
© 2016 Liu and Chang. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php  
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you 

hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission 
for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

OncoTargets and Therapy 2016:9 5701–5711

OncoTargets and Therapy Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
5701

M e T h O d O l O g y

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/OTT.S113281

Identifying module biomarkers from gastric cancer 
by differential correlation network

Xiaoping liu1–3,*
Xiao Chang1,3,*
1College of Statistics and Applied 
Mathematics, Anhui University of 
Finance and economics, Bengbu, 
Anhui Province, People’s Republic of 
China; 2Key laboratory of Systems 
Biology, Shanghai Institutes for 
Biological Sciences, Chinese Academy 
of Sciences, Shanghai, People’s 
Republic of China; 3Collaborative 
Research Center for Innovative 
Mathematical Modeling, Institute of 
Industrial Science, University of Tokyo, 
Tokyo, Japan

*These authors contributed equally 
to this work

Abstract: Gastric cancer (stomach cancer) is a severe disease caused by dysregulation of many 

functionally correlated genes or pathways instead of the mutation of individual genes. Systematic 

identification of gastric cancer biomarkers can provide insights into the mechanisms underlying 

this deadly disease and help in the development of new drugs. In this paper, we present a novel 

network-based approach to predict module biomarkers of gastric cancer that can effectively 

distinguish the disease from normal samples. Specifically, by assuming that gastric cancer has 

mainly resulted from dysfunction of biomolecular networks rather than individual genes in an 

organism, the genes in the module biomarkers are potentially related to gastric cancer. Finally, 

we identified a module biomarker with 27 genes, and by comparing the module biomarker with 

known gastric cancer biomarkers, we found that our module biomarker exhibited a greater ability 

to diagnose the samples with gastric cancer.
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Introduction
Gastric cancer (stomach cancer), the second most deadly cancer around the world,1 

is prevalent in East Asia, Eastern Europe, and Central and South America. In the US, 

about 21,500 cases of gastric cancer were diagnosed in 2008.2 However, the mechanism 

of gastric cancer is not yet clear. Systematic identification of gastric cancer genes can 

provide insights into the process of tumorigenesis of this deadly disease. Here, cancer-

related genes refer to those genes the dysfunctions or mutations of which are causally 

implicated in cancer.3 However, it is now a well-recognized fact that cancer is not 

caused by individual genes but by an entire system or network, which involves many 

correlated genes and dynamic processes. The procedure of identifying cancer-related 

genes through biological experiments is notoriously difficult and time-consuming.3,4 

Nowadays, many computational methods are available to predict cancer-related 

genes,5,6 most of which focus on the differential expression of genes and static regulation 

relations between genes7,8 while ignoring the dynamic regulations or network rewiring 

between molecules at different disease stages. So a dynamic method that depicts the 

dynamic variety of regulation between molecules will uncover crucial information that 

cannot be detected in static conditions.9,10 Generally, the regulations or interactions 

between molecules change dynamically at different times or in different tissues, which 

are causally related to the disease progression. As the regulations between molecules 

are changed at different times or in different tissues, these molecules, which interact 

with different targets on the molecular interaction network, will show a potential cor-

relation with the disease. Therefore, new potential cancer genes can be detected by 

taking into account the dynamic regulations and network rewiring between molecules, 
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which may have been ignored when investigating differential 

expressions only9,10 in the previous studies.

In this paper, a novel network-based approach is pre-

sented to predict gastric cancer genes by investigating 

dynamic interactions and network rewiring between mole-

cules. In particular, we assume that the dysfunction or net-

work rewiring of the correlation networks found in people 

suffering from cancer is possibly related to tumorigenesis 

or carcinogenesis. Utilizing gene expression to filter genes 

expressing differently for recognizing rewired networks can 

improve the power of distinguishing between the normal 

and cancer samples. As results, we predict 27 gastric cancer 

genes based on analysis of microarray data of 160 clinic 

samples. Moreover, results with these 27 genes on three 

independent validation datasets demonstrate that these 

genes can be used as effective biomarkers to detect gastric 

cancers efficiently.

Materials and methods
Gene expression profiles, correlation 
coefficient, and differential expression
The gene expression profiles for gastric cancer were obtained 

from the Gene Expression Omnibus (GEO) database 

(ID: GSE27342). It contains 160 samples from 80 cancer 

tissues and their adjacent noncancerous tissues of 80 non-

treated gastric cancer patients. All gene expression profiles 

were normalized by the robust multiarray averaging (RMA) 

method and the probe sets were mapped to the corresponding 

gene symbols, omitting the nonmapped probe sets. The 

expression value of a gene symbol was calculated by averag-

ing the expression values of probe sets of this gene symbol. 

The clinic information for the stage status of samples. The 

information about stage of gastric cancer was obtained from 

the original paper of the dataset.11 Since there were fewer 

samples in Stage I and II than the other stages, the four 

stages of expression profiles were combined into three phases 

(Table 1). So, we considered that there were eleven samples 

in the early phase of gastric cancer from the combination 

of Stage I and II, 54 samples in the middle phase of gastric 

cancer from stage III, and 15 samples in the late phase of gas-

tric cancer from stage IV (Table 1). The information for the 

patients was also included in Table 1. The human network was 

constructed by calculating the Pearson correlation coefficient 

(PCC) between any two genes in the dataset; each P-value 

of PCC was corrected by the false discovery rate (FDR) 

and the gene pairs with corrected P-value of PCC ,0.05 

were chosen as the edges of the correlation network. In 

contrast, if the corrected P-value of PCC for the gene pairs 

was .0.05, the edges for the gene pairs were ignored in the 

correlation network. The differentially expressed genes were  

tested by the P-value of Student’s t-test between normal and 

cancer samples. If the P-value of a gene for Student’s t-test 

was ,0.05, then the gene would be considered as a differ-

ential expressed gene between normal and cancer status. If 

the P-value of a gene for the Student’s t-test is more than 

0.05, then the gene would be considered as a non-differential 

expressed gene between normal and cancer status.

For calculating the PCC and Student’s t-test, a free 

package named “scipy” (https://www.scipy.org/) for python 

programming language (https://www.python.org/) was 

employed, and it calculated the P-value of PCC and t-test. 

The FDR correction for P-value was done by the “stats” 

package in R programming language.12

differential network and candidate 
biomarker genes
The gene expression profiles were divided into three phases 

based on the stages of gastric cancer, as shown in Table 1; 

in every phase, the gene expression profiles were divided 

into two groups of normal and cancer, and each group only 

contained normal or cancer samples in this phase. The cor-

relation coefficient of each interaction within the correlation 

network was calculated based on the samples of every group. 

The highly correlated edges were reserved, and lowly cor-

related edges were deleted. The highly correlated edges were 

able to identify the interactions among nodes at the corre-

sponding phenotypes. The correlation network was rewired 

based on these highly correlated edges from the normal and 

cancer samples individually. The new correlation networks 

were called network in normal and network in cancer, and 

are shown in Figure 1. The correlation coefficient threshold 

value was set to FDR corrected P-value #0.05, and was 

used to divide the highly correlated edges and lowly cor-

related edges. The context-specific network will only keep 

the highly correlated edges in the network. The differential 

network between normal and cancer samples could show the 

dynamic changes of interactions between the two samples. 

Table 1 Stages and phases of 160 clinical samples

Characteristics Number of samples Phases

Stages (n=80)
I 4 early phase
II 7
III 54 Middle phase
IV 15 late phase

Note: n is the number of samples in each group.
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The normal-specific and cancer-specific networks were 

individually built by removing the common edges of corre-

lation network in normal and cancer status. The differential 

networks were formed to combine the normal-specific and 

cancer-specific networks (Figure 1).

Every edge in the differential network represents the 

dynamic interaction between the normal and cancer samples, 

and the edges in the differential network only appear at one 

phenotype of normal or cancer samples. The disease-related 

genes were the common genes in both the normal-specific 

and cancer-specific networks. These genes appear in both 

normal-specific and cancer-specific network. It is highly 

possible that these genes play crucial roles in the transforma-

tion from normal to cancer status. Then, the differentially 

expressed genes were detected by P-value of 0.05 obtained 

by Student’s t-test, and the genes in the differential network 

were filtered by the differential expressed genes to obtain the 

potential biomarker genes or module biomarkers for each 

phase (Figure 1). The common members of the intersection 

genes at the three phases of gastric cancer were obtained and 

regarded as candidate biomarker genes or module biomark-

ers (Figure 2). The candidate biomarker genes or module 

biomarkers stably appear in the differential network of every 

phase and always connect with both normal-specific and 

cancer-specific networks, and these indicate their important 

dysfunctions from normal to cancer status.

Candidate biomarker genes as module 
biomarker
The expression profiles of candidate biomarker genes were 

used to test the classification ability for normal and cancer 

phenotypes. We used a support vector machine (SVM) 

regression method to implement the classification. Given a 

set of training gene expression samples, each categorized as 

normal or cancer, SVM classifier builds a model to predict 

whether a new sample falls into normal or gastric cancer 

phenotypes. Receiver operating characteristic (ROC) curve 

and area under the curve (AUC) were used to show the 

classification efficiency. Furthermore, the two independent 

datasets of the human gastric tumor were also utilized to 

check the results of classification in these candidate biomarker 

genes. Two R12 packages “kernlab” and “ROCR” were used 

to implement the SVM classifier and produce the ROC curve 

with default parameters. Other three microarray datasets 

(GSE19826, GSE13911, and GSE2701) and RNA-Seq data-

sets (The Cancer Genome Atlas [TCGA]) for gastric cancer 

were chosen for validating the ability of classification for the 

module biomarkers to distinguish the gastric cancer sample.

Figure 1 Schematic flowchart of identifying potential genes based on differential correlation network and gene expression for each phase.
Notes: The threshold for high correlation was set to FdR corrected P-value of 0.05. “Remove common edges” means removing the interactions that appear in both normal 
and cancer network, and “differential expression between normal and cancer” means identifying the differentially expressed genes between normal and cancer with P-value 
0.05 by Student’s t-test.
Abbreviation: FdR, false discovery rate.
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Results
Identification of differential correlation 
network and gastric cancer genes
Figure 1 shows the flowchart of our method. All samples 

were separated into three phases according to their 

descriptions (Table 1). The normal- and cancer-specific 

correlation networks were constructed in each phase based 

on the gene expression data and human correlation net-

work (the details can be found in Materials and methods), 

respectively, where the common edges between the nor-

mal and cancer networks were removed. The differential 

network was obtained by merging the normal-specific 

and cancer-specific networks in the corresponding phase, 

which included the edges that occurred only in normal- or 

cancer-specific networks. As a result, only those genes 

that have edges in the differential network and are dif-

ferentially expressed in both normal and cancer samples 

are regarded as potential gastric cancer genes in every 

phase. Furthermore, the differentially expressed genes 

between normal and cancer status were used to filter the 

genes in the differential network, because the differentially 

expressed genes showed greater ability for distinguishing 

the phenotype. Finally, the genes that occurred in all three 

phases were treated as our final predicted gastric cancer 

biomarker genes. In this study, 27 genes were predicted 

as gastric cancer biomarker genes. These 27 gastric cancer 

biomarker genes appear in every phase of gastric cancer 

but interact with different partners (Figure 3). The simple 

functional analysis of these biomarker genes in PANTHER 

database was shown to be associated with the cellular, 

Figure 2 Schematic flowchart of identifying candidate biomarker genes or module biomarkers for gastric cancer.
Note: The overlapped genes of the potential biomarker genes or module biomarkers in the three phases were the candidate biomarker genes or module biomarkers for 
the method.
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metabolic, and developmental processes (Figure 4). Fur-

thermore, the function annotations were conducted for the 

candidate biomarker genes by further analysis of DAVID 

database13 (Table 2). From gene functions, we could see 

that some of the candidate biomarker genes had been 

reported to play an important role in tumorigenesis. For 

example, MCM3, which encodes one of mini-chromosome 

maintenance proteins and is involved in the initiation 

Figure 3 (Continued)
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Figure 3 The correlation network involving our predicted module biomarkers and their corresponding interaction partners (first neighbors) in different cancer phases.
Notes: (A) Normal specific network, (B) early phase-specific network, (C) middle phase-specific network, and (D) late phase-specific network.
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of genome replication, is involved in gastric, lung, and 

kidney cancers,14 and CHK1, which encodes a Ser/Thr 

protein kinase and works for checkpoint-mediated cell 

cycle arrest, is involved in breast 15 and ovarian cancers.16 

The functional enrichments of the module biomarkers 

were involved in mitosis and cell cycle phase (Table 3) 

according to gene ontology analysis in two web services 

Gene Ontology Consortium (http://geneontology.org/

page/go-enrichment-analysis) and g:Profiler (http://biit.

cs.ut.ee/gprofiler/), and the major functions in which the 

module biomarkers were involved were associated with 

cancer processes.

In addition, the network that contained the candidate 

marker genes and their interaction partners built in each 

phase was constructed (Figure 3). Network ontology 

analysis (NOA),17 which annotates biological networks, 

was used to analyze the enriched functions of the network 

in every phase. The results of NOA are shown in Table 4. 

In the normal status, the functions are enriched in signaling 

pathway, while in the early phase, the functions are enriched 

in nucleic acid-related metabolic process. The functions 

of the network change to nuclear division and response to 

stimulus in the middle and late phase, respectively. The func-

tional annotations of the network in each phase demonstrate 

clearly that the identified cancer genes function reasonably 

and their changes reflect the dynamic transition between 

different stages and transcription, which is an important 

marker of a cancer cell.

Figure 4 Pie chart of the functional enrichment distribution for the module biomarkers.
Note: This figure showed the distribution of functional enrichment for the module biomarkers based on the biological process of gene ontology analysis.

Table 2 gene symbols and functional annotations of candidate 
cancer genes

Gene symbols Function annotation in publication

FAM72B Family with sequence similarity 72 member B
MCM4 Mini-chromosome maintenance complex 

component 4
PLOD3 Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3
CDC45L Cell division cycle 45
ATP4A ATPase h+/K+ transporting alpha subunit
CHEK1 Checkpoint kinase 1
CPA2 Carboxypeptidase A2
RCC2 Regulator of chromosome condensation 2
MIER2 MIeR family member 2
LRAT lecithin retinol acyltransferase 

(phosphatidylcholine–retinol O-acyltransferase)
YEATS2 yeATS domain containing 2
MCM3 Mini-chromosome maintenance complex 

component 3
KIF2C Kinesin family member 2C
COL5A2 Collagen type V alpha 2
FBXL13 F-box and leucine-rich repeat protein 13
NUF2 NUF2, NdC80 kinetochore complex component
ESPL1 extra spindle pole bodies like 1, separase
BIRC5 Baculoviral IAP repeat containing 5
CKMT2 Creatine kinase, mitochondrial 2
ELK1 elK1, member of eTS oncogene family
NDC80 NdC80 kinetochore complex component
CCT5 Chaperonin containing TCP1 subunit 5
COL12A1 Collagen type XII alpha 1
FANCB Fanconi anemia complementation group B
PON2 Paraoxonase 2
JTV1 Aminoacyl tRNA synthetase complex-interacting 

multifunctional protein 2
BUB1 BUB1 mitotic checkpoint serine/threonine kinase

Note: The basic functional annotations of the 27 candidate biomarker genes were 
from the NCBI database.
Abbreviations: ETS, E26 transformation-specific; NCBI, National Center for 
Biotechnology Information.
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Table 3 Functional enrichment of the module biomarkers by gene ontology

Gene ontology consortium g:Profiler

GO item Functions P-value GO item Functions P-value

gO:0098763 Mitotic cell cycle phase 2.99×10−7 gO:0007067 Mitotic nuclear division 8.85×10−5

gO:0022403 Cell cycle phase 3.17×10−7 gO:0007059 Chromosome segregation 9.90×10−5

gO:0051322 Anaphase 5.25×10−6 gO:1903047 Mitotic cell cycle process 1.18×10−4

gO:0000236 Mitotic prometaphase 1.48×10−5 gO:0000280 Nuclear division 6.17×10−4

gO:0000087 Mitotic M phase 4.81×10−5 gO:0051301 Cell division 2.80×10−3

Note: Top five function enrichment in gene ontology.

Table 4 NOA of networks involving candidate biomarker genes

Normal Early phase Middle phase Late phase

Cell cycle heterocycle metabolic process Nuclear division Ion transport
(gO:0007049) (gO:0046483) (gO:0000280) (gO:0006811)
Regulation of cellular process Spindle organization Organelle fission Monovalent inorganic cation transport
(gO:0050794) (gO:0007051) (gO:0048285) (gO:0015672)
dNA replication Small molecule metabolic process Mitosis Response to stimulus
(gO:0006260) (gO:0044281) (gO:0007067) (gO:0050896)

Notes: The table shows the result of NOA for networks composed by the candidate biomarker genes and their directly connected genes. We can see that the network 
functions change from early to late phase of cancer. The three top significant results from NOA are listed in the table.
Abbreviation: NOA, network ontology analysis.

Validation of candidate gastric cancer 
biomarker genes
In order to further validate the predicted gastric cancer genes, 

we applied these genes to separate cancer samples from normal 

samples. Three independent gene expression (microarray) 

datasets (GSE19826, GSE2701, and GSE13911) of gastric 

cancer were obtained from GEO database (http://www.ncbi.

nlm.nih.gov/geo/) to validate the ability of classification of the 

module biomarker. At the same time, an RNA-Seq dataset of 

gastric cancer with 33 normal samples and 183 tumor samples 

was downloaded from TCGA database (http://cancergenome.

nih.gov) to validate the ability of classification for the module 

biomarker on the differential data type. If these genes can 

successfully separate cancer samples from control samples 

for gastric cancer, we predicted that these genes can be 

proven to be related to gastric cancer. We used the five-fold 

cross-validation for SVM to detect the ability of classification 

for our predicted module biomarkers, and the AUC of ROC 

curve can be used to evaluate the ability of classification for 

biomarkers, so we can see that the AUCs of ROC curves for 

three of the four gastric cancer datasets are .0.9 and only 

one AUC is 0.88 for one dataset (Figure 5), and the AUC of 

ROC curves for the RNA-Seq data was also .0.9 (Figure 6). 

It means that our module biomarkers have a strong ability 

to identify gastric cancer and that these biomarker genes are 

strongly related to gastric cancer.

For avoiding the bias of validation of the module bio-

marker, we compared our results with those obtained with 

published biomarker sets for gastric cancer,11 derived from 

the differential expression; a five-fold cross-validation was 

used to evaluate the performance based on different bio-

markers, while SVM was used as a classifier. The ability of 

classification for the two biomarkers to the four microarray 

datasets and one RNA-Seq was performed and the ROC 

curves and AUCs are shown in Figures 5 and 6. The AUC is 

0.888 for the module biomarkers and 0.8648 for the known 

biomarker in Figure 5A, 0.9703 for the module biomarkers 

and 0.9567 for the known biomarkers in Figure 5B, and 

0.9935 for module biomarkers and 0.9748 for known bio-

markers in Figure 6; they showed very similar results for the 

two different biomarkers in Figures 5A, B and 6. It means 

that the module biomarkers and known public biomarkers 

for this dataset, GSE13911 and RNA-Seq datasets, have 

similar ability of classification. The AUC is 0.9933 for the 

module biomarkers and 0.8969 for the known biomarker 

in Figure 5C, and 0.9222 for the module biomarkers and 

0.7889 for the known biomarkers in Figure 5D. Greater 

AUCs were obtained for module biomarkers than known 

biomarkers, as shown in Figure 5C and D, which means 

that module biomarkers showed better effects in the datasets 

GSE2701 and GSE19826. So the ability of classification of 

module biomarkers identified by our study is not worse than 

the known biomarkers for gastric cancer. In most cases, the 

ability of classification of the module biomarkers was better 

than the known biomarkers from differential expression test 

for the gastric cancer dataset.
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Discussion
In this paper, we have proposed a new method to detect 

potential module biomarkers from a variety of network 

topology and gene expression between normal and can-

cer status for gastric cancer. There is a module biomarker 

with 27 genes identified in this study, and this module bio-

marker showed a powerful ability to classify the phenotypes 

between normal and cancer status. In this method, the key 

genes from a variety of network topology can be detected by 

differential correlation network, and then they can be further 

filtered by the differentially expressed genes which are not the 

significant differential expressed between normal and cancer 

status. So the ability of classification of the module biomarker 

would be better than the traditional markers, which only come 

from differentially expressed genes. Although there are only 

27 genes in the module biomarker, many genes in the module 

biomarker are important factors in the development and diag-

nosis of gastric cancer. For example, ATP4A, which encodes 

a proton pump that catalyzes the hydrolysis of ATP coupled 

with the exchange of hydrogen and potassium ions across the 

plasma membrane, is an important serum biomarker for gastric 

cancer18 and plays a critical role in gastric neuroendocrine 

tumor.19 RCC2 is cell cycle gene regulator and can promote 

directional cell migration,20,21 but the aberrant expression of 

RCC2 can confer a growth advantage on tumor cells in gastric 

cancer.22 KIF2C, which encodes a microtubule-dependent 

molecular motor and can depolymerize microtubules at 

the plus end, is overexpressed in human gastric cancer and 

Figure 5 ROC curves obtained with our module markers and published biomarkers.
Notes: (A) The gene expression dataset used to identify differential network, and three independent datasets gSe13911 (B), gSe2701 (C), and gSe19826 (D) that were 
not used in this work.
Abbreviations: AUC, area under the curve; ROC, receiver operating characteristic.
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associated with lymphatic invasion and lymph node metastasis 

in gastric cancer.23 BUB1 is a mitotic checkpoint gene and 

plays an important role at the spindle assembly checkpoint; its 

overexpression is correlated with tumor proliferating activity 

in human gastric cancer.24,25 Most of the other genes in the 

module biomarker have also been reported to play critical 

roles in other tumors or cancers. For example, the MCM4, 

which is one of the mini-chromosome maintenance proteins, 

is also an important factor in the tumor process and can be a 

biomarker in non-small-cell lung cancer.26,27 CDC45L, which 

is an essential protein required for the initiation of DNA repli-

cation, is an important factor in lung cancer and a potentially 

useful target for lung cancer immunotherapy.28 MCM3 and 

CHEK1 are involved in cancer processes.14–16

The P-value of Pearson correlation coefficient was used 

as the threshold for high correlation, because there is a dif-

ferent number of samples in the three phases (eleven samples 

in early phase, 54 samples in middle phase, and 15 samples 

in late phase) of gastric cancer.

All the genes in the module biomarker are differentially 

expressed genes in both normal and cancer samples, so they 

can be used as biomarkers to distinguish the gastric cancer 

samples from normal samples. As these genes fall into the 

same module in the network, they have a better combina-

tion effect on the classification of phenotypes than only 

differentially expressed genes. The results of classification 

show that the ability of classification of the module biomarker 

is similar or better than the known biomarkers from only 

differentially expressed genes, based on microarray data 

from GEO and the RNA-Seq data from TCGA.

In this paper, we obtained a module biomarker with 

27 genes. The 27 genes were from common potential 

biomarker genes of three phases of gastric cancer (Figure 2), 

so there are no stage- or phase-specific biomarker genes 

in the 27 genes. Of course, the method can also be used to 

obtain some stage- or phase-specific biomarker genes for 

gastric cancer.

Conclusion
In this paper, we have proposed a new network-based method 

to detect the module biomarkers for complex disease, and a 

module biomarker with 27 candidate genes was identified for 

gastric cancer. The module biomarker of gastric cancer can 

help to diagnose and treat this deadly cancer efficiently, and 

also shed light on other cancers. Some genes in the module 

biomarkers are known cancer genes and have been reported 

in the literature, eg, ATP4A, MCM3, and CHEK1.

We validated the ability of classification of this mod-

ule biomarker by SVM and the results of AUC showed a 

great ability of this module biomarker to distinguish the 

cancer samples and normal samples in gastric cancer. By 

comparing the ability of classification of known biomarkers 

from differential expression for gastric cancer, the module 

biomarker showed better results for classification of gas-

tric cancer data, and the results showed that the module 

biomarkers are more powerful than the known biomarkers 

in classifying the gastric samples.
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