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Abstract: Despite recent advances in therapeutic strategies for lung cancer, mortality is still 

increasing. Therefore, there is an urgent need to identify effective novel drugs. In the present 

study, we implement drug repositioning for lung adenocarcinoma (LUAD) by a bioinformat-

ics method followed by experimental validation. We first identified differentially expressed 

genes between LUAD tissues and nontumor tissues from RNA sequencing data obtained from 

The Cancer Genome Atlas database. Then, candidate small molecular drugs were ranked 

according to the effect of their targets on differentially expressed genes of LUAD by a random 

walk with restart algorithm in protein–protein interaction networks. Our method identified 

some potentially novel agents for LUAD besides those that had been previously reported (eg, 

hesperidin). Finally, we experimentally verified that atracurium, one of the potential agents, 

could induce A549 cells death in non-small-cell lung cancer-derived A549 cells by an MTT 

assay, acridine orange and ethidium bromide staining, and electron microscopy. Furthermore, 

Western blot assays demonstrated that atracurium upregulated the proapoptotic Bad and Bax 

proteins, downregulated the antiapoptotic p-Bad and Bcl-2 proteins, and enhanced caspase-3 

activity. It could also reduce the expression of p53 and p21Cip1/Waf1 in A549 cells. In brief, the 

candidate agents identified by our approach may provide greater insights into improving the 

therapeutic status of LUAD.

Keywords: lung adenocarcinoma, drug repositioning, bioinformatics, protein–protein interaction 

network, atracurium

Introduction
Lung cancer is estimated to have the second highest incidence of all cancers in the 

US with over 163,000 deaths in 2014.1,2 Non-small-cell lung cancer (NSCLC) may 

represent .80% of all lung cancer cases.3 The most common subtypes of NSCLC are 

adenocarcinoma and squamous cell carcinoma. More than half of the NSCLCs are 

constituted by lung adenocarcinoma (LUAD).4 A 5-year survival rate of only 17% 

reflects LUAD’s known heterogeneity; the complex cellular, molecular, and tumor 

microenvironmental factors presented in each individual; and poor therapy options.1,2,5 

Furthermore, there is still a lack of effective treatment for LUAD.5,6 Thus, there is an 

urgent need for the identification of novel drugs that will provide clinicians with useful 

assistance in patient prognosis and potential therapeutic options.7

However, the identification of novel drugs is time consuming, costly, and risky. 

The average research and development cost, in the past 15 years, for developing a 

new drug is over one billion US dollars.8 Anticancer agents are especially costly.9 

Therefore, drug repositioning, which discovers new applications for known drugs, 

offers a promising alternative to reduce the total time and cost because of existing 

safety, toleration, and efficacy data. Recently, with the development of bioinformatics 
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and high-throughput genome-wide data, network-based drug 

repositioning has emerged.10 Drug repositioning emphasizes 

interactions among drugs, targets, and diseases and highlights 

the network concept.

Here, we identified potential novel drugs for LUAD 

by a network-based algorithm followed by experimental 

verification. Differentially expressed genes (DEGs) between 

LUAD tissues and nontumor tissues were identified. Then, 

known small molecular drugs were ranked according to the 

effect of their targets on DEGs of LUAD by a random walk 

with restart (RWR) algorithm. Finally, we experimentally 

verified that atracurium, one of the potential agents, could 

induce NSCLC-derived A549 cell death, and Western blot 

assay demonstrated that atracurium upregulated the proapop-

totic Bad and Bax, and downregulated the antiapoptotic p-Bad 

and Bcl-2 proteins. Furthermore, atracurium also enhanced 

the caspase-3 activity and could also reduce the expression 

of p53 and p21Cip1/Waf1 in A549 cells. In brief, the candidate 

agents identified by our approach may provide great insights 

into improving the therapeutic status for LUAD.

Materials and methods
Protein–protein interaction networks
Protein–protein interactions (PPIs) were accessed from the 

HPRD (Human Protein Reference Database) and STRING 

(Search Tool for the Retrieval of Interacting Genes/Proteins) 

databases. The HPRD contains manually entered informa-

tion extracted from the literature by expert biologists who 

read, interpreted, and analyzed the published data.11 The 

HPRD release 9, which contains 37,070 PPIs among 9,465 

proteins, was downloaded in this study. The STRING data-

base contains comprehensive information from numerous 

sources, including experimental data, computational predic-

tion methods, and public text collections.12 The PPIs and their 

confidence scores were downloaded from STRING 9. Only 

PPIs with confidence scores .900 were obtained.

Drug data
Drugs and their targets were downloaded from Drugbank (ver-

sion 4.0, http://www.drugbank.ca/),13 which contained 7,759 

drugs and 4,300 proteins. After converting protein identifica-

tion names and mapping the targets to both the STRING and 

HPRD networks, 12,604 drug–target relations between 4,452 

drugs and 1,617 proteins were retained for further study.

Differential gene expression analysis 
of lUaD
LUAD level 3 mRNA expression data derived from the 

IlluminaHiSeq RNASeqV2 platform were obtained from 

The Cancer Genome Atlas (TCGA) public data portal 

(https://tcga-data.nci.nih.gov/tcga/). This profile contained 

445 LUAD samples and 19 normal samples. Fold change 

and edgeR methods were used to identify DEGs. edgeR is 

an R Bioconductor package for the analysis of gene expres-

sion data arising from RNA sequencing technologies.14 

Genes with Benjamini–Hochberg adjusted false discovery 

rate (FDR) ,0.01 in the edgeR method and fold change .2  

or ,0.5 were considered as DEGs. The DEGs were mapped to 

both the STRING and HPRD networks. There were 927 DEGs 

that existed in both the STRING and HPRD databases.

random walk
To identify the potential drugs for LUAD, we developed a 

novel method to evaluate the effects of each candidate drug 

on LUAD by assessing the influence of corresponding drug 

targets on the DEGs of LUAD in the context of PPIs. To do 

this, we implemented an RWR algorithm to calculate the 

impact power score (IPS) for each candidate drug.15

RWR simulates a walker starting on given seed nodes, 

which, at each step, moves randomly from the current node 

to neighbors in the network based on the probabilities of the 

edges between the two nodes. In this study, let P0 be the initial 

probability vector and Ps be a vector in which the i-th element 

holds the probability of the random walker at node i at step s. 

Let γ be the restart probability of the random walker in each 

step at the source nodes and M be the normalized PPI network. 

Then, the probability at s+1 can be described as follows: 

 P MP Ps s+ = − +1 01( )γ γ  (1)

After several steps, the probability will achieve a stable 

state, and this can be defined as P∞ by performing the iteration 

until the difference between Ps and Ps+1 falls below a given 

cutoff (measured by L1 norm).

In this paper, target genes of each drug are considered 

as the seed nodes, while the DEGs of LUAD are considered 

as candidates in this analysis. The initial probability P0 is 

formed such that probabilities are assigned equally to the 

seed nodes, with a sum equal to 1, while the probabilities of 

nonseed nodes are 0. The restart probability is set to 0.7 as it 

was in the previous study.15 Then the final stable probability 

P∞ of each DEG can be achieved by an iterative process until 

the difference between Ps and Ps+1 falls below 10−10. The prob-

ability value of each DEG of LUAD presents the impact of 

drug targets on them in the PPI network. Then the IPS of 

each drug can be measured by IPS probability DEG= ∑
1
n ( [ ]), 

where n is the number of DEGs of LUAD. This process was 

performed in the HPRD and STRING networks, respectively, 

to obtain robust results.
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reagents
A549 cells were obtained from Harbin Medical University 

(Heilongjiang, People’s Republic of China). RPMI 1640 

medium was purchased from Thermo (Beijing, People’s 

Republic of China). Fetal bovine serum was obtained from 

Gibco GRL (Grand Island, NY, USA). Penicillin–streptomycin 

solution, trypsin, phosphate-buffered saline (PBS), dimethyl 

sulfoxide (DMSO), MTT, normal melting point agarose, 

acridine orange and ethidium bromide (AO/EB), and cell lysis 

solution were purchased from Solarbio (Beijing, People’s 

Republic of China). This study was approved by the Ethics 

Committee of Harbin Medical University, and conformed 

with the tenets of the Declaration of Helsinki.

cell viability assay
A549 cells were treated with atracurium at different concen-

trations (10, 50, 100, 150, and 200 µg/L). Cell viability was 

determined by an MTT assay16 to evaluate the possible cyto-

toxic effects of the test samples. A549 cells in the absence or 

presence of samples at different concentrations (4×103 cells/

well) were cultured in 96-well plates for 48 hours. Aliquots 

(20 µL) of 5 mg/mL MTT in PBS were added to each well 

in the 96-well plate. The plates were incubated for another 

4 hours. The culture medium was then discarded. The plates 

were carefully washed twice with PBS buffer. Aliquots of 

DMSO (150 µL) were added to each well and oscillated for 

15 minutes to extract the insoluble formazan that had formed. 

A microplate reader (TECAN, Mannedorf, Switzerland) was 

used to measure the absorbance at a wavelength of 570 nm. 

A549 cell viability was calculated as: Survival (%) = A/B × 

100%, where A is the average optical density (OD) of the 

atracurium-treated cells and B is the average OD of the 

control wells (culture medium with cells).

electron microscopy
A549 cells were cultured in 60 mm plates, washed with PBS 

solution, and fixed with 2% (v/v) paraformaldehyde (PFA) 

containing 2.5% (w/v) glutaraldehyde (Paesel-Lorei, Duisburg, 

Germany) buffered in Hank’s-modified salt solution at 4°C for 

4 hours. The cells were further fixed in 1% (w/v) O
S
O

4
 solution 

buffered by 0.1 M cacodylate (pH 7.2) at 4°C for 2 hours, and 

then scraped off and dehydrated in ethanol. Dehydration was 

completed in propylene oxide. The specimens were embedded 

in Araldite (Serva, Heidelberg, Germany). Ultrathin sections 

were produced on an FCR Reichert Ultracut ultramicrotome 

(Leica Microsystems, Wetzlar, Germany), mounted on 

pioloform-coated copper grids, and contrasted with lead citrate. 

Specimens were analyzed and documented with a 10A electron 

microscope (Zeiss, Oberkochen, Germany).

AO/EB fluorescence staining
The A549 cells were incubated with AO/EB mixing solution for 

5 minutes (Solarbio, http://solarbio.en.alibaba.com). Cellular 

morphological changes were examined by fluorescence micros-

copy (3,200×). The percentage of apoptotic cells was calculated 

by the following formula: Apoptotic rate (%) = Number of 

apoptotic cells/Number of all cells counted.

Western blotting analysis
Total protein sample was extracted from A549 cells. 

Protein concentration was determined by BCA Protein 

Assay Kit (Beyotime Institute of Biotechnology, Jiangsu, 

People’s Republic of China). The protein samples (80 µg) 

were fractionated by sodium dodecyl sulfate polyacrylam-

ide gel electrophoresis (SDS-PAGE, 8%–10% polyacryl-

amide gels) and transferred to nitrocellulose membranes 

(EMD Millipore, Billerica, MA, USA). The membranes 

were then blocked with milk powder at room temperature 

for 2 hours and incubated overnight at 4°C with the primary 

antibody. The following day, the membranes were washed 

and incubated with a secondary rabbit or mouse polyclonal 

antibody for 1 hour at room temperature. Western blot 

bands were visualized by enhanced chemiluminesence 

reagent (GE Healthcare Bio-Sciences Corp., Piscataway, 

NJ, USA) and quantified using Odyssey v1.2 software 

by measuring the band intensity (area × OD) for each 

group and normalizing to glyceraldehyde 3-phosphate 

dehydrogenase.

caspase-3 activity assay
The caspase-3 activity was analyzed using a Caspase-3 

Activity Assay Kit (Beyotime Institute of Biotechnology) 

according to the manufacturer’s instructions, using substrate 

peptides Ac-DEVD-pNA (p-nitroanilide), Ac-IETD-pNA, 

and Ac-LEHD-pNA, respectively. Briefly, the supernatant 

of cell lysate was mixed with buffer containing the sub-

strate peptides for caspase attached to pNA. The release of 

pNA was quantified by determining the absorbance with 

an enzyme-linked immunosorbent assay (ELISA) reader at 

405 nm. The caspase activities were expressed as percentage 

over control.

Data analysis
All experimental data were expressed as mean ± standard 

deviation. Analysis of variance or Student’s t-test was used 

to compare the mean values for multiple-group or two-group 

comparisons, using the SPSS 13.0 software. Values of 

P,0.05 were considered to be statistically significant.
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Results
Degs between lUaD and normal 
samples
In order to identify DEGs of LUAD, we obtained level 3 

expression profiles of LUAD samples and normal samples 

from TCGA database (http://cancergenome.nih.gov/). After 

mapping the DEGs to the HPRD and STRING networks, 

a total of 927 genes were obtained (see the section “Materials 

and methods” for details).

We then identified deregulated pathways by using the 

DAVID v6.7 program (Database for Annotation, Visualiza-

tion and Integrated Discovery).17 We identified 12 Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathways 

with a cutoff P-value ,0.05 (Table 1). Some pathways 

were significantly related to the development of LUAD, 

such as pathways in cancer (hsa05200) and the cell cycle 

(hsa04110).

Potential drugs for lUaD
After walking the HPRD and STRING networks, the candi-

date drugs were ranked according to the IPS (see the section 

“Materials and methods” for details). Table 2 shows the top 

50 drugs in the HPRD network. To obtain a robust result, 

we also implemented our method in the STRING network. 

In the top 5% of the ranked drugs (top 227 drugs), 145 were 

identified in two PPI networks (P,0.01; hypergeometric text, 

Figure 1A). Furthermore, the corresponding targets of the top 

5% drugs significantly overlapped (P,0.01; hypergeometric 

text, Figure 1B). We selected one of the top ranked drugs, 

atracurium, for the following analysis. 

We then mapped all the DEGs into a HPRD network 

and extracted the first two neighbor nodes. Figure 2 shows 

the relationship between DEGs and drug targets, which are 

colored red and yellow, respectively. 

atracurium suppresses the viability of 
a549 cells
The antiproliferative effect of atracurium on A549 cells 

was examined by exposing the cells to different concen-

trations (10, 50, 100, 150, or 200 µg/L) of atracurium for 

24 hours. Cell growth was inhibited in a dose-dependent 

manner (Figure 3A). In the presence of 150 µg/L atracurium, 

Table 1 The significant enriched pathways related to LUAD and the corresponding annotated genes

Term P-value Genes

hsa04080:neuroactive ligand–receptor interaction 2.75e–09 CGA, GRIK2, ADCYAP1R1, LHCGR, PTH1R, GRIK5, PRSS1, FPR2, VIPR1, GCGR, 
EDNRB, KISS1R, AGTR2, NMUR1, GRIN2D, PRSS3, CALCRL, TUBB3, GHR, GABRG2, 
GABRG3, PTH2R, GABRA4, RXFP1, GABRA3, RXFP2, GRIN1, NTSR1, FSHR, GH2, 
SSTR4, GRM4, GABRR1, CHRM2, GRIA1, P2RX3, F2, MC4R, ADRA1A, TSHR, LHB, 
CTSG, MTNR1A, OPRD1

hsa04610:complement and  
coagulation cascades

3.42e–08 F11, KNG1, C7, F12, MASP1, C4BPB, F7, PROC, C8G, F13B, C8A, C8B, VWF, F5, 
FGA, FGB, F2, CFD, CPB2, PLAU

hsa04110:cell cycle 1.21e–04 E2F2, CDC6, PKMYT1, TTK, CHEK1, CDC20, PTTG1, CDC25C, MCM4, CDC25A, 
CCNE2, CCNB1, CCNE1, CDKN2A, CCNB2, MAD2L1, PLK1, BUB1, BUB1B, CCNA2, 
SMC1B

hsa04114:Oocyte meiosis 5.92e–04 ADCY8, SGOL1, PKMYT1, AURKA, CDC20, PTTG1, CDC25C, CCNE2, CCNB1, 
CCNE1, CCNB2, MAD2L1, CALML3, PLK1, BUB1, CAMK2B, CALML5, SMC1B

hsa04950:Maturity onset diabetes of the young 7.61e–04 HNF1A, HNF4A, ONECUT1, FOXA3, SLC2A2, PKLR, PAX6, HNF4G

hsa04512:ecM–receptor interaction 8.33e–04 TNXB, COL3A1, ITGA11, COL2A1, CHAD, HMMR, VWF, CD36, ITGA8, TNR, 
COMP, COL1A1, THBS2, COL11A1, SPP1

hsa04916:Melanogenesis 0.010485 ADCY8, WNT3A, EDN1, PRKCG, EDNRB, WNT1, WNT3, CALML3, CAMK2B, 
CREB3L3, CALML5, WNT6, WNT7A, TUBB3

hsa04614:renin-angiotensin system 0.020692 AGTR2, AGT, MME, CMA1, CTSG

hsa04510:Focal adhesion 0.033515 CAV2, CAV1, TNXB, COL3A1, ITGA11, PRKCG, ACTN2, COL2A1, CHAD, VWF, 
RAC3, PAK3, COMP, ITGA8, TNR, COL1A1, EGF, FIGF, THBS2, COL11A1, SPP1

hsa04020:calcium signaling pathway 0.033556 TNNC2, TNNC1, ADCY8, GRIN1, LHCGR, PRKCG, NTSR1, CACNA1S, ITPKA, 
EDNRB, CALML3, CHRM2, GRIN2D, P2RX3, ADRA1A, CAMK2B, CACNA1E, 
CALML5, CACNA1B

hsa04360:axon guidance 0.0372 DCC, NGEF, SEMA6A, EPHA6, SEMA6D, EPHA8, RAC3, PAK3, EFNA2, PLXNB3, 
EFNA3, SEMA3A, SLIT2, EPHB2, SLIT3

hsa05200:Pathways in cancer 0.048267 FGF19, DCC, E2F2, MMP9, WNT3A, EGLN3, FGF10, ZBTB16, MMP1, CCNE2, 
CCNE1, WNT1, CDKN2A, WNT3, RAC3, SLC2A1, HHIP, EGF, WNT6, FIGF, IL6, 
RET, EPAS1, KLK3, RXRG, PRKCG, BIRC5, RAD51, CBLC, WNT7A

Abbreviation: lUaD, lung adenocarcinoma.
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Table 2 The top 50 ranked drugs

Drug ID Drug name Target Score Rank

DB00416 Metocurine iodide chrna2 0.966581 1
DB00565 cisatracurium besylate chrna2 0.966581 1
DB00732 atracurium chrna2 0.966581 1
DB00657 Mecamylamine chrna2 0.966581 1
DB02457 Undecyl-phosphinic acid butyl ester liPF 0.953846 5
DB04551 Fructose-1,6-diphosphate PKlr 0.923036 6
DB04869 Olcegepant calca 0.906767 7
DB05760 MK-0974 calca 0.906767 7
DB05333 Tc-2403-12 chrnB2 0.903221 9
DB01336 Metocurine chrM2;chrna2 0.856775 10
DB05458 aBT-089 chrna4;chrnB2 0.85602 11
DB06097 gsK-923295 cenPe 0.851175 12
DB02071 WaY-151693 MMP13 0.83319 13
DB07013 Tert-butyl 4-([{4-(but-2-yn-1-ylamino)phenyl}sulfonyl]methyl)-4-(hydroxyamino)

carbonyl]piperidine-1-carboxylate
MMP13 0.83319 13

DB08561 Benzyl 6-benzyl-5,7-dioxo-6,7-dihydro-5h-(1,3)thiazolo(3,2-c)pyrimidine-2-carboxylate MMP13 0.83319 13
DB04760 Pyrimidine-4,6-dicarboxylic acid bis-(4-fluoro-3-methyl-benzylamide) MMP13 0.83319 13
DB08388 5-(2-ethoxyethyl)-5-(4-[4-fluorophenoxy]phenoxy)pyrimidine-2,4,6(1h,3h,5h)-trione MMP13 0.83319 13
DB02049 2-(4-[4-{4-chloro-phenoxy}-Benzenesulfonyl]-tetrahydro-pyran-4-Yl)-n-hydroxy-

acetamide
MMP13 0.83319 13

DB04759 Pyrimidine-4,6-dicarboxylic acid bis-(3-methyl-benzylamide) MMP13 0.83319 13
DB04761 Pyrimidine-4,6-dicarboxylic acid bis-([pyridin-3-ylmethyl]-amide) MMP13 0.83319 13
DB08490 4-(4-[4-chloro-phenoxy]-benzenesulfonylmethyl)-tetrahydro-pyran-4-carboxylic acid 

hydroxyamide
MMP13 0.83319 13

DB07827 4-([1-methyl-2,4-dioxo-6-{3-phenylprop-1-yn-1-yl}-1,4-dihydroquinazolin-3{2h}-yl]
methyl)benzoic acid

MMP13 0.83319 13

DB03149 Phenylalanylmethane cMa1 0.83092 23
DB07680 ([1s]-1-[5-chloro-1-benzothien-3-yl]-2-[2-naphthylamino]-2-oxoethyl)phosphonic acid cMa1 0.83092 23
DB01135 Doxacurium chloride Bche;chrM2;chrna2 0.826912 25
DB04027 D-arginine cKM 0.826264 26
DB02490 (Diaminomethyl-methyl-amino)-acetic acid cKM 0.826264 26
DB01245 Decamethonium ache;Bche;chrna2 0.821877 28
DB07077 (r)-1-(4-[4-{hydroxymethyl}-1,3,2-dioxaborolan-2-yl]phenyl)guanidine F11 0.818087 29
DB07299 4-methyl-pentanoic acid (1-[4-guanidino-1-{thiazole-2-carbonyl}-butylcarbamoyl]-2-

methyl-propyl)-amide
F11 0.818087 29

DB07887 (r)-1-(4-[4-{hydroxymethyl}-1,3,2-dioxaborolan-2-yl]benzyl)guanidine F11 0.818087 29
DB07023 (1r)-2-([amino{imino}methyl]amino)-1-(4-[{4r}-4-{hydroxymethyl}-1,3,2-dioxaborolan-

2-yl]phenyl)ethyl nicotinate
F11 0.818087 29

DB07022 3-hydroxypropyl 3-([{7-(amino[imino]methyl)-1-naphthyl}amino]carbonyl)
benzenesulfonate

F11 0.818087 29

DB07074 6-carbamimidoyl-4-(3-hydroxy-2-methyl-benzoylamino)-naphthalene-2-carboxylic acid 
methyl ester

F11 0.818087 29

DB07212 n-(7-carbamimidoyl-naphthalen-1-yl)-3-hydroxy-2-methyl-benzamide F11 0.818087 29
DB07071 (r)-1-(4-[4-{hydroxymethyl}-1,3,2-dioxaborolan-2-yl]phenethyl)guanidine F11 0.818087 29
DB08486 2-(4-[{3,5-dimethylanilino}-carbonyl-methyl]-phenoxy)-2-methylpropionic acid hBa1;hBB;hBa2 0.817855 37
DB07645 sebacic acid hBa1;hBB;hBa2 0.817855 37
DB02126 4-carboxycinnamic acid hBa1;hBB;hBa2 0.817855 37
DB08262 2,6-dicarboxynaphthalene hBa1;hBB;hBa2 0.817855 37
DB07428 4-([5-methoxy-2-methylphenoxy]methyl)pyridine hBa1;hBB;hBa2 0.817855 37
DB08077 2-(4-[{([3,5-dichlorophenyl]amino)carbonyl}amino]phenoxy)-2-methylpropanoic acid hBa1;hBB;hBa2 0.817855 37
DB07427 2-([2-methoxy-5-methylphenoxy]methyl)pyridine hBa1;hBB;hBa2 0.817855 37
DB08632 1,3,5-benzenetricarboxylic acid hBa1;hBB;hBa2 0.817855 37
DB00483 gallamine triethiodide ache;chrM2;chrna2 0.815138 45
DB04703 hesperidin aUrKB 0.812062 46
DB01996 3-Methylpyridine MMP3;MMP13 0.81043 47
DB03033 1-Methyloxy-4-sulfone-benzene MMP3;MMP13 0.81043 47
DB02697 hydroxyaminovaline MMP3;MMP13 0.81043 47
DB03944 5-(1-[3,4-dimethoxy-benzoyl]-1,2,3,4-tetrahydro-quinolin-6-Yl)-6-methyl-3,6-dihydro-

(1,3,4)thiadiazin-2-one
Tnnc1 0.809827 50
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Figure 1 Venn diagram showing the overlap of the (A) top 5% of the ranked drugs and (B) targets of top 5% of the drugs between the hPrD and sTring networks. 
Abbreviations: hPrD, human Protein reference Database; sTring, search Tool for the retrieval of interacting genes/Proteins.
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Figure 2 The relationship between Degs and candidate drug targets in the hPrD network which are colored red and yellow, respectively.
Abbreviations: hPrD, human Protein reference Database; Deg, differentially expressed gene; lUaD, lung adenocarcinoma.
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A549 cells exhibited ~50% inhibition of proliferation after 

treatment for 24 hours. As such, this concentration and treat-

ment time were used in subsequent experiments. 

atracurium induces apoptosis in a549 
cells
To investigate whether atracurium regulates apoptosis, 

AO/EB staining and electron microscopy were used to 

detect apoptotic cells. The results from our fluorescence 

microscopic analysis are shown in Figure 3B. Atracurium 

induced a substantial number of apoptotic cells (P,0.05). 

Under electron microscope, cells with atracurium exhibited 

robust changes in microstructure, including cell surface 

microvillus reduction, nuclear chromatin condensation, 

imagination, and membrane blistering (Figure 3C).

FcePW activates proapoptotic signaling 
pathways
To explore the mechanisms by which atracurium induced 

apoptosis in A549 cells, we mapped the DEGs of LUAD and 

the target of atracurium (CHRNA2) into the PPI network. 

Figure 4A shows the subnetwork influenced by CHRNA2, 

in which CHRNA2 and DEGs are colored yellow and red, 

respectively. Also, besides DEGs of LUAD, there were many 

other cancer-related genes in this subnetwork (Figure 4B), 

suggesting that key apoptosis pathways were involved in 

this process. We then annotated these genes into a KEGG 

pathway (pathway in cancer) (Figure 4C). 

Next, we then measured some of the downstream proteins 

in the atracurium apoptotic pathway, including Bax, Bad, 

p-Bad, Bcl-2, p53, and p21Cip1/Waf1. Figure 5 demonstrates that 

Figure 3 atracurium-induced apoptosis in a549 cells. 
Notes: (A) effects of atracurium on cell viability in a549 cells. after treatment of the cells with different concentrations of atracurium, cell viability was analyzed by an MTT 
assay. The data are expressed as mean ± sD, (n=6 batches of cells in each group), *P#0.05 vs control group. (B) representative image of acridine orange/ethidium bromide 
staining of a549 cells. (C) Micromorphological changes in cellular organelles examined by transmission electron microscopy. The data are expressed as mean ± seM, n=3 
for each group, *P#0.05 vs control group.
Abbreviations: sD, standard deviation; seM, standard error of the mean; ctrl, control.
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Figure 5 The Western blot analysis used to evaluate the protein expression in a549 cells after treatment with atracurium. 
Notes: (A) Bax, Bcl-2, (B) p-Bad, Bad, (C) activation of caspase-3; (D) p53 protein level, and (E) p21cip1/Waf1 protein level. atracurium reduces the expression of p53 and 
p21cip1/Waf1 in a549 cells. The data are expressed as mean ± seM, n=3 for each group. *P#0.05 vs control group.
Abbreviations: gaPDh, glyceraldehyde-3-phosphate dehydrogenase; ctrl, control; seM, standard error of the mean.

atracurium upregulated Bad, p53, p21, and Bax (Figure 5A, 

B, D, and E) and downregulated p-Bad and Bcl-2 expression 

(Figure 5A and B). In addition, relative caspase-3 activity was 

significantly increased 2.5-fold by atracurium (Figure 5C). 

Discussion
In this paper, we implemented drug repositioning for 

LUAD by using a network-based method. The integration 

of large-scale genomic, transcriptomic, and proteomic data 

in a network framework has provided new insights into a 

network-based view of drug discovery and development.18 

The emergence of network medicine not only offers a better 

and more complete understanding of molecular complexities 

of diseases,19 but also serves as a promising tool for estab-

lishing new relationships among diseases that enable drug 

repositioning.20

 In this research, by using the gene expression profile 

of LUAD, we first identified DEGs. Then, we identified 

pathways by the previously mentioned DEGs to explore 

the mechanism of development of LUAD. Table 1 shows 

the significant enriched pathways related to LUAD and the 

corresponding annotated genes. Some of these pathways 

have been reported to play important roles in LUAD, (eg, 

pathways in cancer [hsa05200; P=0.048267]) and cell cycle 

(hsa04110; P=1.21×10−4; Table 1).

Next, we prioritized the candidate drugs by accessing 

the effects of corresponding drugs on DEGs through an 

RWR algorithm in two PPI networks (HPRD and STRING). 

We found that the top 5% of the drugs or the corresponding 

targets of the top 5% of the drugs were significantly over-

lapped, suggesting that our methods were robust (Figure 1A 

and B). Table 2 shows the top 50 drugs in the HPRD network. 

Some drugs are existing anticancer drugs. For example, 

Birsu et al21 found that after hesperidin treatment, NSCLC-

derived A549 cells exhibited decreasing cell proliferation and 

increasing caspase-3 and other apoptosis-related activities. 
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Interestingly, we found that atracurium, one of the top 

ranked drugs, had not been reported to have therapeutic 

effects on LUAD. Atracurium is a nondepolarizing skel-

etal muscle relaxant. Its cis-isomer cisatracurium besylate, 

which was also identified as a top ranked drug, is known 

to have a favorable safety profile with respect to the induc-

tion of histamine release.22 The effects of these drugs on 

cancer have not been widely studied. But Yabasin et al had 

indicated the anticancer effect of cisatracurium besylate on 

lung cancer cells (A549) in vitro.22 Xu et al23 reported that a 

mutation in CHRNA2, the target of atracurium and cisatra-

curium besylate, was related to salivary gland carcinomas. 

Furthermore, due its unique liver- and kidney-independent 

degradation, atracurium might be a potential chemothera-

peutic drug in clinic due to its safety.24 However, to our 

knowledge, there were no direct reports about atracurium and 

LUAD. To investigate the effects of atracurium on LUAD, 

the A549 cells were treated with different concentrations 

(10, 50, 100, 150, or 200 µg/L) of atracurium, and we found 

that cell growth was inhibited in a dose-dependent manner 

(Figure 3A). Furthermore, the results of AO/EB staining 

and electron microscopy showed that atracurium induces 

a substantial number of apoptotic cells (Figure 3B and C), 

suggesting that atracurium might have a potential therapeutic 

effect on LUAD.

To further detect the mechanism of atracurium-induced 

A549 cell apoptosis, we extracted the top five neighbor 

nodes of CHRNA2, the target of atracurium, in the HPRD 

network, and then mapped the DEGs to this subnetwork 

(Figure 4A). We found that there were many apoptosis-

related genes (eg, TP53 and BAX) between CHRNA2 

and DEGs (Figure 4B), indicating that atracurium might 

directly/indirectly affect apoptosis signaling pathways 

(Figure 4C). To test this, Western blot was used to deter-

mine the level of some key proteins, including Bax, Bad, 

p-Bad, Bcl-2, p53, and p21Cip1/Waf1. Caspase-3 activity was 

also tested. It was reported that Bax, Bcl-2, and caspase-3 

play key roles in apoptosis.25 The upregulation of Bax and 

downregulation of Bcl-2 and the increasing ratio of Bax/

Bcl-2 and caspase3 activity were reported to trigger apop-

tosis.26 The results showed that the level of Bcl-2 protein 

after atracurium treatment was significantly lower than 

in the control group (P,0.05), whereas the level of Bax 

protein was significantly higher than in the control group 

(P,0.05). The ratio of Bax/Bcl-2 significantly increased; 

also, the caspase-3 activity was significantly increased 

(Figure 5A–C). These data indicate that the caspase-3-

dependent apoptotic signaling plays an essential role in the 

apoptotic effects of atracurium. 

We also examined the levels of p53 and p21Cip1/Waf1. 

Recent studies revealed that p53/p21 pathway mediates 

lung cancer A549 cells apoptosis.27,28 Our Western blot 

assay showed that the levels of p53 and p21Cip1/Waf1 were 

significantly augmented in the atracurium group compared 

with the control group (Figure 5D and E), suggesting that 

apoptotic effects on A549 cells are largely mediated through 

p53-dependent pathways.

Conclusion
We implemented drug repositioning for LUAD by random 

walking the PPI network. From the top ranked drugs, we 

demonstrated that atracurium could induce apoptosis in A549 

human lung cancer cells and the apoptotic effect of atracu-

rium on A549 cells might be mediated via the modulation 

of caspase-3, p21, and p53 activities. Though more in vitro 

and in vivo studies are needed to establish the antitumor 

activity and mechanisms of atracurium, our findings provide 

fundamental insight of the usefulness of atracurium in human 

lung cancer therapy.
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