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Background: Cervical spondylotic myelopathy (CSM) is a degenerative disorder that can 

chronically damage the spinal cord. The aim of this study was to investigate the column-specific 

degeneration in the cervical cord with CSM and explore the structure–function relationship by 

diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI).

Patients and methods: DTI and blood-oxygen-level-dependent (BOLD) fMRI were obtained 

from 14 healthy controls and six patients with CSM at 3 T. The fractional anisotropy (FA) value 

of anterior, lateral, and posterior column and the BOLD signal in response to somatosensory 

stimulation were compared among three groups: the average value of levels from C3 to C8 in 

the control and CSM groups and the value at maximal compression site in the CSM (CSM-mc) 

group. The correlation between FA value and BOLD signal was used to assess the structure–

function relationship.

Results: The FA value in CSM-mc was lower than control-ave in all the columns (P<0.01) and 

lower than CSM-ave in the lateral and posterior column (P<0.05). The BOLD signal in CSM 

was significantly higher than that in the control (P<0.001). In the posterior column, a significant 

correlation between BOLD signal and FA value was found (P<0.05).

Conclusion: This study demonstrated that the microstructural damage in CSM was correlated 

with functional changes. DTI combined with fMRI reveals the relationship between structural 

damage and neural activity, which might provide a promising method to reveal the underlying 

pathomechanism of CSM.

Keywords: spinal cord, fMRI, blood oxygen level dependent, diffusion tensor imaging,  cervical 

spondylotic myelopathy

Introduction
Cervical spondylotic myelopathy (CSM) is a common disease of the spine in the 

elderly due to degenerative bony changes resulting in compression of the spinal 

cord.1 Currently, magnetic resonance imaging (MRI) plays an important role in the 

diagnosis of CSM. The conventional MRI, such as T1- and T2-weighted imaging, 

has provided great benefits in terms of rapid, noninvasive, and accurate imaging of 

cord morphology2 and of bony and soft tissues of the spine. Transverse cord area 

and compression ratio are used as the signs of spinal cord atrophy and spondylotic 

or discogenic compression. Recently, there has been growing interest in the applica-

tion of diffusion tensor imaging (DTI) to investigate the spinal cord parenchyma in 

patients with CSM.3–6 DTI is used to detect the tissue water molecular diffusion at 
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microscopic dimensions.7 Fractional anisotropy (FA), axial 

diffusivity (AD), and radial diffusivity (RD), which are 

derived from the eigenvalues of the diffusion tensor matrix, 

are commonly used in DTI analysis to describe the diffu-

sion properties of the voxels.8 As anisotropy diffusivity is 

attributed to the myelin and axonal integrity in nerve tracts, 

changes in these measures could reflect the microstructural 

changes associated with the myelin loss and axonal damage 

in neurological injury and disease.9–11

Functional MRI (fMRI) with blood oxygen level depen-

dent (BOLD) is playing a primary role in neuroscience study. 

A number of studies with spinal cord BOLD fMRI have 

explored neuronal activation induced by motor tasks12–16 or 

sensory stimuli17–20 in healthy as well as injured spinal cord.21 

Some studies combining BOLD fMRI and diffusion tensor 

MRI were conducted in the brain to detect the relationship 

between functional activation and structural integrity.22–25 

An analogous approach in the spinal cord may provide a 

deeper understanding of the pathophysiology of CSM. In 

particular, the mismatch between the degrees of compression 

in chronic myelopathy is not well correlated with functional 

status and clinical symptoms. Hence, in this study, we aimed 

to explore the quantitative relationship of structure and 

function in healthy and myelopathic cervical spinal cord by 

combining the anatomical, functional, and diffusion tensor 

MRI technique.

Patients and methods
Subjects
A total of 14 healthy volunteers (seven males and seven 

females, age =56±13 years (mean ± SD) and six patients 

with CSM (two males and four females: age =67±14 years) 

were recruited for this study with written informed consent. 

All volunteers were screened to confirm their eligibility. The 

inclusion criteria of healthy subjects were intact sensory 

and motor function evaluated by the Japanese Orthopaedic 

Association score system26 and negative Hoffman’s sign 

under physical examination. The exclusion criteria were hav-

ing any neurological signs and symptoms or past history of 

neurological injury, diseases, and surgeries. The experienced 

spine surgeons made the clinical diagnosis of CSM based 

on the patients’ history, symptoms, and signs together with 

radiological findings. Clinical and radiological information are 

summarized in Table 1. The Institutional Review Board of the 

University of Hong Kong/Hospital Authority Hong Kong West 

Cluster approved all the experimental procedures in this study.

Somatosensory stimuli for fMRI
Square-wave electrical stimuli were applied to the median 

nerve at wrists with a wavelength of 0.2 ms at a frequency of 

0.4 Hz. The stimulation current (5–15 mA) was adjusted to 

induce the somatosensory stimuli. Subjects were instructed to 

relax their muscles and focus their attention on the stimula-

tion throughout the fMRI acquisition. Electrical stimuli were 

delivered in 20-second blocks that alternated with 20-second 

blocks of rest. Five stimulation blocks were applied on the 

left hand, right hand, and bilateral hands in a pseudorandom 

order. The initial and final rest blocks were prolonged to 

30 seconds. Thus, the whole run lasted 640 seconds, during 

which 256 volumes were acquired.

Scanning
Magnetic resonance imaging were acquired using 3.0 T MRI 

scanner (Philips Achieva, Best, the Netherlands). During the 

Table 1 Summary of clinical and radiological data of patients with CSM

Patient Age (years)/sex Symptoms From symptom  
onset to imaging 
(years)

Stenostic level JOA T2W

1 79/F BL UL numbness;  
LL numbness

3 C4–5 12 Focal hyperintense 
signals

2 54/F BL hand numbness;  
LL numbness

6 C3–4; C4–5; C5–6 12.5 Multisegmental 
hyperintense signals

3 73/M BL hand numbness,  
clumsiness

10 C3–4; C4–5 7.5 Focal hyperintense 
signals

4 80/M BL hand numbness;  
below knee LL numbness

2 C4–5; C5–6 10 Focal hyperintense 
signals

5 46/F – 4 C3–4; C4–5; C5–6 – Multisegmental 
hyperintense signals

6 68/F Gait disturbance; hand 
numbness

3 C4–5 12 Focal hyperintense 
signals

Abbreviations: BL, bilateral; CSM, cervical spondylotic myelopathy; F, female; JOA, Japanese Orthopaedic Association; LL, lower limbs; M, male; T2W, T2 weighted; UL, 
upper limbs.
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acquisition process, the subject was placed supine with the 

head and neck coil enclosing the cervical region and scanned 

with anatomical T1-weighted (T1W), T2-weighted (T2W), 

diffusion tensor, and BOLD images.

Sagittal and axial T1W and T2W images were acquired 

using fast spin echo sequence. For sagittal imaging, the 

imaging parameters were as follows: field of view (FOV) 

=250 mm ×250 mm, slice thickness =3 mm, slice gap 

=0.3 mm, fold-over direction = feet/head, number of excita-

tion (NEX) =2, voxel size =0.49×0.49×3.0 mm3, and time 

of echo (TE)/time of repetition (TR) =7.2/530 ms (T1W) 

and 120/3,314 ms (T2W). A total of eleven sagittal images 

covering the whole cervical spinal cord were acquired. For 

axial imaging, the imaging parameters were as follows: FOV 

=80 mm ×80 mm, slice thickness =7 mm, slice gap =2.2 mm, 

fold-over direction = anterior/posterior (AP), NEX =3, voxel 

size =0.56×0.56×7.0 mm3 (T1W) and 0.63×0.63×7.0 mm3 

(T2W), and TE/TR =8/1,000 ms (T1W) and 120/4,000 ms 

(T2W). A total of 12 transverse images covering the cervi-

cal spinal cord from C1 to C7, each of which was placed 

at the center of either vertebra or intervertebral disk, were 

acquired.

DTI was acquired using sequence and parameters that 

were in line with the earlier study:27,28 single-shot spin-

echo echo-planar imaging (EPI). Diffusion encoding was 

in 15 noncollinear and noncoplanar diffusion directions 

with b-value = 600 seconds/mm2. The imaging parameters 

were as follows: FOV = 80 mm × 80 mm, slice thickness 

= 7 mm, fold-over direction = AP, NEX =3, voxel size = 

0.63×0.63×7.0 mm3, TE/TR = 60 ms per five heartbeats. 

Cardiac vectorcardiogram triggering was applied to minimize 

the pulsation artifact from cerebrospinal fluid.29 The image 

slice planning was the same as the anatomical axial T1W and 

T2W images, with 12 slices covering the cervical spinal cord 

from C1 to C7. The mean duration of DTI was 24 minutes 

per subject with an average heart rate of 60 beats/min.

BOLD functional MR (fMR) imaging were acquired 

with a single-shot gradient-echo EPI sequence. A total of 

15, 5 mm-thick, contiguous para-axial slices were acquired 

covering C3–C8 vertebral levels (Figure 1A), in orienting 

approximately to the longitudinal axis of the spinal cord 

(Figure 1B). The imaging parameters were as follows: 

FOV =80 mm ×80 mm; rectangular FOV =45%; scan per-

centage =80%; voxel size =1×1×5 mm3; phase-encoding 

direction = AP; flip angle =45°; TR =2.5 seconds; TE =15 ms; 

EPI factor =29; NEX =3. Signal changes in BOLD intensity 

was showed in Figure 1C.

Image analysis
The spinal cord morphometry was analyzed using previously 

reported methods,30 including the measurement of cross-

sectional area and compression ratio of the spinal cord based 

on axial T2W images (Figure 2A and B). The compression 

ratio was calculated by dividing the smallest anteroposterior 

diameter of the cervical cord in anterior to posterior (AP) by 

the broadest transverse diameter (W) as AP/W.

Diffusion tensor measurement was performed using 

DTI Studio software (Version 2.4.01 2003; Johns Hopkins 

Medical Institute, Johns Hopkins University, Baltimore, 

MA, USA). To reduce the effect of motion artifact, image 

volume realignment and three-dimensional rigid body reg-

istration with different diffusion gradients were conducted. 

The preprocessed diffusion-weighted data sets were used 

for the estimation of diffusion tensors, consisting of three 

eigenvalues and the corresponding eigenvectors. The maps 

of FA, AD, and RD were derived from the diffusion matrix 

accordingly. The regions of interest (ROI) were defined by 

A B Healthy CSM

C3

C8

Signal change

* ** **
10%

8%

6%

4%
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0%
LH RH BH

CSM

Healthy

2.8 Z-score 4.0

C

Figure 1 (A) Slice prescription by sagittal view of anatomical image. fMRI analysis 
was conducted on the data from 15 consecutive, 5 mm-thick axial slices oriented 
perpendicularly to the longitudinal axis of the spinal cord. (B) Representative maps 
from one healthy subject and one patient with CSM, showing the spatial location 
of activated voxels in response to bilateral stimulation. (C) Signal changes (mean ± 
SD) related to stimulation applied to LH, RH, and BH. Asterisks indicate significant 
differences (*P<0.05; **P<0.01).
Abbreviations: BH, bilateral hand; CSM, cervical spondylotic myelopathy; fMRI, 
functional magnetic resonance imaging; LH, left hand; RH, right hand.
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the B0 images to cover the spinal cord manually (Figure 3A 

and B). ROI definition and morphometry measurements 

were performed using ImageJ (National Institute of Health, 

Bethesda, MD, USA). The mean value of FA, AD, and RD 

within the ROI compared between healthy subjects and 

patients with CSM was used for correlation with fMRI 

signal changes.

fMRI data analysis
fMR images of each subject were processed by using FSL 

(FMRIB Software Library, www.fmrib.ox.ac.uk/fsl). Motion 

correction was performed using FLIRT (FMRIB’s Linear 

Image Registration Tool).31 For each subject, a mask of the 

spinal cord was manually drawn on each slice to be segmented 

from surrounding tissues. The FEAT (FMRI Expert Analysis 

Tool) with general linear model analysis (FSL toolkit) was 

used to identify spinal voxels demonstrating a response 

matching gamma-variate hemodynamic response function 

(mean lag: 6 seconds; width: 3 seconds) based on earlier stud-

ies.32 The time series were band-pass filtered (0.05–0.5 Hz), 

and no spatial smoothing was performed due to the limited 

dimensions of the spinal cord and the expected extent.20 

Active voxels were identified as those having P<0.0025 

(uncorrected), which were consistent with the earlier fMRI 

in the cervical spinal cord.33 The mean MRI signal change 

at each time point of active voxels was obtained to generate 

the whole time course of the hemodynamic response to the 

neuronal activity in the spinal cord. Values were averaged for 

each subject across all active voxels. A mean time course was 

generated by averaging over each task block from the whole 

time course.14 Then, the baseline corrections were applied 

by using the average of the three points before the onset 

of stimulation in each block. The signal intensity change 

of stimuli-induced activation was defined as the average 

Figure 2 Illustration of the measurement of spinal cord morphometry (mean ± SD), including cross-sectional area and compression ratio of the spinal cord based on 
axial T2W images in healthy subjects (upper panel of image A) and patients with CSM (lower panel of image A). Compression ratio was calculated by dividing the smallest 
anteroposterior diameter of the cervical cord (AP) by the broadest transverse diameter (W) as AP/W. Histogram reveals a significant decrease in cross-sectional area and 
compression ratio in myelopathic cord compared with healthy cord (B) (*significant difference with P<0.05).
Abbreviations: AP, anterior/posterior; CSM, cervical spondylotic myelopathy; T2W, T2 weighted.
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Figure 3 Representative sagittal T2W, B0, FA, AD, and RD images at the C3–C4 level in healthy (A) and myelopathic cord (B). FA image shows the intact structural integrity 
of healthy cord. Structural integrity is damaged in myelopathic cord in which the disk herniation is clearly visible. Histogram (mean ± SD) reveals a significant decrease in FA 
value and increase in RD value in myelopathic cord, whereas there was no difference in AD value, in comparison with healthy cord (C) (**significant difference with P<0.01).
Abbreviations: AD, axial diffusivity; CSM, cervical spondylotic myelopathy; FA, fractional anisotropy; RD, radial diffusivity; T2W, T2 weighted.

of the 10-second time window including the highest peak 

( Figure 1C).32 BOLD signal change corresponding to bilateral 

stimulation was used to correlate with morphometry and 

diffusion measurements, to investigate structure–function 

associations of the cervical spinal cord.

Statistical analysis
The statistical analysis was performed using SPSS 15.0 

analysis software (SPSS Inc., Chicago, IL, USA). Differences 

in compression ratio, cross-sectional area, FA, AD, and RD 

values and BOLD signal change in patients with CSM versus 

healthy subjects were evaluated using two-tailed two-sample 

t-tests. Pearson’s correlation coefficient was used to evalu-

ate the relationship between BOLD signal changes and the 

metrics of diffusion tensor measurements or morphometry. 

A value of P<0.05 was set as the statistical threshold.

Results
Morphometric data
Figure 2B shows the results of comparison of cross-

sectional area and compression ratio of the spinal cord 

in healthy and myelopathic cervical spinal cord. It 

was found that the cross-sectional area in healthy cord 

(81.78±15.59 mm2) was significantly larger than myelo-

pathic cord (61.35±14.71 mm2; P<0.05). Meanwhile, the 

compression ratio of healthy cord (58.33%±13.03%) was 

also significantly higher in comparison with myelopathic 

cord (51.51%±10.13%; P<0.05).

BOLD functional activation
Functional responses in response to somatosensory stimuli 

could be observed in both healthy and myelopathic cord, 

as shown in Figure 1B. It was found that the BOLD signal 

change in myelopathic cord was significantly higher than 

that in healthy cord, which was consistently related to the  

stimulation applied to left hand (healthy: 5.16%±0.41%; 

CSM: 6.46%±1.02%, P<0.05), right hand (healthy: 

5.14%±0.28%; CSM: 7.23%±1.14%, P<0.01), and bilat-

eral hand (healthy: 5.52%±0.21%; CSM: 7.86%±0.95%, 

P<0.01). In addition, the signal change related to bilat-

eral stimulation was significantly higher than unilateral 

stimulation in both healthy subjects or patients with CSM 
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Figure 4 Correlations of functional activation versus morphometry or microstructural integrity in healthy (upper row) and myelopathic cord (lower row).
Notes: It was found that the relationship between BOLD signal change and FA value indicates a significant linear correlation in patients with CSM and a nonsignificant trend 
in healthy subjects. Both healthy and myelopathic cord showed a significant correlation between BOLD signal change and RD value. The correlation of functional response 
versus diffusion tensor measurement was much higher than that of morphometry.
Abbreviations: BOLD, blood oxygen level dependent; CSM, cervical spondylotic myelopathy; FA, fractional anisotropy; RD, radial diffusivity.
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(P<0.05), while there was no significant difference of 

signal change with regard to left or right hand stimulation 

(P>0.05).

Diffusion tensor imaging
As shown in Figure 3C, diffusion tensor images demon-

strated diffusion property changes of myelopathic cord 

in comparison with healthy cord. Compared with healthy 

subjects, the FA value of patients with CSM was signifi-

cantly decreased (healthy: 0.65±0.07; CSM: 0.53±0.10; 

P<0.01). There was no significant difference of AD value 

between healthy subjects and patients with CSM (healthy: 

1.71±0.14×10-3 mm2/s; CSM: 1.73±0.13×10-3 mm2/s; 

P>0.05), whereas RD value in patients with CSM 

was signif icantly higher in comparison with that in 

healthy subjects (healthy: 0.63±0.12×10-3 mm2/s; CSM: 

1.05±0.47×10-3 mm2/s; P<0.01).

fMRI activation versus morphometry and 
diffusion measurement
The relationship of compression ratio, cross-sectional area, 

FA value, and RD value versus BOLD signal change was 

revealed separately, as shown in Figure 4. The morphometry 

measurement did not correlate with functional response in 

healthy subjects or patients with CSM (compression ratio 

versus BOLD signal change, healthy: r=-0.3249, P=0.2571; 

CSM: r=0.4733, P=0.3430). Cross-sectional area versus 

BOLD signal change, (healthy: r=0.1128, P=0.7011; CSM: 

r=-0.1712, P=0.7457). The BOLD signal change was sig-

nificantly correlated with FA value in patients with CSM 

(r=-0.8938, P=0.0163), and a strong trend in the oppo-

site direction was shown in healthy subjects (r=0.4887, 

P=0.0764). Significant correlation between BOLD sig-

nal change and RD value was found in healthy subjects 

(r=-0.5348; P=0.0488) and patients with CSM (r=0.8239; 

P=0.0438).

Discussion
In this study, we used conventional T2W imaging and DTI to 

measure the macroscopic morphometry and microstructural 

integrity within healthy and myelopathic spinal cord. The 

structural information was then correlated with a functional 

assessment: the neural activation of spinal cord in response 

to the somatosensory stimulation detected by BOLD fMRI. 

The result indicated that cross-sectional area, compression 

ratio, and FA value in myelopathic cord were all significantly 
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lower than that in healthy cord. RD value in myelopathic 

cord was significantly higher than that in healthy cord. FA 

value exhibited a significant linear correlation with fMRI 

response in myelopathic cord, and a nonsignificant trend in 

healthy cord. Both healthy and myelopathic cord showed a 

significant correlation between fMRI response and RD value. 

This study provides the first demonstration, to the best of 

our knowledge, of a quantitative relationship between the 

structure and function in healthy and myelopathic cord by 

a combination of anatomical, diffusion tensor, and fMRI, 

and also it provides information about residual function in 

the compressed cord, which describes the various surgical 

prognoses of CSM.

Methodological considerations and 
spinal BOLD response related to 
somatosensory stimulation
We have chosen somatosensory stimulation in this study 

for BOLD signal acquisition because patients with CSM 

may have difficulty performing a motor task independently, 

and to avoid intersubject variability caused by different 

performances of the tasks.34 Compared with motor tasks, 

sensory input produces a more broad response, with dif-

ferent sensory paths forming synapses in different loca-

tions.17 The rostrocaudal of the segmental fMRI activation 

in response to median sensory stimuli was reported to 

localize at C4–T117 and C3–C8.19 Therefore, the BOLD 

signal was acquired from the level of C3–C8 in our study 

(Figure 1A). Compared with brain, the threshold used for 

spinal fMRI analysis was relatively lower, where Z value 

ranged from 1.6 to 3.1.12,15,17,20,32,33 In consideration of 256 

volumes acquired in each run, the threshold for identifying 

the active voxels in our study is much stricter than those 

thresholds used in earlier spinal BOLD fMRI studies. In 

this study, the stimulation block applied to the left hand, 

right hand, and bilateral hand was designed to be given 

in a pseudorandom order. The result showed that BOLD 

signal change in response to bilateral sensory stimula-

tion was significantly higher than unilateral stimulation in 

healthy and myelopathic cord. The BOLD signal change in 

healthy cord (5.1%–5.5%) was consistent with the earlier 

reports,18,20 whereas the signal change in myelopathic cord 

(6.5%–7.9%) was significantly higher than that in healthy 

cord. Earlier studies have reported that there was enhanced 

activation in diseased35 or injured cord36 in comparison with 

healthy cord. Our results indicate that this enhanced fMRI 

response could also be detected in CSM.

Investigation of structural integrity 
of cervical spinal cord via diffusion 
anisotropy
DTI has been widely applied in the spinal cord for detailed 

analyses of tissue morphology and pathology.7 By measur-

ing changes in the directional diffusion of water, FA can 

reflect structural characteristics of white matter (eg, axo-

nal diameter, fiber density, and myelination) and quantify 

the integrity of these structures.37 As shown in Figure 3, 

compared with intact healthy cord, the structural integrity 

of myelopathic cord was obviously impaired by compres-

sion due to disk herniation. The FA value of healthy cord 

found in our study was 0.65±0.07 (C2–C7), which is 

in agreement with earlier reports: from 0.74±0.01 (C2) 

to 0.56±0.02 (C7),4 0.721±0.027 (C2–C7),38 0.57±0.04 

(C2–C7),39 and 0.61±0.05.40 The FA value measured in 

myelopathic cord was 0.53±0.10, which was also compa-

rable with 0.311–0.62141 and 0.498±0.114.42 Notably, the 

FA value measured in this study is slice averaged rather 

than being measured at compression level or stenotic seg-

ments, due to the following reasons: 1) FA value in the 

spinal cord is decreased with level,38,39 thus the values at 

different levels should be normalized before comparison. 

2) There are multilevel compression cases among patients 

with CSM, so that only the FA value at the most severe 

compression level could not represent the entire structural 

abnormalities of spinal cord. 3) Even in the single-level 

compression cases, it was found that the lowest FA value 

did not inevitably occur at the site of compression.28 There-

fore, in the current study, we used the averaged FA value 

of cervical spinal cord to characterize the overall extent of 

microstructural integrity.

To facilitate interpretation of the FA value changes 

in CSM, we also examined the AD and RD value. AD 

describes the principal eigenvalue (l1) and provides infor-

mation about the integrity of axons, whereas RD describes 

the mean of remaining two minor eigenvalues (l2 and l3) 

perpendicular to the axonal fibers and provides information 

about the integrity of myelin.11,43 Our result demonstrates 

that RD value of myelopathic cord had a significant increase 

in comparison with healthy cord while there was no signifi-

cant difference of AD value, in accordance with the earlier 

studies.44 The current finding tentatively suggests that the 

reduced integrity (decreased FA) in CSM was mainly due 

to myelin loss and the increased freedom of cross-fiber dif-

fusion in nerve tracts (increased RD), rather than axonal 

damage (decreased AD).
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Speculation on the relationship between 
function and structure of the spinal cord
The current study examined the relationship of functional 

activation versus macroscopic structure provided by the T2W 

images and microstructural integrity provided by diffusion 

tensor images in healthy and myelopathic cervical spinal 

cord. FA and RD values showed a much higher correlation 

with functional response compared with cross-sectional area 

or compression ratio. This result indicates that diffusion 

tensor measurement provides a more accurate estimation of 

functional behavior than morphometry. The enhanced spinal 

cord activation associated with structural damage may reflect 

the functional reorganization of the myelopathic cord. Earlier 

studies have investigated the functional reorganization of cen-

tral nerve system by using fMRI in humans45,46 and animals.47 

These studies indicated that the intact cortex or cord demon-

strates profound reorganization to compensate the deficits of 

the injured site, which corresponds to the behavioral adapta-

tions. Moreover, expanded cortical activation was detected 

in patients with CSM.48 The enhanced fMRI response of 

myelopathic cord might be the result of more neurons and 

synapses involved in performing neurological activity, cor-

responding to the increased area of cortical activation. Our 

current result also, interestingly, showed a significant linear 

correlation of increased BOLD signals with decreased FA 

and increased RD value in myelopathic cord. This finding 

indicates that the extent of microstructural damage is a factor 

relevant to the extent of functional reorganization in the CSM. 

Several limitations of the current study should be con-

sidered. First, the sample size of the patients with CSM was 

relatively small due to the long duration of the acquisition and 

discomfort from somatosensory stimulation. Nevertheless, 

our results successfully demonstrated structural abnormalities  

as well as a significant correlation with the enhanced func-

tional activation in myelopathic cord. The applicability of 

the combination of fMRI and DTI techniques would provide 

precise evaluation of the severity and the prognosis of surgi-

cal outcomes after a large-scale clinical study in the future. 

 Second, the compromised spatial resolution of spinal cord 

caused the partial volume effect, which poses a difficult 

challenge for the analysis of diffusion MR imaging of spinal 

cord.49 In addition, the low spatial resolution of the BOLD 

fMR imaging does not allow us to clearly determine which 

regional increase in activation played a functional role in 

compensating for the structural damage in the patients. 

Therefore, further improvement on imaging spatial resolu-

tion to provide more spatial information about functional 

reorganization of spinal cord is an important future goal.

Conclusion
The current study demonstrated morphometric abnormalities 

and microstructural changes in myelopathic cord compared 

with healthy cord, as measured by conventional T2W imag-

ing and DTI. Diffusion tensor measurements indicated a 

stronger correlation with BOLD functional behavior than 

 morphometry. The decreased FA value and increased RD 

value were significantly and linearly related to increased 

functional activation, which reflects that the extent of 

microstructural damage is related to the extent of functional 

reorganization in CSM. This study shows that the assessment 

of spinal cord functional activity associated with microstruc-

tural integrity measurement holds significant promise to 

gain a deep understanding of functional reorganization and 

structural damage in CSM.
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