and 4%, 4° and 

17%, and 6° and 27%, respectively.

Discussion
Our geometrical model clearly demonstrated, that the range of 

angles at which the ES can be reached, is dependent on the point 

of insertion between the tips of the spinous processes when 

using a midline approach. Many anesthesiologists perform 

both lumbar and thoracic neuraxial blockade by using a midline 

approach.13 Therefore, this finding is relevant for daily anes-

thetic practice. Especially in patients where neuraxial anesthesia 

turns out to be technically difficult – eg, due to degenerative 

changes of the spine – choosing the optimal point of insertion 

may enhance the chance of successfully reaching the ES.

Although we studied the median approach in neuraxial 

anesthesia, some anesthesiologists advocate a paramedian 

approach. Comparative studies in the literature, we found, 

usually focused on the lumbar region of the spine. Indeed, 

some studies found an advantage for the paramedian 

approach eg, in terms of a higher success rate at the first 

puncture attempt,14 or time needed to reach the ES.15 Other 

studies, however, could not confirm that the paramedian 

approach is superior to the median approach. These studies 

were for example looking at predictors for success during the 

first puncture attempt7 or the incidence of post-dural puncture 

headache.16 Apparently, more and larger studies are needed to 

answer the question ‘which approach under what conditions 

should be preferred’.

According to our results, the optimal point of insertion 

of the needle shifts cranially when the spinous processes run 

steeper. Choosing a more cranial point of insertion of the 

needle will not only increase the range of angles at which 

the SAS and ES can be reached, but will also shorten the 

puncture route.

Figure 2 Two adjacent spinous processes are depicted (shaded areas). 
Notes: The patient’s skin surface is represented by Sk. Points A, B, C, and D 
represent the edges of the boundaries of the space between two adjacent spinous 
processes. Variables x and y were attributed to A, B, C, and D; for point A xA 
and yB, and similarly for B, C, and D. The needle is inserted at point Pi (xPi, yPi). All 
points were placed in a grid. The range of angles at which the epidural space or 
subarachnoid space can be reached is represented by a, which was calculated as 
follows:
a = b - g;
tan b = Y1/L ⇔ b�= tan-1 (Y1/L), where Y1=yC-yPi;
tan g = Y2/L ⇔ g = tan-1 (Y2/L), where Y2=yB-yPi
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Figure 3 Four sets of two adjacent spinous processes and their corresponding plots are depicted.
Notes: Four sets (A, C, E, G) of two adjacent spinous processes are depicted (shaded areas). The right column shows the corresponding plots (B, D, F, and H). Sk (left 
part) represents the skin that directly overlays the tips of the spinous processes. RPi (A) represents the range on the Sk where the needle could be inserted. This range 
corresponds to the x-axis in the corresponding plots (right part). Since only the relative sizes of the parts of the spinous processes are relevant for all calculations, we 
choose to express Pi on the x-axis in arbitrary units. The lower the value of Pi, the more caudally the needle is inserted. Pi (A) represents an example of a place to insert 
the needle. To the right of the dotted line is the epidural space (ES) (A). In (C), the reconstruction of point Pi where a is at its maximum is shown. The dotted horizontal 
line divides the interspinous space between point b and c in two equal parts. The projection of this line on the skin represents the point where a is at its maximum (Pi, opt). 
Note that here, Pi, opt is slightly caudally from the most cranial point of insertion that is possible (ie, point d in [C]). The corresponding plot (D) shows a top (Pi, opt) and then 
declines. In (E), Pi, opt corresponds to point d. This means that a is maximal when the needle is inserted at the most cranial point. When the spinous processes run even 
more steeply (G), this projection coincides with a bony part of the spinous process (P’i, opt) where insertion of the needle is not possible. Under these circumstances, Pi, opt 
is, as in the situation in (E), at point d.
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The borders of spinous processes are not smooth, straight 

lines in vivo and adjacent spinous processes do not run perfectly 

parallel to each other as in our model. However, these simplifi-

cations enabled us to make calculations and eventually enabled 

us to test our hypothesis that the point of insertion of the needle 

is an important determinant for the chance of reaching the ES.

Ultrasound imaging is increasingly used for neuraxial 

blockade. However, many – if not the majority of – anes-

thesiologists still use the landmark-guided technique, prob-

ably since it is relatively effective and the use of ultrasound 

requires additional skills.17 It would be of interest to investi-

gate if ultrasound can be helpful to find the optimal point of 

insertion of the needle.

Previously, it has been shown that a change in flexion of 

the hips changes the curvature of the spine.18 Consequently, 

a change in the curvature of the spine, will probably also 

change the width between adjacent spinous processes. 

Indeed, several papers describe the influence of patient 

positioning on the interspinous space width in the lumbar 

region of the spine.19-22  We are not aware of studies of the 

thoracic region of the spine. For example, in the study by 

Fisher et al, the absolute increase in width between lumbar 

interspaces was 1 mm or less in 60% (21 of 35 measure-

ments) of the studied cases and 1 to 2 mm in 31%. The cor-

responding relative increases varied from 5% to 14% (cases 

with an absolute increase of 1 mm or less) and from 12% to 

33% (cases with an absolute increase of 1 to 2 mm).19 In the 

study by Sanodoval et al (when comparing the sitting posi-

tion with unsupported feet to sitting with supported feet), 

the absolute increase in width between spinous processes 

was 1 mm or less in nine of 16 cases, 1 to 2 mm in four of 

16 cases, and more than 2 mm in three cases (being 2.1, 2.4, 

and 3.6 mm respectively).20 Since our model did not take the 

role of patient positioning into account, our results should be 

interpreted with caution. On the other hand, as we discussed 

above, the changes in interspinous space width when chang-

ing from a position with no or limited hip flexion to more hip 

flexion seem to be limited, both in absolute and in relative 

numbers. Furthermore, the influence of changing patient 

positioning on the ease of performing a neuraxial blockade 

seems also to be limited.23-25 From the available data, it is 

difficult to predict how changes in the spinal curvature 

and forthcoming changes in the angulations of the spinous 

processes will affect the optimal point of needle insertion. 

Therefore, it is worthwhile to test the findings in our model 

in patients, both with and without flexion of their hips. 

Results from these future studies may further substantiate 

a scientific rationale, how to perform neuraxial anesthesia 

when using a midline approach. 
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