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Abstract: Osteogenesis imperfecta (OI), commonly known as brittle bone disease, is a genetic 

disease characterized by extreme bone fragility and consequent skeletal deformities. This con-

nective tissue disorder is caused by mutations in the quality and quantity of the collagen that in 

turn affect the overall mechanical integrity of the bone, increasing its vulnerability to fracture. 

Animal models of the disease have played a critical role in the understanding of the pathology 

and causes of OI and in the investigation of a broad range of clinical therapies for the disease. 

Currently, at least 20 animal models have been officially recognized to represent the phenotype 

and biochemistry of the 17 different types of OI in humans. These include mice, dogs, and fish. 

Here, we describe each of the animal models and the type of OI they represent, and present their 

application in clinical research for treatments of OI, such as drug therapies (ie, bisphosphonates 

and sclerostin) and mechanical (ie, vibrational) loading. In the future, different dosages and 

lengths of treatment need to be further investigated on different animal models of OI using 

potentially promising treatments, such as cellular and chaperone therapies. A combination of 

therapies may also offer a viable treatment regime to improve bone quality and reduce fragility 

in animals before being introduced into clinical trials for OI patients.
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Introduction
Osteogenesis imperfecta (OI), commonly known as brittle bone disease, is a genetic 

disorder characterized by extreme bone fragility, even if only exposed to mild trauma. 

The earliest known case of OI to occur in a human was determined by Peter Gray in 

1969 in his analysis of bones of an approximately 3,000-year-old mummified infant.1 

However, it was only in 1788 that OI became recognized as a human disease, when 

it was given its first true pathological description.1 By 1979, researchers had classi-

fied OI into four different types (I–IV), and identified OI I and IV to be caused by an 

autosomal-dominant gene and OI II and III to be caused by an autosomal-recessive 

gene, but the exact gene sequences responsible had not yet been determined.2 Advances 

in the field of genetics have made it easier to characterize genetic sequences, and the 

genes linked to the development of OI have since been identified for all of the four 

originally defined types of OI, in addition to several of the more recently classified 

types.3 This has been a major step in the advancement of clinical treatments for OI, 

as it is easier to identify and generate appropriate animal models for OI research by 

targeting specific genetic defects.
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OI types I–IV
Characteristics in humans
When OI was first categorized into types I–IV, the description 

that was given to type I was “dominantly inherited OI with 

blue sclerae”, and included such characteristics as having a 

history of broken bones from a very young age, bowing of 

long bones in lower extremities, bruising easily, and hearing 

impairment.2 Additional features observed in persons with OI 

I include being of normal height or slightly short in stature 

and not suffering from dentinogenesis imperfecta (DI).4 OI 

II was labeled “lethal perinatal OI with radiographically 

crumpled femora and beaded ribs”, and was characterized 

as being a fatal condition either in utero or shortly after 

birth.2 Features observed in individuals with OI II include 

multiple fractures at birth, obvious deformities, flattened 

long bones, and dark sclerae.3 OI III, referred to as “progres-

sively deforming OI with normal sclerae”, was characterized 

as having normal sclerae, distorted and fragile bones that 

progressively degenerated over time, ligament hypermobil-

ity, and a predisposition to DI.2 Also, individuals with OI III 

tend to be very short in stature and have a triangular face 

and severe scoliosis.3 Finally, OI IV was originally classi-

fied as “dominantly inherited OI with normal sclerae”, and 

had similar defining characteristics to OI I, but with normal 

sclerae, reduced likelihood of spontaneous bone fractures, 

and no hearing loss.2

Therefore, in terms of severity, OI I–IV are ordered 

II>III>IV>I. Although OI I–IV are vastly different in how 

they affect humans, they all have a similar genetic basis.4 

Specifically, OI I is caused by a premature stop codon in 

COL1A1 and OI II–IV are caused by glycine substitutions in 

either the pro-α
1
(I) or pro-α

2
(I) collagen chains of COL1A1 

or COL1A2.3 It has been determined that the phenotypes 

for OI I–IV depend on the location of the mutation in the 

COL1A1 and COL1A2 genes; however, several different 

mutations occurring at different points in the sequence can 

lead to the same phenotype of OI.5

Animal models
Mov-13 mouse: OI I and II
The Mov-13 mouse was first created by blocking transcription 

of the COL1A1 gene by integrating the Moloney leukemia 

virus at the 5′ end of the gene in what was referred to as the 

Mov-13 locus,6 later shown to be the murine equivalent to 

human Col1a1.7 The Mov-13 mutation in mice results in 

a failure to produce type I collagen.8–10 The homozygous 

 (Mov-13-/-) form of this mutation is lethal to mice.6,7,9 

Therefore, the Mov-13-/- mouse is considered a model for 

OI II,11 but unfortunately it is unable to duplicate properly 

the development seen in humans.12

The heterozygous Mov-13 mutation (Mov-13/+) is associ-

ated with a reduced amount of collagen in soft connective 

tissue, increased hearing loss over time, and a substantial 

reduction in both mechanical and material properties of long 

bones similar to that seen in humans affected by OI I.13 A 

disorganized cortical lamellar structure in Mov-13/+ mice has 

been observed,12 with a 22%–25% reduction in tissue-bending 

strength due to disrupted damage accumulation mechanisms 

in Mov-13/+ cortical bone.14 While Mov-13/+ exhibits a 50% 

decrease in type I collagen production, the collagen that is 

produced has normal amounts of both pro-α
1
(I) and pro-α

2
(I) 

chains,13,15 making Mov-13/+ mice a proper model for OI I 

in humans.16

oim mouse: OI I and III
One animal model of OI not created through the process of 

genetic engineering is the OI murine (oim) model. (The other 

five naturally occurring mutations are the G208A Col1a1 

Golden Retriever, Col1a2 frameshift Beagle, SerpinH1 

Dachshund, Chi zebrafish, and Frf-/- zebrafish.) It was pro-

duced in the Jackson Laboratory (Bar Harbor, ME, USA) 

as a result of breeding C3H/HeJ and C57BL/6JLe mice.12 

The mice present a spontaneous mutation in type I collagen 

structure with a deficiency of the pro-α
2
(I) chain, and exhibit 

phenotypic and biochemical features typical of the most 

debilitating, nonlethal forms of OI.12 Characteristics observed 

in the homozygous oim mice (oim/oim) include susceptibil-

ity to fractures from a very young age, severe osteopenia, 

cortical thinning, bowing of long bones, bone deformities, 

joint laxity, small body size, and kyphosis.12 Their bones 

have altered collagen cross-links,17 reduced mineral size and 

heterogeneity,18 reduced lamellar structure,19 and increased 

vascular and osteocyte lacunar density.20 oim/oim bones have 

inferior mechanical properties compared to wild-type (+/+) 

counterparts.17,20–22 Reduced fracture toughness, with a flat 

crack path and quick propagation, has been observed in these 

bones.17 Similar characteristics have also been observed in OI 

III in humans,23–26 for which the oim/oim mouse is a model.12 

Compared to oim/oim, the heterozygous oim mouse (oim/+) 

does not experience spontaneous fractures, but does have 

bone material properties that lie in between those found in 

oim/oim and wild-type mice, and is thus considered a model 

of OI I in humans.27

Not only bones but also tendons are weaker in the oim 

mouse, as they are composed of collagen type I. Tensile 
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 testing performed on the tail tendons of oim/oim and oim/+ 

mice revealed a twofold reduction in the ultimate tensile 

strain compared to wild-type mice.28

G610C mouse: OI I and IV
In 2004, the Cre/Lox strategy, a method for genetically 

engineering animals for biomedical research, was combined 

with embryonic stem cells to mutate a section of murine 

Col1a2 in the stem cells, resulting in G610C-positive stem 

cells that were then injected into the mouse strain C57BL/6J 

(B6) blastocysts.29 Mice in the founder generation that 

retained the neomycin-targeting vector were termed Neo+ 

mice, and offspring from founder-generation males with Cre 

recombinase-expressing females were called Neo- mice.29 

The founder line of G610C mice was homozygous, and is 

now commonly known as G610C/G610CNeo+, whereas het-

erozygous mice are known as +/G610CNeo+.11 The common 

name for the Neo- mouse (+/G610CNeo-) is the Amish mouse, 

because it models a large human Amish population consisting 

of 64 individuals exhibiting OI I/IV in both genetic code and 

phenotypic expression.11,29 Phenotypic characteristics of the 

mutant mice include decreased body weight, bone mineral 

density, and bone volume.29 Additionally, a four-point bend-

ing test of femora indicated a decrease in mechanical proper-

ties with reduced stiffness, postyield ultimate displacement, 

failure load, and energy to failure compared to wild type.29 

Therefore, G610C/G610CNeo+, +/G610CNeo+, and +/G610CNeo- 

are all acceptable models of OI IV, and +/G610CNeo+ is also 

considered a model for OI I.11

G859C Col1a1 mouse: OI II
In 1988, a site-directed mutagenesis approach was used 

to prepare transgenic mice expressing a mutated COL1A1 

gene that resulted in perinatal death.11,30 The mutation was 

introduced to COL1A1 at residue 859 in the triple helical 

domain of the gene.11,30 Inspection of fetuses’ radiographs 

showed short and wavy ribs, poor bone mineralization, 

underdeveloped skeletons, and pliable limbs.11,30 There were 

also large cavities noted in the bones of the mice, indicating 

that a high level of resorption had occurred.11,31 Due to the 

disease characteristics expressed in the G859C mutagenic 

mice, they have been accepted as a model for OI II.11

Aga2 mouse: OI II and III
A strain of mutagenic mice produced according to the 

standards of the German Mouse Clinic (http://www.mouse 

clinic.de), a system for the phenotyping of mutant mouse 

lines,32 was created using the Munich N-ethyl-N-nitrosourea 

mutagenesis protocol.11,33 This new line was called the Aga2 

(abnormal gait 2) mouse, as the Aga2/+ mice that were first 

produced exhibited an abnormal gait as a result of exces-

sive hind-limb deformity.33 The heterozygous (Aga2/+) mice 

expressed a range of phenotypic variation from skeletal 

deformities, fractures, fragility, disorganized trabecular bone 

and collagen structure, and osteopenia to perinatal death.33 

Aga2/+ mice that did not survive were classified as phenotypi-

cally similar to OI II.33 Homozygous (Aga2-/-) mice that were 

produced from inter se breeding of Aga2/+ males and females 

all died in utero around embryonic stage E9.5.33 Although 

the original research published on the Aga2 mice did not say 

which types of OI the Aga2/+ mice that survived to adult-

hood and the Aga2-/- mice were similar to, they have since 

been considered to be appropriate models for OI III and II, 

respectively.11 However, it needs to be noted that although the 

mutation affects Col1a1, there has not yet been an equivalent 

genetic mutation identified in humans.11

BrtlII and BrtlIV mice: OI II and IV
In 1999, two phenotypes of mice were created using the Cre/

Lox system.34 Initially, the researchers’ intent was to use a 

recombination strategy to substitute a cysteine for glycine 

at position 349 in type I collagen and create a mouse model 

of OI I, but the floxed stop-cassette placement instead led 

to the expression of an allele that was supposed to be sup-

pressed.34 Two chimeric males were obtained from this 

process, and after being mated with wild-type females, the 

resulting offspring that expressed the heterozygous mutation 

were described as having similar weight and size as healthy 

littermates, but they all died within hours of birth, and X-rays 

and skeletal staining revealed that they had multiple rib frac-

tures, short vertebral bodies, and poor skull mineralization.34 

Due to the fact that the phenotype expressed in these mice 

was similar to OI II in humans, this initial strain of mice was 

named Brittle II (BrtlII).34

To remove the stop cassette that led to the BrtlII phe-

notype, the two chimeric males were mated with EIIa-Cre 

mice, a strain of mice carrying a transgene mediated by the 

adenovirus EIIa promoter to target Cre-recombinase expres-

sion, and the resulting male founder-generation offspring 

that expressed the heterozygous mutation (F1-mosaic) were 

mated with wild-type CD1 and C3H/HeJ female mice to 

produce an F2 generation.34 There was large variability in 

phenotype noted in the mutant F2 mice, ranging from peri-

natal death to long-term survival, and their bones exhibited 

deformities, fragility, osteopenia, and a disorganized trabecu-

lar structure.34 These heterozygous mutant mice expressed the 
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mutation that had been desired in the original recombination 

strategy, and were termed BrtlIV mice.34 BrtlIV/+ mice have 

geometrically smaller bones with reduced cortical width 

and lower trabecular thickness and bone-volume density 

compared to wild-type mice, increasing their vulnerability 

to fracture.35 Femoral elastic modulus, strength, and stiff-

ness increase after puberty independently of the whole-bone 

geometry in BrtlIV/+ mice with values comparable with wild-

type mice.16 This strengthening is due to an increase in the 

material properties of the extracellular matrix without any 

typical corresponding structural adaptations, which means 

that BrtlIV/+ mouse femora still have a geometric organiza-

tion that is less resistant to applied loads.16 Mice also showed 

decreased molar volume and mineralized tissue volume in 

the teeth, although enamel properties were normal.36 The 

BrtlIV mice are heterozygous mice (BrtlIV/+);34 however, 

there is also a homozygous (BrtlIV/BrtlIV) type that exhibits 

a much milder form of OI than BrtlIV/+.11,37

Human COL1A1-minigene mouse: OI II–IV
A transgenic animal model of OI was produced by generating 

a minigene construct composed of sequences extracted from 

human COL1A1 that were missing a central region contain-

ing 41 exons,38,39 encompassing exons 6–46.40 The construct 

resulted in shortened pro-α
1
(I) chains that ultimately pre-

vented folding of the protein into a triple helix, leading to 

a lethal form of OI.38,39 Without proper folding, degradation 

of the three chains through procollagen suicide occurs, and 

leads to the depletion of normal pro-α(I) chains.39,41 Mice 

expressing high levels of the minigene exhibit a perinatal 

mortality rate up to 90%.41 However, mice that only express a 

moderate minigene level tend to have a less severe phenotype, 

including low bone mineral density and collagen content, and 

a susceptibility to fractures.38 Therefore, human COL1A1-

minigene mice can be considered a model for OI II–IV.11,38

G208A Col1a1 Golden Retriever: OI III
Another naturally occurring animal model of OI is the G208A 

Col1a1 Golden Retriever, which was observed in a 12-week-

old puppy that presented with DI and multiple bone fractures, 

including ribs and long bones.11,42,43 Samples of collagen type 

I taken from the puppy’s skin showed that the collagen was 

not functioning normally.42,43 After it was determined that the 

puppy had naturally inherited a canine form of OI, samples 

of COL1A1 from both a healthy canine and the puppy with 

OI were sequenced and compared, and it was determined that 

the puppy’s OI was due to a substitution of alanine for glycine 

at amino acid position 208.43 The location of the mutation 

is the namesake for this model, and because it is a naturally 

occurring mutation it is likely that the mutation is a heritable 

trait and could be reproduced in other dogs. However, the 

puppy used in these studies remains the only published case 

of this mutation having occurred in a canine.

Col1a2 frameshift Beagle: OI III
The second naturally occurring canine model of OI was 

identified with the discovery of a heterozygous COL1A2 

frameshift mutation in the complementary DNA (cDNA) 

of a proband Beagle (CU3) exhibiting a history of multiple 

long-bone fractures and overhydroxylated type I collagen.42,44 

Four nucleotides (3991–3994) were deleted and replaced, 

with nine in the COL1A2 region responsible for coding for 

the C-propeptide of the pro-α
2
(I) chain.44 C-propeptides are 

essential for proper triple-helix formation, and mutations can 

lead to altered COL1A1 structure.45 Also, the 30-amino acid 

code for human and canine pro-α
2
(I) sequences normally 

has 100% identity, which suggests the CU3 Beagle is a good 

model for human OI III.46

Med-/- zebrafish: OI I–IV
In 1996 a homozygous mutant zebrafish was characterized 

as having curtain-like waves in its fin epithelium and was 

termed “microwaved” (Med-/-).47 Fish with this mutation 

also exhibit delayed bone ossification, undulation of the 

larval fin, and severe reduction in bone density.48 One of 

the constituents of zebrafish bone, actinotrichia, is partially 

formed by type I collagen, and Col1a1 has been identified in 

actinotrichia-forming cells.49 Additionally, gene sequencing 

has been confirmed that Med-/- zebrafish exhibit an alanine-

for-glycine substitution at position 888 in their cDNA, which 

is predicted to result in the substitution of a glutamic acid 

for a lysine.48 This illustrates the validity of Med zebrafish 

as a model for OI I–IV.48

Chi zebrafish: OI I–IV
Another zebrafish that serves as a model for OI is the Chi-

huahua (Chi) mutant. This mutation can occur either in 

heterozygous (Chi/+) or homozygous (Chi/Chi) form, but 

there has not been a phenotypic difference noted between 

the two.50 It has, however, been determined that the mutation 

causes defective bone growth, with characteristics similar to 

those found in humans with OI.3,50 Radiographs show dis-

torted bones with irregular radiodensity as early as 1 month 

of age.50 The Chi mutation occurs at position 2207 in the 

cDNA, where the wild-type sequence is unaltered, but there 

is a base-pair change that causes a missense mutation and 
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changes the encoded amino acid from glycine to aspartate.50 

The sequence of zebrafish COL1A1 is approximately 76% 

identical to the human gene, making it a good model for OI 

caused by COL1A1 mutations.3,50

OI types V–VIII
Characteristics in humans
In 2004, it was suggested that three new phenotypes be added 

to the classification of OI and referred to as OI V–VII.4 A 

few years later, another phenotype was proposed and clas-

sified as OI VIII.51 The features of the disorder classified as 

OI V include being slightly to moderately short in stature, 

with a dislocated head of the radius, a mineralized interos-

seous membrane, and normal sclerae.4 Characteristics of OI 

VI include moderately short stature, presence of scoliosis, 

accumulation of osteoid in bone as well as a fish-scale 

bone-lamellation pattern, normal sclerae, and absence of 

DI.4 Traits described for OI VII include slightly short stature 

with shortened humeri and femora, decreased angle between 

the head and shaft of the femora, normal sclerae, and no 

presence of DI.4 Finally, the characteristics of the severe-

to-fatal disease known as OI VIII include normal sclerae, 

bulbous metaphyses, and extremely short stature with very 

low bone mineralization.51

Genetic causes of OI V–VII were unknown at the time it 

was proposed that they be added under the classification of 

OI, but have since been identified. In 2013, it was suggested 

that the expression of OI V is caused by a mutation in the 

IFITM5 gene,52 which encodes a transmembrane protein 

important to osteoblast expression.53 A mutation in the SER-

PINF1 gene was identified as the cause of OI VI.54 A genetic 

link between the decreased expression of CRTAP and the 

presence of OI VII had been discovered.55 A genetic muta-

tion caused by defects in the P3H1/LEPRE1 gene resulted 

in an osteopathic disease with OI-type characteristics,51 later 

classified as OI VIII.56

Animal models
Ifitm5 transgenic mouse: OI V
A mouse model with IFITM5 mutation was very recently 

created by first placing murine Ifitm5 cDNA under a Col1a1 

2.3 kB promoter, and then using mutagenesis to achieve the 

correct mutation (c.-14C>T) that occurs in humans.53 Mice 

that inherited mutant Ifitm5 had severe skeletal deformities, 

as well as perinatal death.53 Additionally, the limbs of the 

mice lacked growth abnormalities, but they were facing 

downward at birth, and skeletal samples taken at E15.5 and 

E18.5 showed a consistent delay in mineralization. At E18.5 

there was also the presence of forelimb and hind-limb frac-

tures in utero, as well as extreme deformities of the rib cage.53

Pedf-/- mouse: OI VI
Mice genetically modified to be deficient in Pedf were first 

created by replacing exons 3–6 of SERPINF1 with a cassette 

comprised of an internal ribosomal entry site, β-galactosidase 

genes, and neomycin-resistance genes.57 After it was discov-

ered that OI VI in humans is caused by mutations in SER-

PINF1, this procedure was replicated to produce Pedf-/- mice 

for the purpose of studying the role of PEDF in bone and 

other tissues.58 Bending tests performed on femora from 

wild-type and Pedf-/- mice indicated that while the ultimate 

force applied to both groups was about the same, the ulti-

mate displacement in the Pedf-/-bone was approximately half 

of that in wild-type bone, with the energy of failure being 

25% lower in the Pedf-/- mice.58 Through this study, it was 

determined that Pedf-/- mice are a suitable model for OI VI.58

Crtap-/- mouse: OI VII
Around the same time that the genetic cause of OI VII in 

humans was linked to a deficiency in CRTAP expression, a 

strain of homozygous Crtap-deficient (Crtap-/-) mice was 

produced using a homologous recombination approach.59,60 

It has been found that Crtap-/- mice properly model OI VII 

in humans, as they have an abnormally high mineral content 

and increased mineral densities in their bones compared to 

wild-type mice.60 Other characteristics noted in Crtap-/- mice 

include a progressive severe kyphoscoliosis, low bone den-

sity, and cartilage dysplasia.11 However, Crtap-/- mice tend to 

have a less severe form of the disease than is found in most 

humans.11,56 Tensile testing done on the skin of Crtap-/- mice 

showed that the peak load and stiffness of the tissue were 

60% lower than the skin of wild-type mice.61

P3h1-/- mouse: OI VIII
In 2010, a method of homologous recombination was used 

to create a P3H1-knockout mouse by targeting exons 1–3 

of P3H1.62 The heterozygous (P3h1+) mice did not express 

an OI phenotype, but homozygous (P3h1-/-) mice exhibited 

significantly smaller body size, lower mineral density in the 

skull and long bones, progressive kyphoscoliosis, and shorter 

femora that had decreased stiffness and failure load compared 

to wild-type littermates.62 P3h1-/- mice also demonstrate 

elevated auditory thresholds and altered morphology of the 

middle-ear bone joints, which make them an ideal model 

for investigating the mechanisms that cause hearing loss in 

OI patients.63
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OI types IX and X
Characteristics in humans
Recently, there have been several new genetic mutations 

identified that lead to a disorder similar to OI, and a few 

have been subsequently classified as OI types IX and X. 

PPIB was identified as the gene responsible for OI IX after 

patients initially diagnosed with OI II–IV were not found to 

have mutations present in COL1A1 or COL1A2.64 In fact, 

multiple studies have shown that although the mutation 

occurs in PPIB, the phenotype expressed is similar to clas-

sical OI type II, III, or IV.64–67 OI X, by comparison, is far 

less broad in its phenotype: the available data were obtained 

from a study of a single patient who exhibited small bone 

size, blue sclerae, multiple fractures, malformed bones, and 

DI.68 The gene identified as causing the OI in this patient 

was HSP47/SERPINH1,68 which is a molecular chaperone 

required for the maturation of collagen types I and IV in the 

endoplasmic reticulum (ER).69,70

Animal models
Ppib-/- mouse: OI IX
Between 2006 and 2007, several research articles were 

published indicating the roles of P3h1 and Crtap in the 

development of OI in humans and mice.51,55,59,71 There was 

also a relationship established between P3h1, Crtap, and 

Ppib,59,62,71,72 and it was found that they interact to form a 

complex in the rough ER that is believed to function as a 

collagen chaperone.72 To investigate this relationship further, 

the Cre/Lox system was utilized to create a PPIB-knockout 

mouse by targeting exon 3 through homologous recombina-

tion.11,71 The heterozygous Ppib+/- mice that were produced 

using this technique did not exhibit any symptoms of OI, 

and were mated to produce Ppib-/- offspring,71 which instead 

exhibit symptoms of OI, including decreased body size and 

weight, low bone mineral density and volume, progressive 

kyphosis, decreased skin stiffness, and increased laxity.11,71 

Although the phenotype observed in the Ppib-/- mice is less 

severe than in humans, it is considered an appropriate model 

of OI IX.11

Serpinh1 (Hsp47-/-) mouse: OI X
An HSP47-knockout mouse was created in 2000 as the result 

of a gene-targeting approach.73 While first-generation hetero-

zygous (Hsp47/+) mice displayed no apparent OI phenotype, 

second-generation homozygous (Hsp47-/-) embryos did not 

survive past E11.5, and displayed ruptured blood vessels and 

abnormally oriented epithelial tissues.73 Mutant embryos 

were more translucent than wild-type mice, and appeared 

shortened.73 Although Northern blot analysis showed that 

Hsp47 messenger RNA was lower in Hsp47/+, it was not 

expressed at all in Hsp47-/- mice.73 Electron microscopy 

observations of collagen fibrils secreted by Hsp47-/- cells 

showed thin fibrils forming abnormal branches, thus indicat-

ing that the collagen type I secreted from the Hsp47-/- mouse 

cells could not form normal supramolecular fibrillar struc-

tures.70 It is believed that Hsp47 plays an important role either 

in preventing the collagen triple helix from unfolding and 

providing stabilization during the progression of procollagen 

folding, or in preventing lateral association of procollagen 

triple helices in the ER.73,74

Serpinh1 (L326P) Dachshund: OI X
Dachshunds exhibiting multiple fractures and history of 

lameness were found to have different long bones, ribs, 

mandibles, and teeth from normal. Their long bone exhibited 

thin cortical bone lacking an organized Haversian system 

and secondary cancellous bone, and their teeth had a thin 

dentine layer.75 A homozygosity-mapping approach deter-

mined the position of the mutation responsible for these 

abnormalities to be located at 24.66–29.4 Mb interval where 

the SERPINH1 gene maps.76 The Serpinh1 Dachshund does 

not share an equivalent mutation noted in humans, but its 

phenotype makes it a suitable model for OI X.11 Drögemül-

ler et al76 suggested the SERPINH1 canine mutation could 

be a valuable model for the identification of a fifth gene, in 

addition to COL1A1, COL1A2, CRTAP, and LEPRE1, that 

generates OI in humans.

OI types XI–XVII
Characteristics in humans
Since 2010, there have been an additional seven new OI types 

with similar phenotypes to but different genetic bases from 

the original four types of OI added to the OI-classification 

system. It was proposed that the syndrome resembling OI 

known as Bruck syndrome 1 be reclassified as OI77,78 follow-

ing research that identified a mutation in the FKBP10 gene 

as the cause of a recessive form of OI with characteristics 

similar to OI III.79 This phenotype is now known as OI XI, 

and the suspected mechanism of the FKBP10 mutation is 

that it causes a decrease of collagen type I deposition in the 

extracellular matrix.66

OI XII has been identified in a single proband with a pheno-

type similar to OI IV, but the cause of this OI type was linked to 

a frameshift mutation occurring in the SP7 gene.80 OI XIII was 

identified as being caused by a homozygous missense muta-

tion in the gene that encodes the BMP1/Toll-like proteinases, 
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and results in a phenotype similar to OI III.81 OI XIV was first 

described when a homozygous mutation in the TMEM38B gene 

was found to lead to a phenotype with characteristics in line 

with an autosomal-recessive type of OI, including osteopenia 

and fractures of varying severity, but normal teeth, sclerae, 

and hearing.82

What is now known as OI XV was described in several 

publications when multiple mutations in the WNT1 gene were 

found in individuals displaying phenotypes characteristic of 

OI III–IV.83–86 OI XVI has been documented in one proband 

family where two siblings were affected by severe OI char-

acterized by frequent fractures starting in utero, varus defor-

mities of the legs, soft skull bones with large fontanels, and 

beaded ribs.87 Analysis of DNA from one sibling indicated a 

homozygous deletion in the CREB3L1 gene.87 OI XVII was 

classified after two individuals diagnosed with OI IV were 

found to have a mutation in the SPARC gene.88

Animal models
Fkbp10-/- mouse: OI XI
Mice containing the European conditional mutagenesis allele 

were created to study the function of Fkbp10.89 In the first 

generation of heterozygotes (Fkbp10/+), no OI phenotype was 

noted.89 However, homozygotes (Fkbp10-/-) obtained from 

breeding Fkbp10/+ mice exhibited delayed growth from E13.5 

on, as well as downward-facing forelimbs, fragile tissue, flat-

tened facial features, ER dilation caused by accumulation of 

abnormal procollagen chains in the ER, and perinatal death.89 

While humans with OI XI do not exhibit perinatal death, the 

effect the mutation has on the ER and collagen formation is 

phenotypically similar to Fkbp10-/- mice.89

Osterix-null Sp7-/- mouse: OI XII
One initial method to create an Sp7-null mouse involved 

using a homologous recombination of embryonic stem cells 

to create nonphenotypic heterozygous (Sp7+/-) mice.90 How-

ever, Sp7-null offspring obtained from Sp7+/- pairings all died 

within 15 minutes of birth following difficulty breathing, 

and exhibited severe limb deformities.90 A second method 

used the Cre/Lox system to create conditional SP7-knockout 

mice with Col1a1-Cre (OsxFlox-
;Col1a1-Cre), which were 

designed to inactivate SP7 without perinatal lethality.91 

OsxFlox-
;Col1a1-Cre mice exhibited decreased trabecular 

bone mineralization, as well as osteopenia and cortical bone 

thinning.91 Although both models existed before SP7 was 

linked to OI in humans, OsxFlox-
;Col1a1-Cre may possibly 

be considered a model for OI XII, but further studies are 

needed in this regard.

Frf-/- zebrafish: OI XIII
It has been shown that mutations in BMP1 cause high bone 

mineral density and multiple fractures in human OI XIII.48,81 

This mutation in zebrafish, termed frilly fins (Frf-/-), causes 

a ruffled larval fin, short body axis, malformed craniofacial 

bones and vertebrae, and reduced ossification and bone 

density.48 Frf-/- was created by missense substitutions in 

BMP1, and led to osteoblasts exhibiting a more cuboidal 

structure than wild-type fish.48 Bmp1 has been found to cleave 

and inactivate the Bmp2/4 inhibitor chordin, which aids in 

generating mature collagen type I, and thus it may disrupt 

osteogenesis when present at elevated levels.92

Swaying (Wnt1Sw/Sw) mouse: OI XV
The Swaying (Sw) mouse was first described as having 

poor coordination, with a rotational movement pattern and 

cerebellar deficit.93 The Sw mouse was later found to be phe-

notypically similar to mice with a targeted WNT1 mutation 

causing osteopenia and fragile bones,94 and was subsequently 

determined to be caused by a frameshift mutation in WNT1 

(Wnt1Sw), with homozygous (Wnt1Sw/Sw) mice expressing 

the Sw phenotype.95 Following the classification of WNT1 

mutations as a cause of documented OI in humans, Wnt1Sw/Sw 

was proposed to be a suitable model for OI XV.96

Currently, there are no animal models for OI XIV, XVI, or 

XVII. However, the genes that were discovered to be the cause 

of OI XVI and XVII were selected for investigation based 

on genetic mutations in mice that cause similar phenotypes 

to what human cases presented with.87,88

Animal models in clinical research
Bone fracture and fragility are the primary symptoms of OI, 

and thus clinical research on treatments has been focused 

mainly on understanding the bone properties of the animal 

models for OI and on regaining mechanical integrity in these 

bones. Most of the research dedicated to finding treatments 

for OI has primarily utilized mouse models of classical OI 

(Table 1).

Pharmacological treatments
Many studies have tested drug treatment as a clinical therapy 

for OI. In particular, bisphosphonates, a class of antiresorp-

tive drugs, have been widely used to treat OI in an effort to 

reduce fracture incidence and improve bone density in OI 

patients. Between the different bisphosphonates, alendronate 

and pamidronate have been the most used in clinical studies 

run on animals. Short-term therapy studies conducted on oim/

oim and BrtlIV/+ mice for both alendronate and  pamidronate 
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Table 1 Current animal models for human osteogenesis imperfecta (OI), with their genetic and phenotypic characteristics and clinical 
therapy applications

Common name Human 
OI type

Gene Characteristics Clinical therapy

Mouse models
Mov-13-/- OI II COL1A1 Perinatal mortality Gene replacement

Mov-13/+ OI I COL1A1 Hearing loss, reduced mechanical properties in bone, and 
reduced collagen production

oim/oim OI III COL1A2 Fragile bones, osteopenia, cortical thinning, bone 
deformities, joint laxity, kyphosis

Bisphosphonate therapy, stem 
cell transplantation, bone 
marrow stromal cells, gene 
supplementation, whole-body 
vibration

oim/+ OI I COL1A2 Decreased material properties of bone
G610C/G610CNeo+ OI IV COL1A2 Decreased body weight, bone mineral density, bone 

volume, and mechanical properties of bone
+/G610CNeo+ OI I/IV COL1A2 Decreased body weight, bone mineral density, bone 

volume, and mechanical properties of bone
+/G610CNeo- (Amish) OI IV COL1A2 Decreased body weight, bone mineral density, bone 

volume, and mechanical properties of bone
G859C OI II COL1A1 Short and wavy ribs, poor bone mineralization, 

underdeveloped skeleton, pliable limbs, perinatal death
Aga2/+ OI II/III COL1A1 Skeletal deformities, fragile bones, osteopenia, perinatal 

death (in some cases)
Aga2-/- OI II COL1A1 Embryonic mortality
BrtlII OI II COL1A1 Rib fractures, short vertebral bodies, poor skull 

mineralization, perinatal mortality
BrtlIV/+ OI IV COL1A1 Perinatal death to long-term survival, bone deformity, 

fragile bones, osteopenia
Bisphosphonate therapy, sclerostin 
antibody therapy, bone marrow 
stromal cells

BrtlIV/BrtlIV OI IV 
(mild)

COL1A1 Bone deformity, bone fragility, osteopenia

Human COL1A1 
minigene

OI II–IV COL1A1 Fragile bones, low bone mineral density, ~90% perinatal 
mortality rate (when high levels of minigene expressed)

Bone marrow stromal cells, 
oligonucleotide antisense gene 
therapy

Ifitm5 transgenic OI V IFITM5 Skeletal deformities, fragile bones, poor bone 
mineralization, perinatal death

Pedf-/- OI VI SERPINF1 Decreased material properties of bone

Crtap-/- OI VII CRTAP High bone mineralization and mineral density in bone (but 
low bone density), progressive kyphoscoliosis, cartilage 
dysplasia, decreased material properties in skin

P3h1-/- OI VIII LEPRE1 Small body size, low mineral density in calvarial and long 
bones, decreased material properties of bone, impaired 
hearing

Ppib-/- OI IX PPIB Decreased body size and weight, low bone mineral density 
and volume, progressive kyphosis, decreased material 
properties in skin

Hsp47-/- OI X SERPINH1 Embryonic mortality

Fkbp10-/- OI XI FKBP10 Delayed growth beginning at E13.5, fragile tissue, skeletal 
deformities, perinatal mortality

Sp7-/- Possibly 
OI XII

SP7 Decreased trabecular bone mineralization, osteopenia, 
cortical bone thinning

Wnt1Sw/Sw (Swaying) OI XV WNT1 Poor coordination, osteopenia, fragile bones, cerebellar 
deficit

Canine models
G208A Col1a1 Golden 
Retriever

OI III COL1A1 Fragile bones, dentinogenesis imperfecta

Col1a2 frameshift Beagle OI III COL1A2 Fragile bones
SerpinH1 (L326P) 
Dachshund

OI X SERPINH1 Fragile bones, lameness, thin cortical bone and dentine
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injections showed a reduction in the fracture rate,97,98 with 

thicker and stiffer bones,99–101 enhanced density,97,99–101 but 

no mineral maturity,102 and variable biomechanical proper-

ties.97–99,101 In both models, bisphosphonate treatment altered 

the growth plate in mice by increasing their height, mainly 

at the proliferation and hypertrophic zones, reducing vas-

cular invasion103 and growth-plate cell turnover,98 and with 

detrimental effects on osteoblasts and bone formation.99 In 

trabecular oim/oim bone, alendronate increased trabecular 

number, decreasing thickness and separation and increasing 

bone volume density,97,104 and produced no improvement in 

strength or mechanical properties. This shows that the reduc-

tion in fracture rate is primarily attributable to an increase in 

bone mass.104 High doses of alendronate were more effective 

in short-term therapy.98

Long-term alendronate therapy in growing oim/oim mice 

also appeared to be effective in increasing metaphyseal den-

sity. The increased length and bowing of tibia metaphysis seen 

in short-term therapy was not observed in long-term treat-

ment, suggesting a dissipation of these effects over time.105 

Sex was a factor contributing to the success of the treatment, 

as alendronate increased compositional heterogeneity in male 

mice, improving bone quality.106

More recently, alendronate treatment was proved to 

affect the fracture-healing process of bone in BrtlIV+ mice 

positively.107 Mice treated with alendronate before and after 

fracture exhibited increased callus volume, with decreased 

mineralization quality and quantity, and increased bone vol-

ume and torque at failure. However, no effect was observed 

if the drug treatment was used only before fracture.107

RANKL inhibitors have shown promise in both 

human108,109 and animal97,110–113 trials for the treatment of 

several different osteopathologies. When RANKL binds to 

RANK, it activates the pathway that leads to osteoclastogen-

esis,109,111–114 so the pharmacological application of RANKL 

inhibitors aims to prevent bone resorption by blocking the 

RANK pathway from being activated.97,108–114 The inhibitor 

denosumab, a fully human monoclonal antibody,97,111–114 has 

a higher specificity and affinity for RANKL than osteopro-

tegerin,112–114 a naturally occurring decoy RANKL recep-

tor.110–114 Unfortunately, denosumab is not recognized by 

murine RANKL,97,111–114 although preliminary studies done 

in primates97,112 and knock-in mice expressing murine/human 

RANK97,113 have yielded positive results, including increased 

mineral content, density, and strength in primate bone,97,112 as 

well as suppressed resorption and increased density in human 

RANKL mouse bone97,113 following denosumab treatment.

The successful application of RANKL inhibitors in OI 

treatment was demonstrated in two children with OI VI who 

exhibited decreased bone resorption following administra-

tion of denosumab.109 Animal research of RANKL inhibitors 

in the treatment of OI has so far been limited to the use of 

RANK-Fc,97,110,111 a recombinant RANKL inhibitor with 

properties similar to osteoprotegerin.97,110,114 The results of 

treating oim/oim mice with RANK-Fc show that it increases 

bone density,97,111 improves some mechanical and geometric 

properties of bone,111 delays callus remodeling following 

fracture,110 and reduces fracture incidence.97 Inspired by the 

success of the teriparatide (human parathyroid hormone) as 

an anabolic drug for osteoporosis,115–120 and as adjuvant for 

bone121,122 and allograft123–125 healing, scientists have recently 

tested teriparatide in adults with OI I–IV.126 Results showed an 

enhancement in vertebral bone mineral density and strength, 

and thus there is a need for animal research on the use of 

teriparatide for treatment of OI.

Finally, a study performed on BrtlIV/+ mice determined 

the effect of sclerostin antibody (SA), an anabolic bone 

therapeutic, on OI bone formation.127 It was thought that SA 

could neutralize sclerostin, ultimately increasing bone forma-

tion by preventing the inhibition of anabolic canonical Wnt 

signaling.127 While previous antiresorptive bisphosphonate-

treatment studies using BrtlIV/+ and oim mice resulted in 

increased trabecular number but not thickness, the treatment 

study using SA instead found an increase in trabecular 

Common name Human 
OI type

Gene Characteristics Clinical therapy

Zebrafish models
Med-/- OI I–IV COL1A1 Delayed bone ossification and low bone mineral density, 

larval fin undulation, curtain-like waves in fin epithelium
Chi/+ OI I–IV COL1A1 Generalized defective bone growth
Chi/Chi OI I–IV COL1A1 Generalized defective bone growth
Frf-/- OI XIII BMP1 Ruffled larval fin, short body axis, deformed craniofacial 

bones and vertebrae, reduced ossification and bone 
density
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thickness but not number.127 After 2 weeks of SA therapy, 

BrtlIV/+ mice had increased cortical and trabecular bone 

mass, reduced fragility in long bones, including improved 

stiffness, and the ability to withstand higher loads before 

breaking.127 SA therapy increased the rate of bone formation, 

increasing both cortical and cancellous bone volume, and 

also improved the strength of cortical bone without affecting 

bone mineralization.127 Although more research is needed, SA 

treatments could eventually prove to be an effective therapy 

for patients with OI IV in the future.

Stem cell transplantation
The oim/oim mouse has recently undergone stem cell thera-

pies to alter developing OI bone pathology. Mesenchymal 

stem cell (MSC) therapy for tissue regeneration can improve 

damaged or diseased tissue when delivered to relevant 

locations.128 MSCs injected into oim/oim mice from adult 

wild-type mice migrate to sites of new bone formation.129 

As an expansion on this study, human fetal blood MSCs, 

collected by cardiocentesis under ultrasound guidance, 

were considered as a therapy for oim/oim mice.130,131 Virgin 

oim/oim females were mated with oim/oim males and then 

underwent intrauterine transplantation at E13.5–E15 so that 

each fetus could be injected intraperitoneally with human 

fetal blood MSCs.130 Offspring were analyzed at E18, week 

1 after birth, and weeks 2, 4, 8, and 12 thereafter. At each 

point measured, findings showed a 70% reduction in the 

number of fractures with only 5% of cells ingrafted.130 The 

fetal blood stem/stromal cells engrafted into oim/oim bone 

differentiated into osteoblasts, producing osteocalcin and 

Col1a2, which is absent in oim/oim mice.132 As a result, these 

bones showed a clinically relevant increase in cortical bone 

strength, length, and thickness, and clustered cells around 

sites of bone formation and repair, suggesting osteogenic 

differentiation.130,132

Bone marrow stromal cells
Studies involving the transplant of bone marrow stromal 

cells (BMSCs) from wild-type mice into human COL1A1-

minigene mice demonstrated that BMSCs could renew 

cells in multiple nonhematopoietic tissues, and may be a 

prospective treatment for OI.133 Transplanted BMSCs have 

been shown to contribute to bone formation in vivo and to 

improve the mechanical properties of the recipient bone.134 

In a study conducted to determine the effect of transplanting 

BMSCs alone or suspended in a collagen matrix, BMSCs 

were harvested from the marrow of the femora and tibiae 

of wild-type mice syngeneic to oim mice, then cultured and 

injected into the femora of oim mice.134 Mechanical testing 

of the bone conducted 6 weeks after implantation found that 

femora injected with BMSCs suspended in collagen matrix 

were stronger than those injected with BMSCs alone, and 

that in both BMSC test groups treated bone was stronger 

when compared to oim/oim.134 Donor cells, tracked using 

green fluorescent proteins, differentiated into osteoblasts 

in vivo and actively participated in new bone formation.134 

Histological analysis of the femora showed that those injected 

with BMSCs suspended in collagen matrix had more bone 

deposition than those injected with BMSCs alone.134 Com-

parison of the BMSC-treated samples with oim/oim samples 

indicated that all of the new bone deposition was a result of 

the combination of endogenous and exogenous cells.134

BMSCs may not only be transplanted between adult mice 

but also in utero and in developing animals.134,135 In another 

study, BMSCs were transplanted from long bones of adult 

cytomegalovirus/eGFP CD1 transgenic mice into embryos of 

wild-type females mated with BrtlIV/+ males.135 Of the pups 

that reached weaning age, 51.4% were wild-type and 48.5% 

BrtlIV/+ mice, demonstrating a nearly equal survival rate 

between the two genotypes.135 Comparing these mice with a 

control group in which no treatments were administered, it 

was seen that BMSC treatment improved mechanical proper-

ties of bone in BrtlIV/+ mice,135 with BMSC-treated BrtlIV/+ 

mice having significantly higher bone mineral density in 

both trabecular and cortical bone compared to untreated 

BrtlIV/+ mice.135

Gene therapies
Several methods have been proposed for implementing gene 

therapies in the treatment of OI, including gene replacement, 

antisense approaches, gene supplementation, and gene deliv-

ery to bone.136 One of the first studies in using animal models 

for gene replacement to treat OI was accomplished by trans-

fecting a Col1a1-null allele taken from a Mov-13-/- embryo 

with human COL1A1.137,138 In this case, functional collagen 

type I was formed in the mouse through transgene expres-

sion.137,138 This collagen was composed of two human α
1
(I) 

and one mouse α
2
(I) chains, suggesting that this could be a 

means for using gene therapy in treating OI in humans.137,138

Another approach of gene therapy is gene supplementa-

tion, which in OI research could consist of the delivery of 

Col1a1 from healthy mice to a mouse with OI caused by a 

COL1A1 mutation. However, the challenge with this therapy 

is that most types of OI mutations are dominant-negative, 

meaning that the mutant allele disrupts the function of the 

normally functioning allele, so supplementation would not be 
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effective without first blocking the expression of the mutant 

gene.136 Delivery of the healthy gene is further complicated 

by the fact that COL1A1 and COL1A2 are large genes and 

difficult to manipulate.138 The combination of gene supple-

mentation with antisense gene therapy, a method of using 

antisense oligodeoxynucleotides, antisense RNA, or ribo-

zymes to block transcription of certain gene sequences that 

are thought to cause the disease,139 could make gene therapy 

more feasible.136 One study involving linear oligonucleotide 

antisense therapy was done using human COL1A1-minigene 

mice.41 Mating mice where both parents expressed antisense 

minigene produced offspring that inherited both genes, and 

the rate of occurrence of the lethal fragile-bone phenotype 

was reduced from 92% to 27%, demonstrating the effects of 

the therapy.41,140 One potential application for studying gene 

supplementation in an animal model is the use of the oim/

oim mouse, as the deletion of the COL1A2 in these mice 

stops incorporation of pro-α
2
(I) chains into heterotrimers 

and leads to a buildup of pro-α
1
(I) heterotrimers in tissue.136

One application of gene therapy that appears to hold 

a great deal of promise is gene delivery to bone. One way 

this can be done is through the use of noncoding RNA or 

a protein, which can be delivered using a vector, such as a 

virus.141 However, the use of viral therapy is not ideal in the 

clinical setting, due to the risks involved with it.142 Other 

studies have been performed to test the efficacy of gene 

delivery without a vector, as in one case using the delivery 

of naked plasmid DNA to the gastrocnemius of a wild-type 

ICR mouse.143 Unfortunately, although this method did lead 

to bone formation, it was determined that this was not an 

efficient method of gene delivery.142,143 Other methods, such 

as RNA interfacing and using synthetic carriers for delivery, 

have also been attempted, with varying degrees of success,142 

and gene-delivery therapy still needs to be thoroughly tested 

before being safely implemented.

Mechanical therapies
Bone adapts both its mass and architecture to the mechanical 

loading applied upon it.144 Therefore, mechanical therapies 

that do not result in fracture and do not involve drugs are 

very attractive for application in the OI population. One 

potential mechanical therapy, whole-body vibration (WBV), 

has been studied in young oim/oim mice, and resulted in the 

improvement of trabecular and cortical bone morphologies 

during hind-limb growth.144 WBV involves placing mice into 

a container on a vertically oscillating plate, which effectively 

introduces a vibrational mechanical stimulus to normal activi-

ties.145 Previous numerical studies have shown that increasing 

the frequency of the loading stimulus up to 30 Hz results 

in improved bone formation.146 Vanleene and Shefelbine 

utilized high-frequency, low-amplitude WBV in order to 

determine its effect on the volume and mechanical properties 

of young oim/oim bone.144 The study found that WBV caused 

an increase in oim/oim femoral and tibial cortical thickness 

and cross-sectional area, as well as an increase in trabecular 

bone volume in oim/oim tibiae.144 WBV thus appears to be a 

potentially effective and safe treatment for increasing bone 

formation and possibly bone strength in OI. This therapy is 

particularly attractive for treating the growing skeletons of 

children with OI without the disadvantages of current long-

term pharmacological therapies.

Discussion and conclusion
This review presented existing animal models for OI I–XVII 

and clinical therapies, some still emerging, that these mod-

els serve as a platform for OI research. Most of the animal 

models used for clinical trials were mice, representing 

moderate-to-severe conditions of the classic OI disease. In 

fact, mutagenesis studies that have led to the development of 

new models of OI have only been conducted using mice. The 

canine models of OI mentioned in this article all occurred 

spontaneously in animals that had not been bred for research 

purposes. It is probable that the bone structure of canines 

would more adequately model the disease physiology in 

humans than the bone structure of mice, but there are limit-

ing factors that would make the development of canine OI 

models difficult.11

Currently, treatments for human OI rely largely on 

bisphosphonates and exercise management, which can 

increase the amount of bone but not its quality.37 More 

animal studies are needed to understand the actual efficacy 

and long-term effects of these treatments on bone, and also 

more research is envisaged to explore other therapies for the 

management and cure of OI. In this sense, animal models, 

and in particular mouse models of OI, offer an extremely 

valuable resource for the understanding of the disease and 

for the advancement of therapies for reducing fracture risk. 

Mutagenic mouse models are relatively easy and quick to 

produce, and genetically assimilate mutations typical of human 

cases of OI. On the other hand, mouse bones are very small in 

size and do not allow for typical sample preparation as used 

in human bones (ie, milling out exact perfect beam samples 

from human bone for mechanical testing but not from a mouse 

bone, where the entire bone with its geometrical imperfections 

needs to be used). Also, the structure of mouse cortical bone 

is different from human cortical bone in that it is missing the 
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Haversian system, as the whole mouse bone is about the size 

of a large osteon in human bone. This may have implications 

in terms of mechanics, because the lamellar osteonal structure 

is thought to provide toughness to human bone,147 although 

recent research on oim/oim mouse bone has shown that pos-

sibly the lamellar structure can yield a similar toughness to 

mouse bone.17 Apart from these two differences, mouse bone 

represents an indispensable resource to understand bone 

pathology and to anticipate the effects of potential therapies 

on humans, as mouse skeletal growth is accelerated, allowing 

for long-term investigation in a 6- to 12-month period.

In the future, there should be a much wider breadth of 

studies utilizing OI animal models for further understanding 

clinical applications and their translation to human therapies. 

It would be interesting to study methodological factors, such 

as drug dosage or mechanical loading, affecting treatment, 

and to investigate further long-term effects of treatment in 

each type of OI. Also, the combination of different thera-

pies, such as using gene therapy with mechanical loading, 

may be a viable approach that needs further investigation. 

Therefore, more clinical studies should be conducted on the 

animal models presented here to determine which therapy 

holds the most promise for human OI. Finally, more stud-

ies allowing the direct translation of therapies from animal 

models to human cases should be put in place to facilitate 

implementation of new therapies.
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