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Abstract: Coat proteins (CPs) are the most abundant protein produced during a viral infec-

tion. CPs have been shown to regulate the infection processes of RNA viruses, including RNA 

replication and gene expression. The numerous activities of the CP in infection are likely to 

require regulation, possibly through posttranslational modifications. Protein posttranslational 

modifications are involved in signal transduction, expanding and regulating protein function, and 

responding to changes in the environment. Accumulating evidence suggests that phosphoryla-

tion of viral CPs is involved in the regulation of the viral infection process from enabling virion 

disassembly to regulation of viral protein synthesis and replication. CP phosphorylation also 

affects viral trafficking and virion assembly. This review focuses on the regulatory roles that 

phosphorylation of CPs has in the life cycle of viruses with RNA genomes.

Keywords: viral capsid protein, posttranslational modification, phosphorylation, protein–RNA 

interaction

Introduction
Viral molecules must be able to sense and adapt to the environment. Mechanistically, 

this can be done by ligand recognition, protein conformational changes, or posttrans-

lational modifications (PTMs).1–5 PTMs are especially important in the molecular 

communication across cellular processes, including signal transduction and the host 

response to viral infection.6–13 Viruses must utilize this form of cellular communication 

for their own nefarious purposes.

A well-understood form of PTM is the phosphorylation of specific amino acids in 

proteins. In 1954, casein was the first protein observed to be phosphorylated.14 Pro-

tein phosphorylation has since been shown to alter protein structure and function in 

response to changes in the cellular environment.15,16 Accumulating evidence suggests 

that all parts of the viral life cycle are regulated by phosphorylation. Phosphorylation 

of viral nonstructural proteins and the effects on viral infection have been reviewed 

previously.17,18 This review focuses on the phosphorylation of viral coat protein(s) 

(CPs) in the life cycles of single-stranded (ss) RNA viruses. This review is not a 

comprehensive examination of all regulatory functions of phosphorylation of CPs, 

but provides specific examples and themes.

RNA viruses and CPs
RNA viruses make up a large number of plant, animal, and human viral pathogens, 

including over 80% of plant pathogens.19,20 Over one-third of emerging and reemerging 
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infections are caused by RNA viruses.21,22 These viruses 

typically have small genomes that code for less than a dozen 

proteins, and the small size of their genomes does not elimi-

nate the requirements for viral replication or evading host 

defenses. Indeed, it seems the majority, if not all, of the viral 

proteins have multiple functions. The CP, also known as the 

nucleoprotein (NP) and nucleocapsid (NC) protein or the 

Core, depending on whether the virion has an envelope, is 

often the most abundant viral protein produced. In addition 

to forming a protective shell around the viral genome, it is 

increasingly appreciated to be involved in encapsidation-

independent activities, including the regulation of viral RNA 

synthesis, viral translation, and the modulation of the host 

innate immune response.23

Viruses typically encode one or two CPs with several 

common structural features (Figure 1).23,24 Many CPs have 

highly flexible N- or C-terminal tails that contain positively 

charged residues that can interact with RNA. All viral CPs 

contain regions of higher order structure that form the shell-

like domain around the encapsidated RNA in virions. Some 

viral CPs will contain a protruding domain following the 

shell domain that can form oligomeric structures and bind 

receptors.25–27 Importantly, the CPs can associate with each 

other to form higher order structures similar to Lego blocks, 

which can expand the functions of the CPs by increasing the 

surface for interaction with cellular and viral molecules.

Virion structure, entry, and disassembly
An activity common among viral capsids is that they bind 

nucleic acids. Protein phosphorylation is known to affect 

protein binding to nucleic acids,28,29 primarily through 

increasing the electrostatic repulsion between the negatively 

charged phosphate group and the negatively charged nucleic 

acid backbone. Phosphorylation tends to preferentially 

occur in less-structured regions of proteins.30 A change in 

the charge and conformation of flexible regions in the viral 

CP, such as the N- or C-terminal tails, will alter the CP 

conformation to affect the interaction between the capsid 

and other viral and cellular molecules.31

Several plant RNA viruses use phosphorylation to regu-

late CP–RNA interactions and structure. Bamboo mosaic 

virus (BaMV) is a (+)-strand ssRNA virus and a member of 

the family Alphaflexiviridae. The BaMV CP can be phos-

phorylated in the C-terminal tail.32–35 Mutations in the BaMV 

CP that prevented phosphorylation increased CP binding to 

the BaMV RNA, while replacement with glutamate, an amino 

acid that acts as a phosphomimetic, decreased CP interaction 

with RNA.34 Weakened CP–RNA interaction was speculated 

to facilitate the release of RNA from the capsid.

The BaMV CP is phosphorylated in plants by casein 

kinase 2 (CK2) of Nicotiana benthamiana.34 CK2-alpha and 

the BaMV CP colocalized to the plasmodesmata that connect 

plant cells, suggesting that CP phosphorylation regulates 

cell-to-cell movement, possibly by facilitating the release 

of RNA from the ribonucleoprotein (RNP) complex after its 

passage through the plasmodesmata into a neighboring cell.

Potato virus A (PVA) is a (+)-strand ssRNA virus and a 

member of the family Potyviridae. In addition to RNA pack-

aging, the PVA CP is involved in the spread of viral progeny 

to both neighboring cells and over long distances through 

Figure 1 Examples of the structures of viral coat proteins and the features involved in RNA binding and formation of capsid oligomers.
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the plant vasculature.36 The PVA CP was phosphorylated 

by CK2 in the C-terminal region of the core domain that 

contacts RNA.37,38 Phosphorylation of the CP reduced its 

affinity for RNA and was speculated to regulate the forma-

tion and stability of RNP complexes needed for viral traf-

ficking. Furthermore, CPs with substitution that mimicked 

phosphorylated amino acids were defective in cell-to-cell 

and long-distance movement.38

Brome mosaic virus (BMV), a member of the family Bro-

moviridae that has a multipartite, (+)-strand, RNA genome, 

uses the CP to regulate replication and translation of the 

BMV genome. The CP does so through binding to regula-

tory motifs in the BMV RNA.39 We had recently reported 

our findings that the BMV CP was heavily phosphorylated 

at the serine and threonine residues on the N-terminal arm 

that interacts with RNA.5 Phosphorylation affected RNA 

accessibility in the virion and was able to alter CP binding 

to the encapsidated RNAs. Interestingly, BMV consists of 

three independent viral particles, each of which contains 180 

subunits of the CP, and CP phosphorylation has a dramatic 

effect only on a subset of the particles. In the affected par-

ticles, the packing of the encapsidated RNAs is reorganized 

as a function of CP phosphorylation. This likely regulates 

the timing of BMV RNA release in the cell and the timing 

of BMV protein synthesis.40 Notably, RNA sequences found 

to bind the CP include regulatory motifs in the RNAs that 

affect BMV translation and replication. Replacement of a 

threonine in the flexible N-terminal arm of the BMV CP with 

a phosphomimetic glutamate altered the ratios of encapsid-

ated RNA, affected the kinetics of replication, and decreased 

the time needed for translation of the BMV CP. These results 

suggest that the degree of CP phosphorylation can regulate 

processes critical to BMV infection. An intriguing possibility 

is that these interactions may occur within the virion before 

the start of the infection process.

Beet black scorch virus (BBSV) is a (+)-strand ssRNA 

virus of the family Tombusviridae. The stability of the virions 

is essential for systemic infection of N. benthamiana.41 The 

BBSV CP was phosphorylated at four residues, one of which, 

T41, was located in a loop of a hinge structure that connected 

the flexible sequence and the structured domain.42,43 The hinge 

is C-terminal to the RNA-binding domain, and phosphoryla-

tion of T41 is not expected to directly affect RNA binding. 

Mutations to T41 prevented replication and gene expression, 

resulting in the formation of small, irregularly shaped virions 

that are unstable and defective in encapsidating viral RNA, 

and abolished viral systemic movement in N. benthamiana.43 

This suggests that T41 phosphorylation may impact the 

secondary and tertiary precapsid changes that occur during 

virus particle morphogenesis. Protein kinase A was shown to 

phosphorylate the BBSV CP. Further studies are underway to 

determine if T41 phosphorylation/dephosphorylation cycles 

provide molecular switches for virion assembly, by examining 

the viral assembly intermediates.

Potato virus X (PVX) is a (+)-strand ssRNA virus and 

a member of the family Alphaflexiviridae. The PVX CP 

is required for cell-to-cell movement. The PVX CP was 

phosphorylated, with major phosphorylation sites(s) in the 

N-terminal arm.44 Interestingly, phosphorylation of the PVX 

CP enabled the translation of the encapsidated RNA. How this 

process occurs is unknown, but Atabekov et al speculate that 

conformational changes that occur due to CP phosphorylation 

allow ribosomes to access the encapsidated RNA.44

Significant insights into how phosphorylation affects 

CP–RNA interactions have been revealed by animal RNA 

virus studies. Infectious bronchitis virus (IBV) is a (+)-strand 

ssRNA enveloped virus that belongs to the family Coronaviri-

dae. The IBV NC protein is required for efficient transcrip-

tion of viral RNAs.45,46 The NC protein was phosphorylated 

proximal to RNA-binding sites in the globular region and the 

C-terminus of the CP.47,48 IBV NC protein phosphorylation 

at the C-terminus proved to be involved in the regulation of 

NC protein–RNA binding and in the discrimination between 

viral and cellular RNAs.48,49

Rubella virus (RuV) is an enveloped (+)-strand ssRNA 

virus and a member of the family Togaviridae. The RuV CP 

is involved in RNA packaging, a regulated event that occurs 

on the Golgi complex membrane. It interacts with multiple 

host cell proteins and appears to be proapoptoic in several 

cell lines.50–53 The RuV CP was phosphorylated at multiple 

residues, with the major site at S46 in the RNA-binding 

domain.54–58 Hypophosphorylated mutants at S46 bind RNA 

more efficiently than the CPs retaining wild type levels of 

phosphorylation. The protein phosphatase PP1A is known to 

dephosphorylate RuV in vitro,58 but the kinase(s) responsible 

for RuV CP phosphorylation remains to be identified.

West Nile virus (WNV) is an enveloped (+)-strand RNA 

virus and a member of the family Flaviviridae. In addition to 

its role in RNA encapsidation, the WNV CP interacts with 

host proteins, including importin-alpha, and is involved in 

initiating apoptosis.59,60 The WNV CP is involved in initiating 

apoptosis through activation of caspases and disruption of 

mitochondrial functions.60 The CP has been shown to enter 

the cell nucleus by interacting with importin-alpha through 

a nuclear localization sequence.59 The initiation of apoptosis 

was revealed to be due to the sequestration of HDM2 by the 
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CP into the nucleolus, inducing p53-mediated apoptosis.61 

The WNV CP is phosphorylated by PKC at the carboxy 

termini.62 The presence of a PKC inhibitor decreased the 

association of CP with importin-alpha, resulting in increased 

accumulation of the CP in the cytoplasm. Nuclear localization 

sequence-dependent nuclear import has been shown to be 

regulated by phosphorylation.63–66 Phosphorylation of WNV 

CP enhances its binding to HDM2.62 This stabilizes the p53 

protein by preventing HDM2–p53 complex formation, caus-

ing accumulation of p53 and its downstream target protein 

Bax, and initiating apoptotic events.

The recombinant WNV CP does not bind to RNA unless 

the phosphates in the CP have been removed.67 Phosphory-

lation could prevent premature encapsidation of the RNA. 

Since the virus assembly occurs in the cytoplasm, dephos-

phorylation of the CP reduces interactions with importin-

alpha to increase cytoplasmic localization of the CP and the 

virion assembly. This is consistent with the observation of 

the CP trafficking from the nucleus to the cytoplasm late in 

infection, and a relative reduction in CP phosphorylation. 

Furthermore, phosphorylation of the CP modulates the rate 

of oligomerization, with higher-order oligomers forming 

more rapidly with hypophosphorylated mutants than with 

the wild-type CP.

The NC of the SARS coronavirus (SARS-CoV), an envel-

oped (+)-strand ssRNA virus, is active in many regulatory 

processes including viral RNA replication,68 subgenomic 

RNA synthesis,45,69 deregulation of the host cell cycle,70–72 

inhibition of interferon production,73–75 and upregulation 

of cytochrome oxidase 2 production to result in oxidative 

stress.76 Perhaps, the multitude of activities is regulated by 

PTMs of the NC. SARS-CoV NC protein was phosphorylated 

at several serine residues in a serine–arginine rich motif in 

the central domain required for oligomerization of the NC 

protein and translocation of the NC to the nucleus.72,77–79 Phos-

phorylation affects the interaction between NC subunits and 

regulates the ability of NC to suppress translation.78 Glycogen 

synthase kinase 3, one of the kinases that phosphorylate 

NC protein, can be inhibited to suppress the replication of 

SARS-CoV.80

Rabies virus (RV) is a (−)-strand ssRNA enveloped 

virus and a member of the family Rhabdoviridae. The NP 

of (−)-strand RNA viruses regulates the transition from 

viral RNA transcription to replication,81 and the RV NP is 

no exception. The RV NP is phosphorylated proximal to the 

putative RNA-binding domain in the C-terminal region of the 

NP.82,83 The unphosphorylated form of the NP encapsidated 

RNA more efficiently.84 Cellular kinases and phosphatase(s) 

responsible for the phosphorylation of RV remain to be 

identified.

The unphosphorylated form of the RV NP encapsidates 

RNA efficiently, but early encapsidation can decrease the 

level of viral RNA transcription and replication.84,85 As with 

all (−)-strand ssRNA viruses, in RV, the genomic RNA is not 

infectious unless complexed to the NC.86 Wu et al proposed 

that interaction with genomic RNA causes a conformational 

change in NP to allow phosphorylation of the NP, which 

results in weakened interaction with the RNA.85 Reduced 

NP–RNA interaction is proposed to allow access by the 

RNA polymerase complex and viral transcription and repli-

cation. How this process occurs needs to be addressed, but 

the structure of the amino acid and the net negative charge 

of the phosphate are important for viral transcription and 

replication.85

The measles virus (MeV) is an enveloped (−)-strand 

ssRNA virus that belongs to the family Paramyxoviridae. 

The NP encapsidates RNA, supports replication and tran-

scription of viral RNA,87 and is involved in suppression of 

immune response.88–92 The NP was phosphorylated in the 

disordered C-terminal region, impacting genomic RNA sta-

bility.93–96 Early in infection, this downregulates MeV gene 

expression. Transcription of the NP gene has been shown 

to induce cytokines in both a time- and dose-dependent 

 manner.97 A decrease in MeV gene expression has been 

shown to decrease the production of proinflammatory 

cytokines, likely due to decreased recognition by innate 

immune receptors.96

Influenza A virus is an enveloped (−)-strand ssRNA 

virus and a member of the family Orthomyoxoviridae. The 

influenza A NP is a component of the RNP complex and its 

oligomerization is required for the transcription and replica-

tion of full-length RNA genome segments,98–101 but it needs 

to remain in a monomeric state before the assembly of the 

RNP complex.102,103 The NP was phosphorylated at multiple 

sites, and reversible phosphorylation of S165, located in the 

“groove” of the NP which interacts with the “tail loop” of 

another NP, meditates NP oligomerization.100,104 Substitution 

of S165 to phosphomimetics resulted in primarily monomeric 

NP, while a change to an alanine resulted in oligomers of 

the NP.98,102,105 Viral infection was significantly reduced with 

alanine and aspartate substitutions, while substitution with 

glutamate failed to generate infectious virus.105 RNP com-

plexes made with mutant NP had decreased accumulation 

of viral mRNAs.
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Concluding remarks
Identifying phosphorylated proteins remains a challenge due 

to the stoichiometric and labile nature of phosphorylation, but 

substantial contributions have shown that  phosphorylation of 

CP from RNA viruses has an important impact on viral infec-

tion from entry to viral gene expression to virion assembly. 

Phosphorylation of the CP plays a significant role by modu-

lating CP–RNA interaction, the structure and stability of viral 

particles, and the intracellular locations of viral molecules. 

Protein kinases regulate essentially every cellular process and 

often respond to the conditions in the cell. Therefore, it makes 

sense that viruses will borrow or steal these enzymes for their 

own purposes. Protein phosphatases are also involved in signal 

transduction.10–13 Phosphatases such as Shp1 and Shp2 regulate 

DNA virus infection as well as signal transduction pathways that 

can affect innate immune responses.106–108 It is likely that they 

are also involved in RNA virus infection. It is highly likely that 

cellular kinases and phosphatases will act on viral CPs as a way 

to prevent the viral infection process. With adeno-associated 

virus, phosphorylation led to degradation of the capsids.109 

Furthermore, kinase and phosphatase activities will change 

with environmental input experienced by the host cell. Thus, 

they will affect viral infection as a function of the environment.

Although this review focuses on phosphorylation of the 

CP in RNA viruses, other PTMs are likely to play a role in 

the viral infection process. Further evaluation of the role of 

CP phosphorylation, including identification of kinases and 

phosphatases, could lead to potential therapeutics.
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