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Abstract: Most organisms display endogenously produced rhythms in physiology and behavior 

of ~24 hours in duration. These rhythms, termed circadian rhythms, are entrained to precisely 

24 hours by the daily extrinsic light–dark cycle. Circadian rhythms are driven by a transcrip-

tional–translational feedback loop that is hierarchically expressed throughout the brain and 

body; the suprachiasmatic nucleus of the hypothalamus is the master circadian oscillator at 

the top of the hierarchy. Precise timing of the circadian clocks is critical for many homeostatic 

processes, including energy regulation and metabolism. Many genes involved in metabolism 

display rhythmic oscillations. Because circadian rhythms are most potently synchronized with 

the external environment by light, exposure to light at night potentially disrupts circadian 

regulation. Other potential disruptors of circadian organization include night shift work, social 

jet lag, restricted sleep, and misaligned feeding. Each of these environmental conditions has 

been associated with metabolic changes and obesity. The goal of this review is to highlight how 

disruption of circadian organization, primarily due to night shift work and exposure to light at 

night, has downstream effects on metabolic function.
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Introduction
The prevalence of obesity and metabolic diseases has been increasing since the late 20th 

century, despite major efforts in raising public health awareness. More than two-thirds of 

Americans are considered overweight and obese (body mass index [BMI] >25 and >30, 

respectively).1 Estimates of global obesity prevalence are about half this rate, but are no 

less susceptible to these dramatic increases, nearly doubling since 1980.2,3 In addition 

to overall increased mortality, obesity is associated with the development of diabetes, 

cardiovascular diseases, certain cancers, reproductive dysfunction, as well as depression; 

all of these adverse health outcomes contribute to the increasing health care costs.4–16  

Although obesity is considered to be the result of an energy imbalance, genetics 

and environmental factors play a role in affecting the magnitude of obesity in individu-

als.17–19 The increased availability of food, especially calorie-dense foods, and shift 

toward a more sedentary lifestyle are considered primary contributors to obesity, but 

do not account for all the environmental changes that have occurred during the past 40 

years. The rise of industrialization in the 20th century has increased human productivity, 

with the advent of electrical lighting to extend the workday, allow night shift work, as 

well as other social activities, to occur during the night. However, this technological 

intervention was accepted prior to a modern understanding of the circadian system and 
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the detrimental effects of circadian disruption on physiology, 

behavior, and health. 

Circadian rhythms are approximately, but not exactly, 

endogenous 24-hour rhythms in behavior and physiology 

that are synchronized to precisely 24 hours by the environ-

mental day–night cycle. A functional and synchronized, 

or entrained, circadian system maintains homeostasis and 

temporally compartmentalizes energetically incompatible 

processes in order to maximize physiological efficiency. The 

circadian clock is deeply involved in maintaining metabolic, 

endocrine, and immunological homeostasis. It is therefore not 

unexpected that disrupting synchronizing signals would have 

severe consequences on metabolic functions. Many facets of 

an urban lifestyle exist in opposition to circadian synchrony: 

shift work, physical jet lag, social jet lag, exposure to light 

at night, sleep restriction, and misaligned feeding. Each of 

these environmental conditions have been associated with 

metabolic alterations. 

This review highlights the associations between circadian 

disrupting lifestyle changes that have come about over the 

past century and their impact on metabolic functions. First, 

it provides a brief introduction to the circadian system. 

Then, it explores the influence of the circadian system on 

metabolism and reciprocal feedback from metabolic cues. 

Next, it presents insights gathered from experimental models 

of circadian disruption, namely forced desynchrony, light at 

night, and misaligned feeding and compares these findings 

with clinical and epidemiological data. Finally, the directions 

for future research are proposed. 

Circadian rhythms
Circadian rhythms are a highly conserved system that 

maintains homeostasis by anticipating daily environmental 

changes. The suprachiasmatic nuclei (SCN) are a paired 

structure located in the anterior hypothalamus, which is 

considered the “master clock,” responsible for setting the 

phase of clocks located throughout the body. Timekeep-

ing in the SCN is maintained by an autoregulatory tran-

scriptional–translational feedback loop with a period of 

~24 hours. The precise 24-hour period is imposed by the 

environmental light–dark cycle. Light is the most potent 

synchronizing cue, or zeitgeber, to the SCN. Light stimu-

lates the intrinsically photosensitive retinal ganglion cells 

of the retina, which signal along the retinohypothalamic 

tract to the SCN.20 These signals cause rapid molecular 

changes in the cells of the SCN, altering the phase of the 

transcriptional–translational feedback loop and aligning it 

to the external time of day.21,22

The loop is initiated by proteins, namely circadian 

locomotor output cycles kaput (CLOCK) and brain muscle 

Arnt-like protein 1 (BMAL1). CLOCK and BMAL1 

heterodimerize and drive expression of Period (Per) and 

Cryptochrome (Cry) genes through E-box enhancers. 

PER and CRY proteins form a secondary heterodimer 

that translocates back to the nucleus to inhibit their own 

transcription. This inhibitory arm of the loop is released 

by casein kinases, which tag PER for ubiquitin-mediated 

degradation. In addition to E-box motifs in the Per and Cry 

promoter regions, CLOCK and BMAL1 bind to E-boxes 

in promoter regions of various other genes (reviewed in 

Ko and Takahashi23). 

One such target of CLOCK and BMAL1 are the nuclear 

receptors RAR-related orphan receptor alpha (RORα) 

and reverse-ErbA alpha (REV-ERBα), which enhance 

and repress Bmal1, respectively. This process acts as an 

auxiliary loop to fine-tune the primary loop. In addition 

to functions within the clock, CLOCK and BMAL1 regu-

late the expression of clock-controlled genes.23 Between 

direct targets and downstream effects of cycling clock 

genes, these molecular cycles regulate gene expression in 

various different systems, including, but not limited to, 

metabolism.

Circadian rhythms and metabolism
The SCN comprises the so-called master clock, but all 

cells in the body exhibit circadian rhythms. In mammals, 

it is the sole endogenous clock possessing the ability to be 

reset directly by light; therefore, peripheral clocks must 

rely on neural or humoral signaling from the SCN in order 

to maintain proper alignment with the time of day.24,25 It 

directly innervates local targets within the brain, such as 

the paraventricular nucleus, which through a polysynaptic 

pathway regulates rhythmic expression of melatonin.20,26 

Similarly, SCN-derived vasopressin expressing neurons 

synapse upon the dorsomedial hypothalamus to regulate the 

daily rhythm in corticosterone by upstream regulation of the 

hypothalamus–pituitary–adrenal axis.27,28 These hormones act 

as humoral signals of circadian time to peripheral tissues.29 

SCN connections in the paraventricular nucleus also regulate 

circadian rhythms in autonomic tone. Pre-autonomic fibers in 

the paraventricular nucleus synapse onto metabolic, immune, 

and endocrine tissues driving circadian rhythms in various 

physiological systems.30–37

In addition to these SCN-derived signals, peripheral 

tissues also incorporate signals relevant to their homeo-

static function, such as feeding state and metabolite 
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 abundance.38–41 The liver plays an important role in main-

taining metabolic homeostasis and is under heavy circadian 

control. Approximately 10% of the liver transcriptome and 

20% of the proteome are circadian rhythmic; this stands 

on the higher end of the estimated circadian regulation of 

the mammalian transcriptome.42–47 Most notably, hepatic 

glucose and triglyceride homeostasis, processes linked to 

functional expression of clock genes, are regulated in a 

circadian manner.48–50 

Animal models of circadian gene knockouts have played 

a crucial role in establishing the importance of clock genes 

in maintaining metabolic homeostasis. Knockouts of Clock 

and/or Bmal1 exhibit poor glucose tolerance and insulin 

sensitivity, as well as increased circulating triglycerides and 

cholesterol, and hepatic steatosis.51–54 Loss of the inhibitory 

arm of the feedback loop similarly impairs glucose and lipid 

metabolism. Per-deficient mice exhibit altered lipid metabo-

lism, decreasing body mass, and circulating lipids.55 Muta-

tions in Cry genes impair gluconeogenesis.56 Elimination 

of REV-ERBs impairs lipid homeostasis,57 whereas addition 

of synthetic REV-ERBs to diet-induced obese mice resolves 

hyperlipidemia and hyperglycemia.58 

As a peripheral clock, liver also incorporates external 

signals to determine local time. Food can entrain peripheral 

circadian clocks and food restriction can alter the phase of 

several circadian rhythms including glucocorticoid secre-

tion.59–62 Glucocorticoids can regulate 60% of the circa-

dian transcripts in the liver in the absence of a functional 

SCN.63 Although traditionally considered stress hormones, 

glucocorticoids are primarily mediators of metabolism, 

generally favoring energy storage and fat deposition.64 

High-fat diet consumption, in addition to weight gain, 

disrupts locomotor and molecular circadian rhythms in 

the adipose tissue and the liver.65 Specifically, the function 

of the liver clock is altered by inducing the production 

of additional metabolites in a PPARγ-dependent manner 

and impairing CLOCK:BMAL1 chromatin recruitment.66 

The CLOCK:BMAL1 complex interacts with chromatin 

in a circadian manner through Sirtuin 6 (SIRT6), which 

polarizes transcription toward factors involved in lipid and 

carbohydrate metabolism.67 Sirtuins are NAD+-dependent 

deacetylases that act as integrators of cellular metabolism 

into circadian clock function.68,69 Specifically, SIRT6 is also 

activated by fatty acids, providing additional metabolite 

integration.70 Together, these studies suggest that altered 

glucocorticoid rhythms, feeding patterns, and food type may 

contribute to functional desynchrony between the master 

pacemaker and the liver.

Circadian disruption and 
metabolism
A properly entrained circadian system is central to main-

taining metabolic homeostasis; it is therefore not unex-

pected that poor circadian hygiene alters metabolism. 

Although clock gene mutations have been associated with 

obesity, the majority of the population does not possess 

these mutations. Instead, modern society participates in 

lifestyles that are incongruent with entrainment to the 

natural lighting environment.71,72 Disruption of entrain-

ment occurs by shifting work schedules (shift work), travel 

and social life (physical and social jet lag), food intake 

(misaligned feeding) late into the night, or exposure to 

light late into the night (light at night), all of which have 

been on the rise during the past century and have been 

associated with adverse health outcomes. In the follow-

ing sections, experimental, clinical, and epidemiological 

studies implicating circadian disruption in the global rise 

in obesity are discussed.

Circadian desynchrony
Experimentally, forced desynchrony exposes an animal to a 

photoperiod, or day length, longer or shorter than the natural 

day, or forcibly shifts activity patterns to the inactive phase. 

Exposure to a 20-hour light/dark cycle, incongruous to the 

natural 24-hour period, results in increased body mass, hyper-

leptinemia, and hyperinsulinemia independent of changes 

in circulating glucocorticoids.73 Chronic phase advances 

increase body mass, fat mass, adipocyte size, and circulat-

ing triglycerides.74 Forced activity during an 8-hour window 

of the inactive phase increases body mass, flattens glucose 

rhythms, alters glucose tolerance, shifts the peak in serum 

triglycerides to the daytime, and overall alters rhythmicity in 

the hypothalamus and the liver.75–77 Nighttime food restric-

tion in rats exposed to this forced activity protocol restores 

glucose rhythms and baseline body mass.75 

Approximately 20% of the global population works in 

night shifts, forcing individuals to be physically, mentally, 

and metabolically active out of circadian phase. Shift work 

has been associated with increased prevalence for obesity, 

diabetes, systemic inflammation, and other metabolic co-

morbidities.78–85 Human participants exposed to a forced 

desynchrony protocol display hyperglycemia, insulin resis-

tance, poor glucose tolerance, increased arterial pressure, 

and reversed cortisol rhythms when they are ~12 hours out 

of phase with the environmental light–dark cycle.86 The 

12-hour phase shifts also increase blood pressure, C-reactive 

protein, and inflammatory mediators and decrease vagal tone, 
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all contributing to increased cardiovascular disease risk.87 To 

replicate the multimodal disruption induced by shift work, 

Buxton et al subjected healthy adults to a combined sleep 

restriction and circadian disruption protocol for 3 weeks.88 

This challenge reduced metabolic rate and induced postpran-

dial hyperglycemia due to hypoinsulinemia. 

Jet lag occurs when a person travels rapidly over multiple 

time zones leading to a discrepancy between internal time and 

the external light–dark cycle. People who experience repeated 

shifts across time zones exhibit increased serum cholesterol.89 

Social jet lag, on the other hand, is the discrepancy that occurs 

between circadian time and social schedules, which results 

in circadian disruption and often sleep loss. Social jet lag is 

associated with increased BMI, independent of sleep dura-

tion.90 In a cohort of specifically nonshift workers, individu-

als with higher social jet lag scores (greater discrepancy) 

had higher BMI and fat mass and were more likely to have 

metabolic syndrome. Additionally, social jet lag was also 

associated with indicators of inflammation and diabetes in 

“metabolically unhealthy” obese participants.91 Delaying bed-

time by 8.5 hours for 4 days decreases insulin sensitivity and 

inflammation.92 Endocrine rhythms, specifically leptin and 

melatonin, are depressed in night active individuals, defined 

as having an average sleep onset of 01:30 hours relative to 

22:30 hours in control participants.93

Delayed feeding
Food can act as an entraining cue to the liver clock, which has 

been established as central to metabolic homeostasis. Delayed 

food consumption or feeding during the inactive phase has 

been associated with increased weight and metabolic dys-

function. Restriction of feeding to the inactive phase, during 

the light phase in nocturnal rodents, increases body mass, fat 

mass, and liver clock gene profile.75,76,94 When compounded 

with a high-fat diet, mice develop obesity, altered circadian 

endocrine, and locomotor profiles.60,95–97 Restricting high-fat 

diet consumption to the active phase, in contrast, can protect 

against reduced clock gene amplitude, weight gain, and 

metabolic disease.98–100

Delayed eating in humans is associated with increased 

risk of obesity. An extreme example of delayed eating is 

called night eating syndrome, a clinical manifestation of a 

shift in nighttime food consumption. Night eating syndrome 

is defined by nighttime hyperphagia and awakenings to eat. 

Night eating syndrome is associated with an increased risk 

of obesity, dampened or phase delayed diurnal endocrine 

rhythms, and a shift in metabolism toward carbohydrate 

oxidation suggesting altered metabolic function.101

In otherwise healthy individuals, nighttime eating is asso-

ciated with increased calorie consumption and weight gain.102 

This weight gain phenotype is supported by a shift toward 

carbohydrate oxidation and away from lipid oxidation, as 

well as increased low density lipoprotein (LDL), suggesting 

increased circulating cholesterol.103,104 Nighttime eating also 

confers postprandial hyperglycemia and hyperinsulinemia 

and a loss of association between plasma glucose and insulin 

concentrations.93 In a study on eating patterns, more than a third 

of food intake occurred after 18:00 hours, with half the partici-

pants eating over the course of >14 hours a day.105 Overweight 

individuals exhibiting this eating patterns reduced weight when 

food intake was restricted to a self-determined 10-hour window. 

Light at night
As mentioned earlier, light is the most potent cue to the 

circadian system. Exposure to constant light desynchro-

nizes locomotor and temperature rhythms in rodents. Mice 

exposed to constant light experience increased body mass and 

impaired glucocorticoid rhythmicity, glucose processing, and 

insulin sensitivity.94,106 These metabolic alterations are asso-

ciated with elevated food intake during the inactive phase. 

Exposure to constant light also causes circadian arrhythmia 

and desynchronizes SCN neuronal networks.106,107 

Nightly exposure to dim white light, in contrast to con-

stant light, does not induce locomotor or glucocorticoid 

arrhythmicity.94,108 Nonetheless, light levels as low as 5 lux 

induce changes in central and peripheral clock gene expres-

sion. Specifically, amplitude of Bmal1, Per1,2, Cry1,2, and 

REV-ERB-α gene expression rhythms are dampened in the 

liver in response to exposure to dim light at night.108 Mice 

exposed to dim light at night experience increased body 

and fat mass, as well as impaired glucose processing with 

no change in locomotor activity.94 Much of this metabolic 

phenotype is attributed to increased food intake during the 

inactive phase. Light at night has additive effects on weight 

gain induced by high-fat diet and contributes to the inflam-

matory pathology of obesity.109 Much like misaligned feeding 

models, changes in metabolism are reversed by restricting 

food intake to the active phase and engaging in locomotor 

exercise.94,110 Additionally, return to a dark night environment 

resolves weight gain and glucose tolerance within 3 weeks.111 

Among humans, recent epidemiological data have begun 

drawing a connection between nighttime light exposure and 

body mass. Over 99% of the population of the United States 

and Europe are exposed to nighttime light. In a study of 

100,000 women in the UK, the chances of obesity increased 

with elevated levels of exposure to light at night.112 Obesity 
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was assessed by BMI, waist:hip and waist:height ratios, and 

waist circumference, independent of sleep duration. In elderly 

individuals, exposure to >3 lux of light was associated with 

higher body weight, BMI, and waist circumference, as well 

as hyperlipidemia.113

Sleep restriction
Sleep is strongly regulated by the circadian system, but can 

also have important feedback effects on circadian functions. 

Disrupted sleep can impair energy metabolism (reviewed in 

Laposky et al114), and conversely obesity and leptin deficiency 

disrupt sleep.115,116 Total sleep restriction does induce changes 

in metabolism but has paradoxical effects on weight.117,118 

Additionally, total sleep restriction alters glucose, triglyc-

eride, and adipokine expression.119 Animal models of shift 

work employ timed sleep restriction, which increases inac-

tive phase locomotor activity, food intake, and clock gene 

expression. Mice exposed to timed sleep restriction experi-

ence increased body mass, despite impaired gluconeogenesis 

and decreased circulating triglycerides.120 This phenotype is 

blunted in mice unable to express Per1/2, suggesting their 

involvement and the necessity of a functional clock.121

Approximately 30% of adults report short sleep durations 

(<6 hours per night); the prevalence of people experiencing 

reduced sleep duration has increased substantially since 1985.122 

Short sleep duration has also been associated with increased 

risk for obesity,123,124 increased BMI, and altered metabolic 

endocrine profile.125–127 Experimental sleep restriction to <5 

hours a night increased body mass gain by increasing nighttime 

intake of calories derived from fat.128 Similar sleep restriction 

also increases glucose, insulin, cortisol, and leptin, induces 

insulin resistance in adipocytes, and decreases whole body 

insulin sensitivity and glucose tolerance, suggesting a functional 

impairment of carbohydrate  metabolism.129–132 This metabolic 

endocrine disruption is exacerbated by increased sympathetic 

tone, and altered circadian rhythm in cortisol secretion, which 

occurs independent of changes in adrenocorticotropic hormone 

(ACTH), suggesting a deficit at the adrenal level. 129,133

Conclusion
The past century has been a time of booming advances in 

technology and industrialization bringing about benefits to 

productivity, efficiency, safety, and convenience. Unfortu-

nately, this has come at a cost to the signals necessary to 

maintain circadian and physiological homeostasis. During 

the past decade, experimental and epidemiological studies 

have suggested detrimental effects of circadian disruption on 

lipid and carbohydrate metabolism, obesity, and metabolic 

dysfunction. Delayed feeding, exposure to light at night, and 

sleep disruption seem to converge in shift workers, producing 

the most dramatic increases in obesity in epidemiological 

studies. Individually, these disruptors are much more com-

monly experienced in the population and have been tied to 

metabolic disruption. Data from animal studies offer some 

insight into the mechanisms that may mediate these changes. 

At the level of the circadian clock, disruption of synchro-

nizing signals impair entrainment and abolish rhythmic and 

functional endocrine responses; glucose and insulin become 

uncoupled or insulin sensitivity is abolished, and leptin and 

glucocorticoids no longer exhibit rhythms. In addition to 

central disruption, peripheral clocks lose a functional signal 

of time of day. Within the liver, a critical organ for maintain-

ing lipid and carbohydrate metabolism, this can eliminate 

temporal compartmentalization of metabolite production, 

leading to impaired energy allocation and fat deposition. 

Circadian disruption also is associated with inflammation, 

both centrally and in the periphery, further exacerbating 

associated metabolic and cardiovascular diseases.109,134

Although much research has been conducted associating 

circadian disruption and obesity, the mechanisms by which 

these phenomena are linked remain unspecified. It seems that 

disruption of peripheral clocks, by targeted gene knockouts 

to the liver or pancreas, dim light at night, and restricted 

feeding, is sufficient to recapitulate the weight gain and 

metabolic disruption exemplified in epidemiological data. But 

central disruption can also play a role in mediating weight 

gain phenotypes. The disruption in endocrine function can 

be both downstream of weakened central circadian cues and 

upstream of peripheral disruption, as exemplified by gluco-

corticoid secretion. Despite an unclear etiology, many of 

these models show that metabolic shifts toward obesity can 

be ameliorated when individuals are returned to conditions 

of good circadian hygiene; that is, feeding restricted to the 

active phase, return to dark nights, >8 hours of sleep a night, 

as well as exercise. 

There is now substantial evidence that circadian disrup-

tion affects human health. Promoting awareness of circadian 

biology and the consequences of poor circadian hygiene 

in both the scientific community and the general public 

are important for improving human health. Reduction of 

exposure to short wavelength light (blue) at night is consis-

tent with good circadian hygiene. Obesity rates have also 

increased among human companion animals and laboratory 

animals. For example, laboratory animals have inexplicably 

become obese over the past 30 years.135 Perhaps reducing 

nighttime light exposure in animal colony rooms (typical 
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sources include glass windows on doors, ventilated racks, 

etc) could improve lab animal housing conditions and make 

research outcomes more consistent. Similarly, exposure to 

their human companions’ nighttime lighting or late feeding 

times may be contributing to the increasing obesity rates 

among companion animals.  

Future research should establish the pathways through 

which light exposure alters circadian clock genes and deter-

mine the elements of this pathway that are crucial for inflam-

mation and metabolic disruption. Very few clinical studies 

assessing the effects of nighttime light exposure exist. Future 

clinical studies should evaluate the effects of different light 

levels in home environments, as well as nursing homes and 

hospitals where people may be particularly vulnerable to the 

negative effects of circadian dysregulation. Development of 

lighting parameters that do not derange circadian organiza-

tion is critical for human and nonhuman animal health.  
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