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Abstract: Ad vectors are promising delivery vehicles for cancer therapeutic interventions. 

However, their application is limited by promiscuous tissue tropism and hepatotoxicity. This 

limitation can be avoided by altering the native tropism of Ads so that they can be redirected to 

the target cells through alternate cellular receptors. The CXCR4 chemokine receptor belongs 

to a large superfamily of G-protein-coupled receptors and is known to be upregulated in a wide 

variety of cancers, including breast cancer and melanoma. These receptors have been associ-

ated with cancer cell survival, progression, and metastasis. In the current study, an Ad to cancer 

cells overexpressing CXCR4 by using a bispecific adapter, sCAR-CXCL12, was retargeted. 

The sCAR-CXCL12 adapter contained the soluble ectodomain form of the native Ad5 recep-

tor (sCAR), which was fused to a mature human chemokine ligand, CXCL12, through a short 

peptide linker. A dramatic increase in the infectivity of cancer cells using a targeted Ad vector 

compared with an untargeted vector was observed. Furthermore, sCAR-CXCL12 attenuated 

Ad infection of liver ex vivo and in vivo and enhanced Ad vector infection of xenograft tumors 

implanted in immunodeficient SCID-bg mice. Thus, the sCAR-CXCL12 adapter could be used 

to retarget Ad vectors to chemokine receptor-positive tumors.

Keywords: adapter, adenovirus serotype 5, cancer, hCAR, human coxsackievirus and adeno-

virus receptor, chemokine receptor, CXCL12, CXCR4, gene therapy, retargeting, viral vector

Introduction
Despite an overall decline in the death rate over the past two decades, cancer remains 

the second leading cause of death in the US.1 Therefore, there is a need to explore 

novel therapeutic approaches for treating cancer. Ad-based therapies have captured 

considerable interest in recent years in developing novel cancer treatment regimens 

to improve the survival rates in patients with cancer. Attributes such as large DNA 

incorporation capacity, high gene transfer efficiency, systemic stability, and low patho-

genicity in human beings make the Ad a suitable vector for a variety of gene delivery 

and oncolytic virotherapy applications.2,3 Although attractive as gene delivery vehicles, 

the efficacy of Ad vectors is compromised because of their broad tissue tropism that 

leads to off-target uptake of Ads by normal cells.

Ad infection is initiated by the binding of its fiber knob domain to the hCAR in the 

host cell.4 This receptor is highly, but not exclusively, expressed on parenchyma cells 

in the liver. Thus, upon systemic administration, Ad is sequestered mainly in the liver, 

leading to hepatotoxicity.5 In contrast, cancer cells that often represent prime targets 

for cancer gene therapy are poorly transduced by the Ad vector due to the low and het-
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erogeneous levels of the hCAR present on their cell surface.6 

Despite many clinical trials that have indicated vector safety, 

Ad vectors have shown limited therapeutic activity, in part, 

because of poor infection efficiency of tumors after systemic 

delivery.7 Thus, alternative Ad vector approaches that rely on 

hCAR-independent infection pathways are necessary.

One of the strategies that can be employed to retarget Ad 

vectors to a nonnative viral receptor to achieve cellular speci-

ficity relies on transductional untargeting and retargeting, 

wherein the initial interaction between the trimeric Ad fiber 

and hCAR is blocked. This strategy allows for Ad-specific 

uptake by an indirect cross-linkage formed between an Ad 

particle and a receptor-specific target cell. Selective transduc-

tion of the target cells can be achieved by bispecific fusion 

proteins or adapter molecules. These have a dual binding 

specificity that allows them to interact with the knob com-

ponent of the Ad fiber as well as with the cellular receptors 

expressed preferentially on the target cell. This selective 

transduction helps in ablating native tissue tropism of Ad 

while simultaneously redirecting it to the cell of interest.

The feasibility and efficacy of the adapter-based approach 

for transductional untargeting and retargeting Ads have 

already been demonstrated in several studies.8–10 Ad retar-

geting to cancer cells has been achieved using molecular 

adapters toward different cellular receptors, including the 

epidermal growth factor (EGF) receptor,11 the c-ErbB-2 onco-

protein,12 the urokinase-type plasminogen activator receptor,13 

the fibroblast growth factor receptor,14 and carcinoembryonic 

antigen.15 A bispecific adapter that retargeted an Ad to the 

IL-2 receptor was used to overcome resistance to infection of 

T lymphocytes.16 In addition, a bispecific adapter enhanced 

transduction of dendritic cells through CD40.17

In the current study, we directed our efforts to retarget the 

Ad vector toward CXCR4 chemokine-receptor-expressing 

cancer cells using the CXCL12 ligand. CXCL12 (also known 

as SDF-1) is a CXC chemokine that is widely expressed in a 

variety of tissue types and functions as a potent chemoattrac-

tant for immature and mature hematopoietic cells.18 CXCR4 

is a seven-membrane spanning G-protein-coupled receptor 

for CXCL12, whose role is implicated in a wide variety of 

solid19 and hematopoietic tumors,20 including breast cancer21 

and melanoma.22 Altered expression of the CXCR4 receptor 

drives the signaling process of cancer cell migration and 

invasion23 and is associated with metastasis.24 CXCR7 is an 

alternate receptor for CXCL12, which is overexpressed in 

endothelial cells associated with tumors.25 Similar to CXCR4, 

CXCR7 plays a role as a G-protein-coupled receptor in 

regulating immunity, angiogenesis, stem cell trafficking, and 

mediating organ-specific metastases of cancer.26 However, 

CXCR7 may also function as a decoy receptor in which 

G-protein signaling is not activated. CXCR7 can signal 

through non-G-protein pathways.27 In addition, CXCR7 can 

heterodimerize with CXCR4 to mediate CXCL12 signaling.27

To retarget Ads, a novel bispecific adapter was generated, 

which embodies fusing a sCAR and human chemokine ligand 

CXCL12. We hypothesized that sCAR-CXCL12 would redi-

rect Ad vectors to the chemokine receptors overexpressed 

on cancer cells. This study reports that sCAR-CXCL12 

recombinant fusion protein efficiently retargets Ad5 vector to 

human cancer cells overexpressing CXCR4. In vivo, our data 

demonstrate tumor-selective targeting based on chemokine 

receptor binding coupled with hepatic untargeting of Ad using 

sCAR-CXCL12 adapter molecule. Overall, sCAR-CXCL12 

could be used to improve the transductional ability of Ad 

vectors toward receptor-positive tumors, thereby limiting 

hepatic infection.

Materials and methods
Approval to perform the experimental protocols using 

human tissue samples in this study was obtained from the 

institutional review board at the University of Alabama at 

Birmingham. All patients provided written informed consent 

for the collection of samples and subsequent analysis. Fresh 

human liver samples were collected from the Department 

of Surgery (the University of Alabama at Birmingham) at 

the time of a medically indicated therapeutic or diagnostic 

procedure. Only tissue samples no longer required for patient 

management or evaluation and to be discarded were used. All 

animals used in this study received humane care based on 

guidelines set by the American Veterinary Medical Associa-

tion. The experimental protocols involving live animals were 

reviewed and approved by our Institutional Animal Care and 

Use Committee.

Cell lines
The human cancer cell lines, MDA-MB-435S, ZR-75-1, 

BT-20, and MCF-7, and a human immortalized non-tumori-

genic epithelial cell line, MCF-12A, were obtained from the 

American Type Culture Collection (ATCC, Manassas, VA, 

USA). While the ZR-75-1, BT-20, and MCF-7 cell lines are 

of human breast cancer origin, the MDA-MB-435S cell line 

is likely derived from a melanoma.28 All the cancer cell lines 

were maintained in DMEM (Corning Life Sciences, Oneonta, 

NY, USA), containing 10% FBS (Gemini Bioproducts, 

Woodland, CA, USA) and 1% antibiotic–antimycotic solution 

(Corning Life Sciences). MCF-12A cells were cultured in 
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DMEM/F12 (Corning Life Sciences) containing 5% donor 

horse serum (Atlanta Biologicals, Lawrenceville, GA, USA), 

0.5 µg/mL hydrocortisone (Sigma-Aldrich, St. Louis, MO, 

USA), 0.01 mg/mL bovine insulin (Sigma-Aldrich), 100 ng/

mL cholera toxin (Sigma-Aldrich), and 20 ng/mL human 

EGF (Thermo Fisher Scientific, Waltham, MA, USA). All 

the cell lines were maintained at 37°C in a humidified 5% 

CO
2
 atmosphere.

Ad vectors
Purified Ad serotype 5 (Ad5) and Ad serotype 3 (Ad3) fiber 

knob proteins were produced as described earlier29 and pro-

vided by Dr Anton V Borovjagin (the University of Alabama 

at Birmingham). An Ad vector (Ad5-CMV-GFP-luc), which 

was E1, E2, and E3 deleted and carried the GFP and firefly 

luc reporter under the control of the cytomegalovirus (CMV) 

promoter, and a wild-type Ad5 vector were constructed as 

described earlier.29 The propagation of Ad vectors was per-

formed using the permissive 293 human embryonic kidney 

cell line and the A549 human lung adenocarcinoma epithelial 

cell line followed by purification according to an established 

protocol.30

Construction and purification of a 
recombinant bispecific adapter
We generated a novel recombinant adapter molecule that was 

composed of an ectodomain portion of the human Coxsackie 

and Ad receptor (amino acid sequence 1–236; GenBank 

accession BC010536, bp 76–783) followed by a 5-amino-

acid peptide linker (GGPGS), a 6-His tag sequence (for 

detection and purification), fused to the mature human che-

mokine CXCL12/SDF-1a sequence (amino acid sequence 

22–89; GenBank accession NM_199168.3, bp 156–359). 

Amino acids 22–89 represent the mature form of CXCL12. 

CXCL12a is processed from an initial translation product 

of 89 amino acids, in which the first 21 amino acids at the 

N-terminus serve as a signal peptide for secretion that is 

subsequently cleaved to produce the mature form.

The cDNA coding for the recombinant fusion protein 

was assembled in a baculovirus expression plasmid, and its 

integrity was confirmed by DNA sequencing. Linearized 

plasmid DNA was then used to establish stable insect Sf9 

cell line producing sCAR-CXCL12 as a secreted protein. 

A positive clone, constitutively secreting the product, was 

expanded, and the fusion protein was purified by Ni column 

chromatography. Fractions were eluted from the column with 

250 mM imidazole and dialyzed against buffer A (pH 8.0) 

containing 20 mM Tris–HCl, 300 mM NaCl, and 5% glycerol. 

Purified recombinant protein was subjected to a 12% sodium 

dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis 

(PAGE) followed by Western blot analysis using anti-His tag 

(EMD Millipore, Billerica, MA, USA), anti-hCAR (R&D 

Systems, Minneapolis, MN, USA), and anti-CXCL12 (Novus 

Biologicals, Littleton, CO, USA) primary antibodies. This 

experiment was used to confirm the identity of the target 

protein regarding purity and size.

Flow cytometry analysis
The cell surface expression of chemokine receptors CXCR4 

and CXCR7, as well as hCAR and integrins a
v
β

3
 and a

v
β

5
, 

were examined by a panel of human cancer and immortal-

ized non-tumorigenic cell lines using flow cytometry. The 

cells were harvested from the cell culture flasks using 1× 

Versene (Thermo Fisher Scientific) and washed twice with 

PBS. Subsequently, cells were incubated in the dark with 

either PBS (unstained) or different primary antibodies, 

including 1) PE-labeled mouse antihuman CXCR4 mono-

clonal antibody (BD Biosciences, San Jose, CA, USA), 2) 

PE-labeled mouse antihuman CXCR7 monoclonal antibody 

(BD Biosciences), 3) PE-labeled mouse IgG2a κ isotype 

control (BD Biosciences), 4) PE-labeled mouse antihuman 

hCAR monoclonal antibody (Santa Cruz Biotechnology, 

Santa Cruz, CA, USA), 5) PE-labeled mouse IgG1 κ isotype 

control (Abcam, Cambridge, MA, USA), 6) FITC-labeled 

mouse antihuman integrin a
v
β

3
 monoclonal antibody (EMD 

Millipore), 7) FITC-labeled mouse antihuman integrin a
v
β

5
 

monoclonal antibody (EMD Millipore), and 8) FITC-labeled 

mouse IgG1 κ isotype control (BD Biosciences). The anti-

bodies were diluted in PBS and incubated with the cells at 

4°C for 30 min. Following incubation, the cells were washed 

twice with PBS, resuspended in 0.4 mL PBS, and analyzed 

by flow cytometry using a FACSCalibur instrument (BD 

Biosciences).

ELISA
The binding specificity of the sCAR-CXCL12 fusion protein 

to the Ad5 fiber knob protein was tested by an ELISA. Ad5 

fiber knob protein was adsorbed on a Nunc Maxisorp 96-well 

plate followed by the overnight incubation at 4°C. Following 

extensive washes with Tris-buffered saline containing 0.05% 

Tween-20 (TBS-T) and blocking with 2% bovine serum 

albumin in TBS-T, the sCAR-CXCL12 fusion protein was 

added at varying concentrations ranging from 0 to 100 ng. 

This addition was followed by incubation with anti-His tag 

monoclonal antibody (Qiagen, Valencia, CA, USA) for 2 h 

at room temperature. After the addition of HRP-conjugated 
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goat anti-mouse secondary antibody (Bio-Rad, Hercules, 

CA, USA) and incubation for 2 h at room temperature, 

colorimetric reaction was performed by TMB substrate (BD 

Biosciences) and absorbance was read at 450 nm on a micro-

plate reader (Molecular Devices, Sunnyvale, CA, USA). A 

parallel experiment was run using fiber knob protein derived 

from Ad3 that served as a negative control.

Biological activity of the adapter protein
The biological activity to determine the optimum ratio of 

sCAR-CXCL12 adapter to Ad5-CMV-GFP-luc was deter-

mined by an infectivity assay. MDA-MB-435S cells (1 × 105 

cells/well) growing in culture were plated in a 24-well tissue 

culture plate. The cells were allowed to attach by overnight 

incubation at 37°C. Following day, Ad5-CMV-GFP-luc (100 

ifu/cell) was complexed with sCAR-CXCL12 at increasing 

concentrations (0, 1, 10, 100, and 1000 ng) for 20 min at room 

temperature. The sCAR-CXCL12–Ad conjugates (in a final 

volume of 250 µL with DMEM containing 2% FBS) were then 

added to monolayers of MDA-MB-435S cells and incubated 

for 4 h at 37°C. Afterward, the medium was replaced with 

1 mL of DMEM containing 10% FBS. At 48 h post infec-

tion, quantitative analysis was performed by flow cytometry 

to determine the percentage of GFP reporter gene-expressing 

cells. To achieve maximum retargeting efficacy, the optimum 

time of Ad5 infection in the absence and presence of sCAR-

CXCL12 adapter molecule was determined by infection of 

MDA-MB-435S cells. Briefly, 1 × 105 cells/well were infected 

in the presence and absence of retargeted Ad vector at various 

time points (0, 5, 15, 30, 60, 120, and 240 min) in a minimum 

volume of reduced serum culture medium (DMEM containing 

2% FBS). Following incubation for the respective time periods 

at 37°C, medium containing virus or virus–adapter complexes 

was replaced with culture medium containing 10% FBS, and 

cells were allowed to incubate for 48 h at 37°C for maximal 

expression of the reporter gene. Infectivity was determined 

by fluorescence microscopy and flow cytometry.

Blocking assay
Before infection, MDA-MB-435S cells were pre-incubated 

with increasing concentrations of a mouse monoclonal 

CXCR4 blocking antibody (Abcam) for 30 min at 4°C. After 

washing with PBS, Ad5-CMV-GFP-luc (100 ifu/cell) pre-

complexed with sCAR-CXCL12 (100 ng/108 ifu) was added 

to the cell monolayers and incubated for 1 h at 4°C. Follow-

ing infection, cells were harvested, and DNA was extracted 

using QIAamp DNA Mini Kit (Qiagen) for the determina-

tion of viral E4 copy number using Ad5 E4-specific  primers 

(upstream, 5′-d(GGGTCGCCACTTAATCTACCT)-3′; 
downstream, 5′-d(GCAAGGCGCTGTATCCAA)-3′) by 

real-time polymerase chain reaction (PCR).

Ad retargeting on cultured cell lines
To determine the retargeting efficacy of bispecific adapter, 

sCAR-CXCL12, to cells expressing the CXCR4 chemokine 

receptor, the cells (MDA-MB-435S, MCF-7, ZR-75-1, 

BT-20, and MCF-12A) were plated at a density of 1 × 105 

cells/well in a 24-well tissue culture plate. Following over-

night incubation, cell monolayers were infected with Ad5-

CMV-GFP-luc at increasing MOI (0, 1, 10, 100, and 1000 

ifu/cell) in the absence or presence of sCAR-CXCL12 (100 

ng/well) in a minimal volume of medium containing 2% 

FBS. Before infection, Ad was allowed to form complexes 

with sCAR-CXCL12 protein for 20 min at room temperature. 

The medium was changed by aspiration after 4 h incubation 

at 37°C and replaced with fresh DMEM containing 10% 

serum. After 48 h incubation, the cells were examined by 

fluorescence microscopy and the percentage of GFP-positive 

cells was determined by flow cytometry.

Ad untargeting of the liver in a tissue 
slice model
The samples obtained were rinsed in ice-cold saline and 

stored in media on ice until brought to the laboratory for 

the experimental procedure. Thin liver slices were cut using 

the Krumdieck tissue slicing system (Alabama Research 

and Development, Munford, AL, USA) according to the 

manufacturer’s instructions as described earlier.31 Briefly, 

8 mm coring tool was used to make 8 mm diameter core of 

human liver tissue. The tissue was then placed in a slicer 

filled with ice-cold culture media. Slices (250 µm thick) were 

cut with the reciprocating blade at 30 rpm. Cell number for 

tissue slices was estimated at 1×106 cells per slice based on 

a ten-cell thick slice (250 µm) and 8 mm slice diameter. For 

infectivity experiments, tissue slices were placed into six-

well plates (one slice per well) containing 2 mL of complete 

culture media (William’s medium E with 1% antibiotics, 1% 

l-glutamine, and 10% FBS). Before infection of liver slices, 

Ad5-CMV-GFP-luc (~100 ifu/cell) was pre-complexed with 

sCAR-CXCL12 (100 ng/108 ifu) bispecific adapter. At 4 h 

post infection, virus–adapter complexes were removed, and 

slices were incubated in fresh culture medium for 48 h at 

37°C. Infectivity was determined by using a standard luc 

assay. Alternatively, liver slices were infected with wild-

type Ad5 virus (~100 ifu/cell) alone or conjugated with 
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sCAR-CXCL12 (100 ng/108 ifu). Viral copy number was 

determined by measuring the E4 gene using real-time PCR 

from DNA samples extracted from the medium at day 2 and 

4 post infection.

Systemic Ad administration to measure 
hepatic untargeting
Female SCID-bg mice at 4–6 weeks of age were obtained 

from Charles River Laboratories (Wilmington, MA, USA). 

Before i.v. administration, Ad5-CMV-GFP-luc (1 × 108 ifu/

mouse) was pre-incubated for 1 h at room temperature in the 

absence or presence of sCAR-CXCL12 (5 µg) in a volume of 

100 µL. Three days following virus administration, mice were 

anesthetized with ketamine/xylazine, injected intraperitone-

ally with d-luciferin (300 µL; 125 mg/kg body weight), and 

scanned using an IVIS 100 imaging system (PerkinElmer, 

Waltham, MA, USA). Bioluminescence images were ana-

lyzed using Living Image software version 3.0 (PerkinElmer). 

Regions of interest (ROI) were drawn over the tumor and 

liver area, and total photon counts were calculated. Follow-

ing imaging, mice were sacrificed, and livers were extracted, 

snap frozen, and stored at -80°C. The frozen sections were 

processed later for DNA extraction and determination of viral 

E4 copy number by real-time PCR.

Ad retargeting following intratumoral 
(i.t.) injection into subcutaneous (s.c.) 
tumor xenografts
S.c. xenografts were established in 4–6-week-old female 

SCID-bg mice by injecting 4×106 MDA-MB-435S cells 

into the flanks. When tumors reached ~100 mm3 in size, 

Ad5-CMV-GFP-luc (1 × 108 ifu/mouse) pre-incubated in the 

absence or presence of sCAR-CXCL12 (5 µg) was injected 

intratumorally. At day 3, 6, and 9 post injection, animals were 

imaged noninvasively by an IVIS optical imaging system. 

Mice were sacrificed immediately after the final imaging, 

and tumors and livers were removed, snap frozen, and stored 

at -80°C. DNA was extracted from the frozen sections to 

determine viral E4 copy number by real-time PCR.

Statistical analysis
All experiments were performed at least three times. Data are 

presented as mean ± standard error of the mean of the data 

points. Statistical analysis was performed using Student’s 

t-test, using GraphPad Prism 5.0 software (GraphPad Soft-

ware; La Jolla, CA, USA). Data were considered statistically 

significant when p<0.05.

Results
The human cancer cell line panel has high 
levels of CXCR4 chemokine receptor
We analyzed the cell surface expression of the CXCR4 recep-

tor in a panel of human cancer cell lines (MDA-MB-435S, 

ZR-75-1, BT-20, and MCF-7) by flow cytometry. Since hCAR 

represents the primary receptor for Ad5 vectors and a
v
β

3
 and 

a
v
β

5
 integrins are known to trigger virus internalization into 

the host cell, we also determined the surface expression of 

each molecule. A human epithelial cell line (MCF-12A) 

was used as a control. The results of the flow cytometry 

analysis are shown in Figure 1 and summarized in Table 1. 

These results demonstrated that the cancer cell lines tested 

expressed high to moderate levels of the CXCR4 receptor 

as shown in Figure 1A. However, CXCR7 expression in the 

cancer cell lines was found to be low (Figure 1B), with only 

the MCF-7 and ZR-75-1 cell lines exhibiting detectable lev-

els. Likewise, hCAR expression in the cancer cell lines was 

found to be undetectable (Figure 1C). In addition, these cells 

showed low to moderate surface expression levels of a
v
β

3
 and 

a
v
β

5 
(Figure 1D). In contrast to these results, MCF-12A cells 

expressed low levels of the CXCR4, CXCR7, and integrins 

a
v
β

3
 and a

v
β

5
, while hCAR expression was high. Based on 

the low levels of CXCR7 expression detected in the cancer 

cell panel, we focused on targeting CXCR4 in cancer cells.

Production and purification of a bispecific 
adapter protein sCAR-CXCL12
To target the cell surface expression of the CXCR4 receptor 

on the panel of cancer cells, we generated a recombinant 

bispecific adapter molecule, sCAR-CXCL12, by combining 

ectodomain of hCAR with CXCL12, the chemokine ligand 

of CXCR4 (Figure 2A). We assembled a recombinant cDNA 

coding for the recombinant fusion protein, sCAR-CXCL12, 

consisting of the 236-amino-acid C-terminal portion of human 

hCAR fused to a 72-amino-acid mature form of human 

CXCL12 ligand through a 5-amino-acid peptide linker and a 

6-His detection/purification tag. We confirmed its integrity by 

DNA sequencing. Recombinant protein was expressed using 

a baculovirus vector system in Sf9 cells and purified from the 

supernatant by Ni column chromatography. Analysis of the 

purified protein by SDS-PAGE followed by Coomassie stain-

ing (Figure 2B) and Western blot (Figure 2C) showed a protein 

band of the expected size of ~35 kDa. A second higher band 

was also observed, which could be explained by glycosylation 

of the hCAR ectodomain. Glycosylation does occur in insect 

cells, which is similar but not identical to mammalian cells.32 
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Similar Western blot bands were obtained using an anti-CAR 

antibody and an anti-CXCL12 antibody (Figure 2D).

sCAR-CXCL12 shows specificity toward 
Ad5 fiber knob domain
The specificity of interaction between the Ad5 vector and 

adapter is a critical factor that determines the efficacy and 

specificity of vector retargeting. To characterize the adapter 

protein and determine its binding specificity toward fiber 

knob domain derived from Ad5, we used an indirect ELISA. 

In the experiment shown in Figure 3, recombinant Ad5 or 

Ad3 knob was adsorbed to ELISA plates and the plates were 

subsequently incubated with dilutions of sCAR-CXCL12. 

The binding interaction was detected using an anti-His tag 

antibody. The results indicated a dose-dependent increase in 

the absorbance corresponding to the binding specificity of 

sCAR-CXCL12 adapter to the Ad5 knob protein. However, 

sCAR-CXCL12 failed to interact with the fiber knob domain 

from Ad3 that served as a negative control. These results 

suggest that sCAR-CXCL12 protein interacts with Ad5 fiber 

in a specific manner.

Characterization of sCAR-CXCL12-
mediated Ad infectivity
Determining an optimal adapter dose is important to achieve 

maximal transduction of CXCR4-expressing cancer cells. 

Figure 1 Flow cytometry analysis of CXCR4, CXCR7, hCAR, and integrin avβ3 and avβ5 cell surface expression.
Notes: Evaluation of antigen expression using an anti-CXCR4 antibody (A), an anti-CXCR7 antibody (B), an anti-hCAR antibody (C), and anti-integrin avβ3 and avβ5 
antibodies (D) in human cancer cell lines, MDA-MB-435S, ZR-75-1, BT-20, and MCF-7, and in the immortalized non-tumorigenic breast epithelial cell line MCF-12A.
Abbreviation: hCAR, human Coxsackie and adenovirus receptor.
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The optimal sCAR-CXCL12 to Ad ratio was determined by 

infecting MDA-MB-435S cells for 4 h with Ad5-CMV-GFP-

luc (100 ifu/cell) in the presence of increasing concentra-

tions of sCAR-CXCL12. The infected cells were observed 

for GFP expression following 48 h of infection. There was 

a remarkable increase in the number of GFP-infected cells 

from low to high amounts of the sCAR-CXCL12 adapter as 

evident by flow cytometry analysis (Figure 4A). The flow 

cytometry data showed that sCAR-CXCL12 to Ad ratio 

was optimal at 100 ng sCAR-CXCL12 per 1 × 108 ifu virus. 

At this ratio, sCAR-CXCL12 increased the infectivity of 

Ad5-CMV-GFP-luc virus in MDA-MB-435S cells at an 

multiplicity of infection (MOI) of 100 ifu/cell from 6.3% 

GFP-positive using an uncomplexed virus to ~80% GFP-

positive using adapter-complexed virus. These results suggest 

that the genetically engineered adapter molecule is produced 

in the desired conformation with an intact CXCL12 ligand 

available to interact with the CXCR4 receptor. Using the 

sCAR-CXCL12 adapter led to an enhanced dose-dependent 

transduction of the CXCR4-positive cancer cells compared 

with the untargeted vector.

Another important parameter that was determined for 

the retargeting was the time of infection of cancer cells in 

the presence and absence of retargeted Ad5 vector. MDA-

MB-435S cells growing in culture were seeded in a 24-well 

tissue culture plate before infection with Ad5-CMV-GFP-luc 

alone or complexed with 100 ng/well of sCAR-CXCL12 at 

increasing time points. A minimal increase in the number 

of reporter gene-expressing cells was observed at increas-

ing time points of infection in the untargeted vector group 

(Figure 4B). Overall, infectivity was low in the untargeted 

Table 1 Summary of surface antigen expression in cancer cell 
lines

Antibody Cell line

MDA-MB-
435S

ZR-75-1 BT-20 MCF-7 MCF-12A

Unstained 1.95 2.56 3.46 3.60 3.03
Isotype (IgG2a κ) 1.91 2.65 3.46 3.57 3.03
Anti-CXCR4 6.41 6.48 11.27 11.17 3.78
Unstained 3.24 2.65 8.72 3.14 4.25
Isotype (IgG2a κ) 3.00 2.98 10.20 2.93 5.70
Anti-CXCR7 3.03 4.19 10.68 4.99 4.86
Unstained 2.38 2.02 2.23 1.80 3.13
Isotype (IgG1 κ) 3.71 3.26 2.73 2.66 3.64
Anti-hCAR 3.98 2.52 2.63 2.81 9.80
Unstained 1.05 1.31 3.10 1.26 2.18
Isotype (IgG1 κ) 1.34 2.18 3.28 1.51 3.24
Anti-anb3 4.38 2.42 3.56 2.09 5.48
Anti-anb5 3.64 6.22 17.30 4.00 4.36

Notes: Each cancer cell line was analyzed for the cell surface expression of CXCR4, 
CXCR7, hCAR, integrin anb3, and integrin anb5. The data are represented as MFI 
of gated unstained cells and cells stained with antigen-specific antibodies or isotype 
control antibodies.
Abbreviations: hCAR, human Coxsackie and adenovirus receptor; MFI, mean 
fluorescence intensity.
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Figure 2 Expression and purification of the bispecific adapter (sCAR-CXCL12).
Notes: The structure of the sCAR-CXCL12 recombinant molecule was composed of an ectodomain portion of the human Coxsackie and Ad receptor followed by a 
5-amino-acid peptide linker, a 6-His tag, fused to the mature human chemokine CXCL12 amino acid sequence (A). SDS-PAGE analysis and Coomassie staining of the sCAR-
CXCL12 recombinant adapter protein purified by Ni column chromatography (B) and Western blot analysis using an anti-His tag antibody (C). Comparison of hCAR, 
CXCL12, and His tag antigen detection by Western blot analysis in recombinant sCAR-CXCL12 protein (D). M, molecular weight marker; numbers indicate molecular 
weight in kDa.
Abbreviations: Ad, adenovirus; Ad5, Ad serotype 5; hCAR, human Coxsackie and adenovirus receptor; His, histidine; PAGE, polyacrylamide gel electrophoresis; sCAR, 
soluble ectodomain form of the native Ad5 receptor; SDS, sodium dodecyl sulfate.
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vector group regardless of the time of Ad infection. In 

contrast to this result, an enhancement in Ad infectivity 

was observed with increasing time of infectivity in the 

presence of retargeted Ad vector (Figure 4B). While just 

10% of the cells were transduced with the retargeted vector 

by incubation with the adapter-complexed virus for 1 h, the 

percentage of cells increased to ~60% when the cells were 

incubated with the retargeted virus for 4 h. These data sug-

gest a correlation between time of incubation and infectivity 

using retargeted Ad5 vector. To confirm the involvement of 

the CXCR4 receptor in Ad retargeting through the sCAR-

CXCL12 adapter, we pre-incubated the cells with an anti-

CXCR4 antibody. This antibody allowed partial blocking 

in the binding of Ad5 vector to the CXCR4 overexpressing 

MDA-MB-435S cells as evident by the reduction in E4 copy 

number in Figure 5. The partial blocking effect evident in 

this experiment could be due to the involvement of alternate 

receptors, which might be playing a role in the mediating 

Ad transduction. However, a significant effect was observed 

by using 100 and 1000 ng of blocking antibody against 

CXCR4 receptor.

sCAR-CXCL12 decreases Ad infectivity 
and replication in an ex vivo liver slice 
model
Precision cut tissue slice technique allows stringent evalu-

ation of the specificity and efficacy of a viral vector system 

using human tissue. Therefore, we determined the effect 

of the sCAR-CXCL12 adapter on the Ad infectivity and 

replication using human liver slices. Our data indicated 

a considerable decrease in luc activity in the liver slices 

following ex vivo infection with Ad5 virus pre-conjugated 

with sCAR-CXCL12. Using sCAR-CXCL12 resulted 

in an approximately tenfold reduction in the luc activity 

following infection with Ad5-CMV-GFP-luc compared 

with the untargeted Ad vector (Figure 6A). In addition, 

we examined the ability of the Ad pre-complexed with the 

sCAR-CXCL12 adapter to attenuate wild-type Ad initial 

infection in an ex vivo system using human liver slices. 

These data showed a reduction in wild-type Ad5 replication 

at both day 2 and 4 post infection using the sCAR-CXCL12 

adapter (Figure 6B). Infection of the liver slices with the 

adapter-complexed vector led to an ~100-fold reduction 

in the viral E4 copy number when compared with the Ad 

Figure 3 Binding specificity of the bispecific adapter (sCAR-CXCL12).
Notes: Purified sCAR-CXCL12 was tested in ELISA against recombinant Ad5 fiber 
knob (Ad5 knob) and recombinant Ad3 fiber knob (Ad3 knob). Each antigen was 
absorbed at 300 ng/well. The wells were incubated with dilutions of the adapter 
protein. The binding was detected by treating the wells with an anti-His tag antibody 
followed by an anti-rabbit IgG antibody conjugated with HRP and color reaction 
with TMB substrate. The color intensity was measured as optical density at 450 nm. 
Numbers indicate the mean ± SEM of absorbance from three replicate dishes. The 
concentration results were compared using a Student’s t-test; the differences were 
considered statistically significant (*) if p<0.05.
Abbreviation: Ad, adenovirus; Ad3, Ad serotype 3; Ad5, Ad serotype 5; ELISA, 
enzyme-linked immunosorbent assay; His, histidine; HRP, horseradish peroxidase; 
sCAR, soluble ectodomain form of the native Ad5 receptor; SEM, standard error of 
the mean; TMB, 3,3′,5,5′-tetramethylbenzidine.
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Figure 4 Infection of a cancer cell line by an Ad pre-complexed with a bispecific adapter, sCAR-CXCL12, is concentration and time dependent.
Notes: After an initial 4 h infection with 100 ifu/cell Ad5-CMV-GFP-luc alone or pre-complexed with increasing concentrations of sCAR-CXCL12, the percent of MDA-
MB-435S cells positive for GFP expression was quantified at 48 h by flow cytometry analysis (A). After infection with 100 ifu/cell Ad5-CMV-GFP-luc alone or pre-complexed 
with 100 ng/108 ifu of sCAR-CXCL12 for 5, 15, 30, 60, 120, and 240 min, the percent of MDA-MB-435S cells positive for GFP expression was quantified by flow cytometry 
analysis (B). Numbers indicate the mean ± SEM of percent GFP-positive cells from three replicate dishes.
Abbreviations: Ad, adenovirus; Ad5, Ad serotype 5; GFP, green fluorescent protein; ifu, infectious unit; luc, luciferase; sCAR, soluble ectodomain form of the native Ad5 
receptor; SEM, standard error of the mean.
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wild-type virus as determined by the real-time PCR assay. 

Thus, wild-type Ad5 virus  pre-incubated with the sCAR-

CXCL12 adapter demonstrated a “liver-off ” profile that 

suggested an inefficient initial viral infection in the human 

liver tissue resulting in decreased replication. The native 

Ad receptor has been shown to be highly expressed in liver, 

at cell–cell contacts between  hepatocytes, which form the 

bile canaliculi, as well as in epithelial cholangiocytes that 

line the bile ducts.33 These results are consistent with the 

sCAR-CXCL12 adapter ability in vivo to block interaction 

with the hCAR receptor in liver.

sCAR-CXCL12 enhances Ad infectivity in 
cancer cell lines
The retargeting efficacy of bispecific adapter molecule 

sCAR-CXCL12 was determined in human cancer cell lines 

expressing varying levels of CXCR4 and hCAR receptors 

on their cell surface. Cells were infected with increasing 

titers of Ad5-CMV-GFP-luc alone or pre-incubated with 

an optimum concentration of sCAR-CXCL12. At 48 h post 

infection, GFP reporter gene expression was determined in 

the infected cells by fluorescence microscopy and by flow 

cytometry. By flow cytometry analysis, there was a dramatic 

increase in Ad infectivity in MDA-MB-435S cells using 

a CXCR4-retargeted vector compared with an untargeted 

vector (Figure 7A). When quantified by flow cytometry, 

Ad5-CMV-GFP-luc virus showed a significant increase in 

the infection of MDA-MB-435S cells from 5% using untar-

geted Ad vector to ~89% using Ad vector complexed with 

sCAR-CXCL12 at an MOI of 100 ifu/cell (Figure 7B). The 

infection was further increased to 97% by using 1000 ifu/

cell of Ad vector complexed with sCAR-CXCL12. Another 

interesting observation in this experiment was the reduction 

in the viral dose that resulted in optimum transduction of 

CXCR4-positive cancer cells. The MOI required to achieve 

~50% of transduction of MDA-MB-435S cells was 500 ifu/

cell in the case of the untargeted vector. However, a similar 

level of transduction was observed by using 50 ifu/cell of 

retargeted viral vector.

Three additional cancer cell lines were tested: BT-20 

( Figure 8A), MCF-7 (Figure 8B), and ZR-75-1 ( Figure 8C). 

All the cancer cell lines that were tested using sCAR-CXCL12-

retargeted Ad vector showed increased infection compared 
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Figure 5 An anti-CXCR4 antibody blocks sCAR-CXCL12-mediated binding of Ad 
to CXCR4-positive cells.
Notes: Prior to the Ad infection, MDA-MB-435S cells were incubated with 
increasing concentrations of an anti-CXCR4 antibody for 30 min at 4°C. 
Subsequently, the cells were infected for 1 h at 4°C with 100 ifu/cell Ad5-CMV-GFP-
luc pre-complexed with 100 ng/108 ifu of sCAR-CXCL12, and the amount of bound 
Ad5-CMV-GFP-luc DNA per dish was determined using a real-time PCR assay for 
the Ad5 E4 gene. Mean E4 copy number ± SEM from three replicate dishes is shown. 
The concentration results were compared using a Student’s t-test; the differences 
were considered statistically significant (*) if p<0.05.
Abbreviations: Ad, adenovirus; Ad5, Ad serotype 5; GFP, green fluorescent 
protein; ifu, infectious unit; luc, luciferase; PCR, polymerase chain reaction; sCAR, 
soluble ectodomain form of the native Ad5 receptor; SEM, standard error of the 
mean.
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Figure 6 Ablation of native liver tropism of Ad using a bispecific adapter (sCAR-CXCL12).
Notes: Luc assay at 48 h after infection of primary human liver slices with Ad5-CMV-GFP-luc in the absence or presence of 100 ng/108 ifu sCAR-CXCL12. (A) Mean RLU/
µg protein ± SEM of three replicate dishes. Real-time PCR assay for the Ad5 E4 gene in extracts from human primary liver slices with Ad5-WT in the absence or presence of 
100 ng/108 ifu sCAR-CXCL12 at 2 and 4 days after infection. (B) Mean E4 copy number ± SEM in extracts from three replicate dishes. The treatment results were compared 
using a Student’s t-test; the differences were considered statistically significant (*) if p<0.05.
Abbreviations: Ad, adenovirus; Ad5, Ad serotype 5; GFP, green fluorescent protein; ifu, infectious unit; luc, luciferase; PCR, polymerase chain reaction; sCAR, soluble 
ectodomain form of the native Ad5 receptor; SEM, standard error of the mean; WT, wild type; RLU, relative light unit.
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Figure 7 Ad targeted to CXCR4 by sCAR-CXCL12 enhances the efficacy of gene transfer to MDA-MB-435S cells.
Notes: MDA-MB-435S cells were plated at 1×105 cells/well in a 24-well plate. The indicated amounts of Ad5-CMV-GFP-luc pre-complexed in the absence or presence 
of sCAR-CXCL12 (100 ng/well) were incubated for 4 h at 37°C followed by a medium change. (A) At 48 h post infection, GFP expression was examined by fluorescence 
microscopy (40 × magnification) in cells infected with increasing titers of Ad: (i and vi); 0 ifu/cell (ii and vii) 1 ifu/cell; (iii and viii) 10 ifu/cell; (iv and ix) 100 ifu/cell; (v and x) 1000 
ifu/cell. (B) The percentage of GFP-positive cells was determined by flow cytometry. Numbers indicate the mean ± SEM of percent GFP-positive cells from three replicate 
dishes. The treatment results were compared using a Student’s t-test; the differences were considered statistically significant (*) if p<0.05.
Abbreviations: Ad, adenovirus; Ad5, Ad serotype 5; GFP, green fluorescent protein; ifu, infectious unit; luc, luciferase; MOI, multiplicity of infection; sCAR, soluble 
ectodomain form of the native Ad5 receptor; SEM, standard error of the mean.
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Figure 8 Determination of Ad targeting to CXCR4 by sCAR-CXCL12 in tumorigenic and immortalized non-tumorigenic cells.
Notes: Tumorigenic BT-20 (A), MCF-7 (B), and ZR-75-1 (C) cancer cells or non-tumorigenic MCF-12A epithelial cells (D) were plated at 1 × 105 cells/well in a 24-well plate. 
Indicated amounts of Ad5-CMV-GFP-luc pre-complexed in the absence or presence of sCAR-CXCL12 (100 ng/well) were incubated for 4 h at 37°C followed by a medium 
change. At 48 h post infection, the percentage of GFP-positive cells was determined by flow cytometry. Numbers indicate the mean ± SEM of percent GFP-positive cells from 
three replicate dishes. The treatment results were compared using a Student’s t-test; the differences were considered statistically significant (*) if p<0.05.
Abbreviations: Ad, adenovirus; Ad5, Ad serotype 5; GFP, green fluorescent protein; luc, luciferase; MOI, multiplicity of infection; sCAR, soluble ectodomain form of the 
native Ad5 receptor; SEM, standard error of the mean.
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with untargeted Ad vector. In MCF-7 cell line, the percent-

age of GFP-positive cells also increased from 20% (using 

untargeted Ad5 vector) to ~50% (using sCAR-CXCL12-

retargeted Ad vector) at 100 ifu/cell. A similar increase in 

infectivity was observed in ZR-75-1 and BT-20 cell lines. In 

contrast to this, a decrease in Ad infectivity was observed in  

MCF-12A cell line (Figure 8D) in the presence of sCAR-

CXCL12 adapter when compared with vector alone. The 

difference in Ad infectivity seen in these cell lines can be 

attributed to the differential cell surface expression of the 

chemokine receptor and native Ad receptor on these cells. In 

addition, inefficient transduction of CXCR4-negative MCF-

12A cells by the Ad vector in the presence of adapter sug-

gests cancer specificity for binding of sCAR-CXCL12 with 

CXCR4-positive cancer cells. Overall, the CXCR4-retargeted 

Ad vector not only resulted in a significant enhancement of 

the reporter gene expression in the target cells but also helped 

in reducing viral vector doses required to achieve optimal 

transduction compared with the untargeted vector.

sCAR-CXCL12 untargets Ad from the 
liver infection in an in vivo model
Liver sequestration following systemic administration of 

Ad is a major limitation that needs to be addressed to allow 

successful application of Ad vectors for cancer gene therapy. 

To examine the ability of sCAR-CXCL12 to prevent liver 

infection, Ad5-CMV-GFP-luc was administered with or 

without sCAR-CXCL12 into SCID-bg mice by tail vein 

injection. Bioluminescent images were obtained at 3 days 

post injection by IVIS imaging. Immediately after imag-

ing, animals were sacrificed and livers were extracted and 

snap frozen in -80°C for further analysis by real-time PCR. 

The results obtained showed maximum signal in the liver 

in the group of animals injected with Ad5-CMV-GFP-luc 

alone. In contrast, animals that received Ad5-CMV-GFP-luc 

conjugated to sCAR-CXCL12 showed comparatively lower 

signal indicative of the untargeting effect of the adapter from 

liver tissue (Figure 9A). The charge-coupled device (CCD) 

images were quantified to demonstrate the difference in the 

liver uptake of the Ad5 vector in the presence and absence 

of sCAR-CXCL12. More than 50% reduction in the biolu-

minescence signal was observed in the targeted vector group 

compared with the untargeted counterparts (Figure 9B). Fur-

thermore, real-time PCR data showed that in vivo Ad E4 copy 

number was reduced by approximately threefold in the liver 

following systemic administration of Ad5-CMV-GFP-luc + 

sCAR-CXCL12 vector compared with Ad5-CMV-GFP-luc 

(Figure 9C). These in vivo results were in agreement with 

the data obtained from the liver slice experiment.

sCAR-CXCL12 retargets Ad to  
CXCR4-positive s.c. tumor xenografts
Following a demonstration of hepatic untargeting by the 

adapter, we determined the retargeting ability of sCAR-

CXCL12 using an in vivo model of cancer. In this experiment, 

tumors were implanted in SCID-bg mice by s.c. injection 

of MDA-MB-435S cells. After the tumors had reached 

~100 mm3 in size, Ad5-CMV-GFP-luc was injected either 

alone or pre-complexed with sCAR-CXCL12 into the centers 

of the tumor. IVIS imaging was performed at days 3, 6, and 

9 post injection to monitor the bioluminescence. A strong 

signal was observed in the tumors in animals that received 

retargeted vector compared with the untargeted vector. This 

result can be attributed to the uptake of Ad complexed with 
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Figure 9 Liver untargeting of Ad infection using a bispecific adapter, sCAR-CXCL12, in SCID-bg mice in vivo.
Notes: Ad5-CMV-GFP-luc (1 × 108 ifu/mouse) pre-incubated in the absence or presence of sCAR-CXCL12 (5 µg) was injected intravenously into SCID-bg mice. Ad-directed 
luc expression was monitored in living animals by bioluminescence imaging at 3 days after injection. (A) Examples of an untreated mouse, a mouse injected with Ad5-CMV-
GFP-luc, and a mouse injected with Ad5-CMV-GFP-luc + sCAR-CXCL12. Luc expression was quantified from ROI of the liver regions. (B) Mean count ± SEM from ten 
animals. After bioluminescent imaging, the mice were sacrificed, liver extracts were prepared, and Ad was quantified by real-time PCR. (C) Mean E4 copy number ± SEM in 
livers from ten animals. The treatment results were compared using a Student’s t-test; the differences were considered statistically significant (*) if p<0.05.
Abbreviations: Ad, adenovirus; Ad5, Ad serotype 5; GFP, green fluorescent protein; ifu, infectious unit; luc, luciferase; PCR, polymerase chain reaction; ROI, regions of 
interest; sCAR, soluble ectodomain form of the native Ad5 receptor; SCID-bg, severe combined immunodeficiency-beige; SEM, standard error of the mean.
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the CXCL12 adapter by the CXCR4-positive tumor cells. An 

enhanced bioluminescence signal was observed in the MDA-

MB-435S tumor grafts that were injected with retargeted Ad 

vector from day 3 to day 9. In contrast, animals injected with 

the untargeted vector displayed minimal bioluminescence 

in the tumors as evident by the IVIS images (Figure 10A). 

At each time point, quantitative analysis of the CCD images 

demonstrated a significant increase in the bioluminescence 

signal in the tumors injected with sCAR-CXCL12-targeted 

Ad vector compared with the tumors injected with untargeted 

Ad vector (Figure 10B). Furthermore, real-time PCR analysis 

of Ad E4 copy number showed a similar increase in the tumor 

uptake on day 9 in the group of mice that received an i.t. injec-

tion of sCAR-CXCL12-retargeted Ad vector compared with 

the group of mice that received an i.t. injection of untargeted 

Ad vector (data not shown).

Discussion
Ad gene therapy offers tremendous potential, but target-

ing the vector and delivering the payload to the diseased 

cell or tissue have been a major challenge. The widespread 

distribution of its natural receptor hCAR not only poses 

a hurdle in targeting specific cell types but also prevents 

exploiting these vectors to their full potential for cancer 

gene therapy applications. This distribution pattern presents 

the need to modify native tropism of Ads and simultane-

ously introduce a novel tropism. The current study tests 

the validity of an approach involving targeted Ad vectors 

with altered tropism and cell-specific gene delivery ability 

using a nonnative Ad receptor. Since CXCR4 is a relevant 

tumor marker that plays a crucial role in cancer cell growth, 

proliferation, migration, invasion, and metastasis,23 targeting 

this chemokine receptor using tropism-modified Ad seems 

to be a promising strategy for cancer gene therapy inter-

ventions. In this study, CXCR4 was utilized as a candidate 

receptor to demonstrate enhanced transductional targeting 

toward human cancer cells using sCAR-CXCL12 adapter 

molecule. The bispecific adapter, sCAR-CXCL12, confers 

a novel binding specificity to an Ad vector that redirects it 

to a nonnative cellular receptor (CXCR4) present on tar-

get cancer cells. This redirected specificity is particularly 

relevant for Ad-refractory tumor cells that are deficient 

in hCAR. In addition, the adapter protein allows hepatic 

untargeting of Ad, thus minimizing nonspecific uptake by 

the liver. Although CXCR7 was not examined due to its low 

expression in the cell lines used in this study, future studies 

will need to address the use of sCAR-CXCL12 to target this  

receptor.

Many studies have reported retargeting of Ad vectors to 

heterologous cellular receptors to achieve efficient transduc-

tion of the Ad-resistant tumor cells. In this context, Dmitriev 

et al12 demonstrated a ninefold increase in gene transfer by 

targeting Ad vector to the EGF receptor. Consistent with these 

reports, we observed a substantial increase in the infectivity 

of CXCR4-positive cancer cells by using the sCAR-CXCL12 

adapter with Ad5 vector in a dose- and time-dependent man-

ner. Importantly, the retargeted Ad also showed decreased 

infectivity of immortalized non-tumorigenic epithelial cells 

(MCF-12A), which could be attributed to the negligible 

expression of the CXCR4, CXCR7, and integrin receptors on 

the cell surface (Figure 1). Besides the enhanced transduc-

tion, there is an added advantage of using retargeted vectors: 

Figure 10 Enhancement of Ad infection in xenograft tumors in vivo using a bispecific adapter (sCAR-CXCL12).
Notes: S.c. tumors were injected with Ad5-CMV-GFP-luc (1 × 108 ifu/mouse) pre-incubated in the absence or presence of sCAR-CXCL12 (5 µg). Ad-directed luc expression 
was monitored in living animals by bioluminescence imaging at 3, 6, and 9 days after injection. (A) Examples of an untreated mouse, a mouse injected with Ad5-CMV-GFP-luc, 
and a mouse injected with Ad5-CMV-GFP-luc + sCAR-CXCL12. Luc expression was quantified from ROI of the tumor regions. (B) Mean count ± SEM from ten animals. The 
treatment results were compared using a Student’s t-test; the differences were considered statistically significant (*) if p<0.05.
Abbreviations: Ad, adenovirus; Ad5, Ad serotype 5; GFP, green fluorescent protein; ifu, infectious unit; luc, luciferase; ROI, regions of interest; sCAR, soluble ectodomain 
form of the native Ad5 receptor; s.c., subcutaneous; SEM, standard error of the mean.
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a lower dose of viral vector is required to gain optimal levels 

of transduction. This result was evident in our in vitro stud-

ies in which pre-complexing Ad5 vector with the targeting 

adapter resulted in a remarkable decrease in the vector dose 

to effect similar levels of transduction observed with the 

untargeted control vector.

Considering a narrow therapeutic window between effi-

cacy and potential toxicity, a clear understanding of the viral 

dose is necessary that would result in a therapeutic response 

and avoid severe side effects. In this context, it is logically 

anticipated that vectors with increased transduction ability 

may trigger weak immune response resultant of the low doses 

of the viral vector used. Therefore, the reduction of viral 

vector dose, as observed in our retargeting experiments, may 

have future implications on minimizing vector-related toxici-

ties and undesirable effects. The transductional targeting gain 

observed in vitro was further extended to a murine model 

of cancer. In our xenograft studies, we noted that physically 

targeted Ad5 vector conjugated to CXCL12 fusion protein 

retained its specificity in vivo and successfully retargeted to 

CXCR4-positive tumors implanted in SCID-bg mice. This 

specificity was evident from the noninvasive imaging stud-

ies performed to track Ad localization in the tumor grafts. 

However, the fold increase in the tumor transduction using 

targeted Ad was modest, which could be due to the presence 

of local barriers affecting viral transduction.

The underlying mechanism by which adapter molecules 

help in rerouting the Ad toward receptor overexpressed on 

cancer cells is not well understood. Ad infection begins with 

the binding of the fiber knob domain to the hCAR receptor 

expressed on the host cell surface followed by internalization 

by receptor-mediated endocytosis.34 Since the steps involving 

initial binding of Ad to the hCAR and its internalization into 

the host cell are uncoupled, the first step in the Ad infection 

cycle can be easily modulated without affecting the following 

steps to achieve cell-specific targeting. We speculate that the 

bispecific adapters modify the initial interaction step in the 

Ad infection pathway so that the Ad vectors can be redirected 

toward the target cell of interest through alternate pathways.

Another interesting aspect of the current study is adapter-

mediated hepatic untargeting. Sequestration of Ad in the liver 

following i.v. administration is one of the major concerns in 

the field of Ad gene therapy. Most of the Ad injected by the 

i.v. route is taken up by the Kupffer cells.35–37 This uptake not 

only leads to adverse liver toxicity but also reduces the viral 

uptake by the relevant target tissue resulting in a suboptimal 

therapeutic response. Thus, hepatic untargeting provides a 

key to minimizing nonspecific transduction of the liver. We 

used precision-cut liver slices as a model system, which has 

been used to validate the potency of targeted Ad vectors to 

attenuate liver infection in preclinical studies.38,39 Our ex vivo 

data indicate a significant decrease in the viral infection and 

replication in the human liver slices while using the retargeted 

vector. This result is consistent with the previous report by 

Kirby et al,40 in which the reduction of viral replication was 

observed in human liver slices using a conditionally rep-

licating Ad5/3 COX-2 virus. Furthermore, we observed a 

significant decrease in liver transduction following systemic 

i.v. administration of tropism-modified Ad5 vector in vivo. 

The untargeted vector, on the other side, still retained the 

natural tropism and accumulated in the liver as confirmed 

by the bioluminescence imaging and real-time PCR analysis. 

These studies, in which replication of a viral vector can be 

examined in the context of a major target organ, enhance our 

understanding and play a critical role to assess the therapeutic 

index at the preclinical level. It will be important in future 

studies to study the biodistribution and toxicity profiles of 

the sCAR-CXCL12-retargeted Ad to determine whether the 

hepatic untargeting is sufficient to reduce vector-mediated 

hepatotoxicity.

The process by which adapter molecules disrupt Ad bind-

ing to the hCAR-expressing cells, particularly liver, is not 

clear. Ad biodistribution, in vivo, is an intricate process and 

is driven by multiple interactions. Recent evidence has sug-

gested that, besides hCAR, several blood coagulation factors, 

which interact with the Ad capsid components, also play a 

role in the hepatic uptake resulting in liver infection.41,42 In 

particular, coagulation factor X and complement component 

C4-binding protein can bind to the Ad fiber knob domain, 

and the complex formed between the two is redirected to 

the hepatic cells using alternate hepatocellular receptors.42 

This interaction ultimately results in Ad infection of hepatic 

cells. We hypothesize that sCAR-CXCL12 adapter blocks 

those potential binding sites to prevent the interaction of Ad 

with coagulation factor proteins. However, future studies 

are warranted to explore the mechanistic pathway involved 

in adapter-mediated hepatic untargeting. Regardless of the 

mechanism, our data clearly underscore the importance of 

adapter-based strategies in minimizing hepatic transduction 

by Ads.

Conclusion
We report exploiting the CXCL12 chemokine for retarget-

ing an Ad vector toward cancer cells overexpressing the 

cognate chemokine receptor. The results illustrated in this 

study also provide a strong rationale to apply this approach 
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to  developing Ad-based therapies targeting metastatic dis-

ease. In addition, transductional targeting described in this 

study can be combined with additional transcriptional or 

translational targeting methods to aid Ad vector specificity. 

Combining these approaches not only would offer extensive 

flexibility of developing novel recombinant adapters using 

different sets of Ad untargeting and retargeting moieties but 

will also result in generating Ad vectors with an improved 

safety profile favorable for use in the clinical settings. This 

result would have a field-wide impact that would encour-

age the use of Ad vectors in targeting different pathological 

conditions including cancer.
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