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Abstract: Mesoporous silica nanoparticles (MSNs) are known as carriers with high loading 

capacity and large functionalizable surface area for target-directed delivery. In this study, a series 

of docetaxel-loaded folic acid- or methionine-functionalized mesoporous silica nanoparticles 

(DTX/MSN-FA or DTX/MSN-Met) with large pores and amine groups at inner pore surface 

properties were prepared. The results showed that the MSNs were successfully synthesized, 

having good pay load and pH-sensitive drug release kinetics. The cellular investigation on 

MCF-7 cells showed better performance of cytotoxicity and cell apoptosis and an increase in 

cellular uptake of targeted nanoparticles. In vivo fluorescent imaging on healthy BALB/c mice 

proved that bare MSN-NH
2
 are mostly accumulated in the liver but MSN-FA or MSN-Met are 

more concentrated in the kidney. Importantly, ex vivo fluorescent images of tumor-induced 

BALB/c mice organs revealed the ability of MSN-FA to reach the tumor tissues. In conclusion, 

DTX/MSNs exhibited a good anticancer activity and enhanced the possibility of targeted drug 

delivery for breast cancer.
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Introduction
Breast cancer is one of the most commonly diagnosed cancers among women, and 

its frequency has been shown to increase continuously.1,2 Although conventional 

chemotherapy methods could eliminate the majority of breast cancer cells, they 

are not always adequate and yet now breast cancer is one of the deadliest cancers. 

Unfortunately, traditional drug delivery systems for cancer therapy have numerous 

problems. One of the well-known problems is whole-body drug distribution before 

reaching cancer tissues, which in turn results in the use of high-dosage drugs and 

manifestation of serious toxic side effects. Therefore, it seems necessary to use new 

procedures for medicinal treatment.3,4 The use of nanoplatforms that contain specific 

ligands is becoming increasingly common to tackle the obstacles associated with 

conventional strategies. Nanoparticles accumulate in tumors with passive targeting 

effects, but particular ligands assist delivery systems to selectively recognize receptors 

at tumor cell surfaces and cause active targeted delivery.

As of now, several targeting agents, such as some types of recombinant proteins, 

vitamins, amino acids, and sugars, have been applied for active targeting in breast 

cancers.5 Identification of the best targeting agent for more effective and promising 

applications in the market should depend on stability, size uniformity, controlled release 

rate and large-scale manufacturing cost of fabricated nanoparticles.6 However, small 
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targeting molecules are generally consumed in every cell 

and provide more uniform and stable nanodelivery systems 

with a greater chance to arrive at markets. Overexpression of 

folate receptors in breast cancer cells leads to specific uptake 

of nanoparticles that are conjugated with folate. Folic acid 

is a great putative marker and a target molecule for cancer 

diagnosis and therapy.7–10 Additionally, methionine (Met) is 

one of the essential amino acids and is a key factor in cell 

metabolism.11 Met is necessary for growth and differentiation 

of normal and the cancer cells. Therefore, tumor cells have 

a much greater requirement for Met than normal cells.12,13 

Numerous lines of cancer cells such as MCF7 show Met-

dependent phenotypes that are unable to survive and grow 

when the amino acid, Met, is replaced with homocysteine 

precursors in the medium.14,15 Moreover, it was proven that 

the rate of Met transfer is increased in tumor cells by over-

expressed LAT1 and LAT2 receptors.16–18 Therefore, inhibi-

tion of these carriers can suppress the growth of tumor cells. 

It may be concluded that Met may be used as a selective target 

for detection of tumor cells by Met-dependent phenotype. 

Therefore, Met as a targeting agent has been conjugated with 

some drug and imaging delivery systems for cancer therapy 

and tumor molecular imaging.19–21

A drug carrier requires to traverse through the cell 

membrane by favorable biophysical interaction with the 

lipid bilayer or by modifying lipids that resist movement 

of nanoparticles through lipid bilayers.22 A suitable drug 

carrier also needs to have some properties such as high 

drug-loading capacity, controlled drug release kinetics and 

target-directed distribution.23,24 Among these features for drug 

carriers, mesoporous silica nanoparticles (MSNs) exhibited 

some significant properties for targeted drug delivery such as 

controllable size and pore morphology, large inner and outer 

surface area to conjugate pH-sensitive and targeting agents, 

high biocompatibility and selective release of cargo at the 

target region.25 Pore expansion, fabricated pH-sensitive and 

targeting agents can endow MSNs with ideal properties to 

deliver their cargo toward cancerous cells.26–28

The aim of this study is to prepare MSN-Met or MSN-FA 

for active targeted delivery by improved MSNs that have 

large pores and pH-sensitive release kinetic properties. 

Docetaxel (DTX), which is a potent anticancer drug and has 

wide usage in various cancers especially breast cancer, was 

used as a model hydrophobic anticancer drug.29–31 Prepared 

DTX/MSN-FA or DTX/MSN-Met were examined for their 

release profile in different pH conditions, and in vitro cellular 

tests such as intracellular uptake, cytotoxicity, and apoptosis 

were performed. To study the targeting abilities of these 

MSNs, their biodistribution behavior was investigated in 

both healthy and tumor-induced BALB/c mice by in vivo 

and ex vivo fluorescence imaging.

Materials and methods
Materials
Anhydrous DTX was purchased from Jiangsu Yew (Jiangsu, 

China). Cetyltrimethylammonium bromide (CTAB, 

98%), 3-aminopropyl triethoxysilane (APTS), mesitylene, 

hydroxybenzotriazole (HOBT), folic acid, methionine, 

fluorescein isothiocyanate (FITC) and MTT dye were 

purchased from Merck (Darmstadt, Germany). Tetraethyl 

orthosilicate (TEOS, 99%), 1-ethyl-3-[3-(dimethylamino)-

propyl] carbodiimide (EDC), N-hydroxysuccinimide 

sodium salt (NHS) and 3a, 4, 5, 7a-tetrahydro-7-methyl-5-

(tetrahydro-2, 5-dioxo-3-furanyl)-1, 3-isobenzofurandione 

(Epiclon B-4400) were purchased from Sigma-Aldrich 

Co. (St Louis, MO, USA). Dulbecco’s Modified Eagle’s 

Medium (DMEM) with high glucose, RPMI 1640, fetal 

bovine serum (FBS), trypsin, l-glutamine, penicillin and 

streptomycin were purchased from Biosera (Vienna, Aus-

tria). Ultra-purified water was used throughout the analyses, 

and all other chemicals were of analytical grades. Human 

breast cancer cell line (MCF-7), rat breast cancer cell line 

(4T1) and BALB/c mice were obtained from Pasteur Insti-

tute of Iran (Tehran, Iran).

synthesis of Msns and amine 
functionalization at inner and outer 
surfaces
The multistep synthesis of large-pore and amine functional 

MSNs, by one-pot and co-condensation of TEOS and APTS, 

is schematically illustrated in Figure 1. First, an aqueous solu-

tion of CTAB (1 g) and NaOH (0.28 g) was prepared with 

480 mL of deionized water,24 and 7 mL of mesitylene was 

then added.32 After 5 hours of high-speed stirring at 80°C, 

TEOS (5 mL) and APTS (0.21 mL) were added dropwise 

into the solution, and the mixture was magnetically stirred 

for another 2 hours at the same temperature.33 The prepared 

MSNs were filtered and washed with deionized water and 

ethanol repeatedly. In the next step, MSNs (1 g) were 

redispersed in anhydrous ethanol (100 mL), and then APTS 

(1 mL) was added to the mixture gradually.34 The mixture 

was stirred for 12 hours and subsequently centrifuged at 

5,000 rpm for 25 minutes. The residue was washed several 

times with deionized water to remove unreacted APTS. 

Finally, MSN-NH
2
 with amine groups at the inner and outer 

surfaces were dried under vacuum.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


OncoTargets and Therapy 2016:9 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

7317

Msns functionalized with Fa/Met for active targeted delivery of DTX

synthesis of Msn-Fa
The N-hydroxysuccinimide ester of folic acid (NHS-folate) 

was initially prepared through esterification of folic acid 

(1 mmol) with NHS (1 mmol) in dry dimethylsulfoxide 

(DMSO, 0.4 mL) solution of EDC (2 mmol) and HOBT 

(1 mmol).35 The mixture was stirred under N
2
 gas 

atmosphere for 30 minutes in an ice bath. Then, NHS-

folate was added to the MSN-NH
2
 suspension (MSN-NH

2
 

0.1 mg, DMSO 4 mL), and it was stirred under N
2
 gas 

atmosphere for 72 hours at room temperature. The mixture 

was washed with deionized water several times to produce 

MSN-FA (Figure 1).

synthesis of Msn-Met
The surface of MSN-NH

2
 was modified with Met and epiclon 

as a cross linker. To do so, a mixture of epiclon (1 mmol) 

and l-Met (2 mmol) in 5 mL of acetic acid was stirred at 

room temperature for 3 hours and then refluxed for 8 hours. 

The solvent was removed under vacuum, and a pale yellow 

precipitate was collected.36 This precipitate was used for 

MSN-NH
2
 modification via the same procedure used for 

preparation of folic acid-modified MSNs (Figure 1).

removing cTaB from Msns
CTAB was removed according to a previously reported 

procedure by simple modification.37 Briefly, a mixture of 

NH
4
NO

3
 (10 mg/mL) and MSNs (1 mg/mL) was refluxed at 

80°C for 6 hours under N
2
 gas atmosphere. The mixture was 

centrifuged at 20,000 rpm for 20 minutes and washed with 

deionized water several times. The procedure was repeated 

twice with renewal of NH
4
NO

3
 solution, and the removed 

MSNs were eventually obtained.

characterization of nanoparticles
Different techniques were used to characterize prepared 

MSNs. The MSNs were tested by scanning electron micros-

copy (SEM) and transmission electron microscopy (TEM) 

techniques as well as Brunauer–Emmett–Teller (BET) and 

X-ray diffraction (XRD) analyses. SEM (FE-SEM, Tescan/

Mira, Brno, Czech Republic) was employed to determine the 

shape and surface morphology of MSNs. The nanoparticles 

were coated with gold under vacuum before analysis. TEM 

was carried out on a Zeiss EM10C, 80 KV, Germany, 

transmission electron microscope to closely observe MSN 

morphology. The surface area and pore size of MSNs were 

Figure 1 schematic illustration of multistep synthesis of Msn-nh2, Msn-Fa, and Msn-Met.
Abbreviations: Msn, mesoporous silica nanoparticle; Fa, folic acid; Met, methionine; cTaB, cetyltrimethylammonium bromide; TeOs, tetraethyl orthosilicate; 
aPTs, 3-aminopropyl triethoxysilane.
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calculated by the BET and the Barrett–Joyner–Halenda 

(BJH) methods, respectively, on a N
2
 adsorption–desorption 

instrument (Quantachrome NOVA Automated Gas Sorption 

System, 2000e, USA). XRD patterns were collected on a 

STOE Theta-Theta Powder Diffraction System, STOE & cie 

GmbH, Germany. The presence of amorphous silica was 

analyzed from low-angle XRD pattern in the range of 

2θ=0.5–8. The surface composition of the nanoparticles at 

each step of surface modification was determined by infrared 

(IR) spectra. IR spectra were recorded on a Nicolet Magna 

IR-550, USA, using KBr pellets.

Thermal gravimetric analysis (TGA) curves were col-

lected with a TGA STA PT 1600, Linseis, Germany, with 

a temperature ramp of 5°C/min or 10°C/min for the MSNs. 

The system was purged under N
2
 atmosphere with a rate 

of 50 mL/min. The particle size, size distribution, and 

zeta potential measurements of the MSNs were taken by 

dynamic light scattering (DLS; ZEN3600 Zetasizer; Malvern 

Instruments, Malvern, UK). The surface elements of MSN-

Met were determined by energy dispersive X-ray analysis 

(EDAX) with a scanning electron microscope (FE-SEM, 

Tescan/Mira) coupled with an EDAX detector. EDAX spec-

trum was measured at 20 kV accelerating voltage.

Drug entrapping and in vitro release
For drug loading, 50 mg of MSN-NH

2
, MSN-FA, or MSN-

Met were soaked in 5 mL of DTX solution in methanol 

(50 mg/mL). After stirring for 24 hours under light-sealed 

conditions, the DTX-loaded MSNs were centrifuged and 

washed with 20 mL of methanol. To evaluate the DTX 

loading efficiency, the supernatant was collected, and the 

residual DTX content was determined by a UV–Vis spec-

trophotometer at 229.5 nm.38 The loading efficiency and 

loading capacity of DTX were calculated by Equations 1 

and 2, respectively:

 

% Loading efficiency

Initial amount of DTX Amount of DTX i
=

− nn supernatant

Initial amount of DTX
×100

 (1)

 

% Loading capacity

Initial amount of DTX Amount of DTX in
=

− ssupernatant

Amount of DTX loaded nanoparticles-
×100

 (2)

DTX release from drug-loaded MSNs was determined in 

two phosphate-buffered saline (PBS) media with pH values 

of 5.2 and 7.4 to simulate normal and tumor environments. 

Due to the poor aqueous solubility of DTX, Tween 80 

(0.1% w/v) was added to the release medium to create the 

sink condition. Briefly, the 10 mg DTX-MSNs were dispersed 

in both media. These MSN dispersions were shaken at 37°C 

with a speed of 100 rpm under a light-sealed condition. At a 

predetermined sampling time, the suspension was centrifuged 

at 17,000 rpm for 10 minutes, and then, the supernatant was 

separated. Moreover, the MSNs were resuspended by add-

ing adequate amounts of fresh media in order to continue 

the release profile, while maintaining the sink condition. 

Additionally, DTX quantities of the supernatant were deter-

mined by high-performance liquid chromatography and 

were based on the calibration curve after filtration through 

a 0.22 µm membrane filter.39

Msn-nh2, Msn-Fa, and Msn-Met 
labeling
To label MSN-NH

2
, MSN-FA, and MSN-Met, FITC was 

connected to their amine groups. A solution of 1 mL FITC 

(0.1 mg/mL) in acetonitrile was added to 10 mg of the par-

ticles, and it was stirred at room temperature in darkness for 

2 hours.40 The modified MSNs were collected by centrifu-

gation. After three times of washing, the FITC-MSNs were 

dried under vacuum and used for cellular and animal tests.

cellular uptake
To reveal cellular uptake efficiency of FITC-MSNs, MCF-7 

cells were seeded in 6-well plates with a density of 2×105 cells 

per well and incubated at 37°C in the presence of 5% CO
2
 for 

24 hours. FITC-MSNs (100 µM) and FITC (negative control) 

were added to each well, and cells were incubated at 37°C 

and 5% CO
2
 for 2 hours. The culture medium was removed, 

and cells were softly rinsed twice with PBS. At last, the cells 

were analyzed using a BD FACSCalibur four-color analysis 

cytometer (BD Biosciences, San Jose, CA, USA), and data 

were analyzed with WinMDI 2.9 Software.

cellular cytotoxicity
In vitro cytotoxicity of MSN-NH

2
, MSN-FA, and MSN-Met 

containing DTX compared to that of free DTX and biocom-

patibility of drug-free MSNs were determined using the MTT 

assay. The cells were cultured in RPMI 1640, containing 

10% FBS at 37°C in a humidified and 5% CO
2
 incubator. 

Then, MCF-7 cells (1×104) were cultured in a 96-well plate 

with 100 µL of growth medium per well. For treatment, free 

DTX stock solution was prepared in the growth medium 

(containing 0.1% DMSO) and was further serially diluted 

with the growth medium. Different dilutions of DTX-loaded 

MSNs were prepared with the same DTX concentration as 

for free DTX. Cells were incubated for 24 hours, 48 hours 
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and 72 hours, and then 20 µL of MTT solution (5 mg/mL) 

was added to each well. After cells were incubated for 

another 4 hours, they were centrifuged and 100 µL of DMSO 

was added to each well. Supernatant was gathered, and the 

absorbance was monitored at 570 nm on a microplate ELISA 

reader (BIOHIT, Finland).41

evaluation of McF-7 cell death 
mechanisms
Annexin V–FITC apoptosis detection kit (Thermo Fisher 

Scientific, Waltham, MA, USA) was used to quantify the 

apoptotic and necrotic cells by a standard fluorescence-

activated cell sorting (FACS) assay. First, MCF-7 cells were 

seeded into 6-well plates (2×106 cells per well). After incuba-

tion for 24 hours, cells were treated with 100 µL of Hank’s 

buffer solution containing DTX (positive control) or DTX/

MSNs (40 nM) with the same drug concentration at pH 7.4. 

At the end of the incubation (24 hours), the culture medium 

was discarded, and cells were washed twice with the Hank’s 

solution. After monolayer trypsinization, the FITC-labeled 

Annexin V was added to each well. Cells were incubated at 

room temperature on the shaker (100 rpm) for 15 minutes in 

darkness. In the next step, the PI stock solution was added to 

each well. Finally, cells were incubated for another 5 minutes 

and washed twice with the Hank’s solution again. Cytometric 

analyses were carried out on FACSCalibur analysis cytom-

eter by WinMDI 2.9 Software. Throughout early apoptosis, 

phosphatidylserine (PS) was translocated from the inner to 

the outer membrane surface. Then, cells with accessible PS 

were stained with Annexin V. Consequently, propidium iodide 

(PI) was used for identification of early and late apoptotic 

cells. Viable cells with undamaged membranes excluded 

PI, whereas the membranes of dead and damaged cells were 

permeable to PI.42,43 Therefore, cytometric analyses by FAC-

SCalibur were represented of living cells (stained negative for 

both Annexin V and PI) at lower left quadrant, early apoptotic 

cells (stained positive for Annexin V and negative for PI) at 

lower right quadrant, late apoptotic cells at upper right quad-

rant (stained positive for both Annexin V and PI) and necrotic 

cells (stained positive for PI) at upper left quadrant.44

Tumor model handling
To develop 4T1 breast tumor model in BALB/c mice, 4T1 

cells were cultured in DMEM medium containing 10% FBS, 

0.03% l-glutamine, 100 U/mL penicillin and 100 mg/mL 

streptomycin at 37°C and 5% CO
2
. The murine cells were 

trypsinized and resuspended in the culture medium. After 

centrifugation, cells were resuspended in a serum-free 

medium, and 1×106 cells were injected in the left flank 

of BALB/c mice under ketamine and xylazine anesthesia. 

Tumor growth was visible 2–3 weeks postinjection.45

In vivo and ex vivo fluorescence imaging
An optical imaging system (F PRO, Kodak, US) was used for 

in vivo and ex vivo fluorescence imaging, and the excitation 

and emission wavelengths were set at 495 nm and 519 nm, 

respectively. In vivo fluorescence imaging was used to observe 

the real-time distribution of MSNs in healthy BALB/c mice to 

obtain highly visible intensity and find the proper time for the 

next stage of the biodistribution study by dissecting the mice 

organs. Briefly, BALB/c mice were treated with a single dose 

within heart injection of FITC-MSN-NH
2
, FITC-MSN-FA, 

FITC-MSN-Met or PBS (control) on triple groups. The near 

infrared (NIR) fluorescent images were obtained at 0.5 hour, 

1 hour, 2 hours, 4 hours, 8 hours and 24 hours after injection 

of 0.2 mL of nanoparticles (10 mg/mL) by Kodak in vivo 

imaging system. At the best intensity time, the study was con-

ducted on scarified organs of both healthy and tumor-induced 

BALB/c mice. Kodak Molecular Imaging Software 5.X was 

employed for fluorescence image analysis of each organ and 

tumor tissue in both healthy and tumor-induced BALB/c mice. 

Ethics approval for the study was obtained from the Ethics 

Committee of Tehran University of Medical Sciences. All 

animal-handling procedures were performed according to 

the Guide for the Care and Use of Laboratory Animals of the 

Tehran University of Medical Sciences (purchase, transporta-

tion, maintenance and slaughter) and followed the guidelines 

of the Animal Welfare Act and Declaration of Helsinki.

statistical analysis
The results were expressed as mean ± SD. The significance 

of differences between groups was determined via two-way 

analysis of variance followed by the Newman–Keuls multiple 

comparison tests. Differences were considered significant at 

P,0.05. All statistics were conducted using GraphPad Prism 

6.01 (GraphPad Software, La Jolla, CA, USA) for Windows.

Results and discussion
characterization of nanoparticles
According to the SEM image of MSN-NH

2
, samples were 

found to be uniform with a good dispersion and spherical 

shape (~50 nm in diameter), which was also revealed by TEM 

image (Figure 2A and B). Mesoporous structure of MCM-41 

could also be confirmed with nanochannels of MSN-NH
2
 in 

the TEM image.46

The synthesized MSN-NH
2
 exhibited an average diam-

eter of 49 nm with a narrow size distribution (polydispersity 

index =0.222; Figure 2E). As DLS measures hydrodynamic 
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diameter,47,48 the larger size was observed by DLS method in 

Figure 2E. DLS analysis of obtained MSNs showed satisfac-

tory dispersion for cellular and animal tests.

The formation of a mesoporous structure was confirmed 

by BET analysis. Nitrogen adsorption/desorption isotherm 

of MSN-NH
2
 showed a typical type IV isotherm49 with a 

narrow hysteresis loop, and the ~700 m2/g of MSN-NH
2
 

revealed the highest BET surface area (Figure 2C). BJH 

pore size distribution is depicted in Figure 2D. Average pore 

diameters of 3.8 nm were obtained for MSN-NH
2
, showing 

the fact that mesitylene was attributed to micelle composition 

and generated bigger pore sizes.

XRD analysis of MSN-NH
2
 showed the pattern that is 

typical for mesoporous materials.49 The pattern at low-angle 

XRD demonstrated three main diffraction peaks at 2.1, 3.7, 

and 5.62 related to the (100), (110), and (200) lattice planes, 

respectively (Figure 2F).

The Fourier transformed infrared spectroscopy (FTIR) 

spectra of the MSNs confirmed modification of the MSNs 

with different functional groups. Figure 3 exhibits FTIR 

spectra of MSN-NH
2
, MSN-Met, and MSN-FA. The strong 

peaks appeared at around 1,080, 950, and 800 cm−1 are 

due to the stretching vibration of Si–O–Si, Si–OH, and 

Si–O, respectively, which are specific peaks of the silica 

θ

Figure 2 representative of seM and TeM images, nitrogen adsorption/desorption isotherm, BJh size distribution plots, and XrD pattern of Msn-nh2.
Notes: (A) seM image, (B) TeM image, (C) nitrogen adsorption/desorption isotherm, (D) BJh pore size distribution, (E) size distribution by number from Dls method, 
and (F) low–angle XrD pattern of Msn-nh2.
Abbreviations: seM, scanning electron microscopy; TeM, transmission electron microscopy; BJh, Barrett–Joyner–halenda; Dls, dynamic light scattering; XrD, X-ray 
diffraction; Msn, mesoporous silica nanoparticle.
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ν

ν
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ν

δ

ν

ν
ν

ν

Figure 3 FTir spectra of (A) Msn-nh2, (B) Msn-Fa, and (C) Msn-Met.
Abbreviations: FTir, Fourier transformed infrared spectroscopy; Msn, mesoporous silica nanoparticle; Fa, folic acid; Met, methionine.

nanoparticles, and the broad band around 3,400 cm−1 can be 

attributed to the N–H or O–H groups. The band appeared 

at around 1,600 cm−1 is ascribed to the bending vibration of 

O–H or N–H. Additionally, the bands at about 2,900 cm−1 

correspond to the C–H stretching vibration of amino propyl 

groups. The appearance of a peak at about 1,620–1,650 cm−1 

could be attributed to the formation of amide bands after 

MSN-NH
2
 modification with folate or epiclon–Met. The 

stretching vibration at around 1,700 cm−1 implies the presence 

of acid groups of epiclon (Figure 3).

Zeta potentials demonstrated surface modifications of 

MSNs. The amine functionalization caused changes in zeta 

potential for MSN-NH
2
 (+5.9). Also, positively charged 

folate conjugation increased the zeta potential of MSN-FA 
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to +8.11 mV. Surface modification with negatively charged 

epiclon–Met was confirmed by decreasing the zeta potential 

of the MSN-Met to −5.65 mV.

The surface composition of MSN-Met was qualitatively 

determined by energy dispersion spectrum (EDAX) as shown 

in Figure 4. It shows that C, N, O, Si, and S peaks were 

obtained with the atomic ratios (%) of 19.69, 9.81, 53.65, 

16.14, and 0.71, respectively. Therefore, it is assumed that 

Met was carefully conjugated on the surface of MSN-NH
2
 

by epiclon as the cross linker.

The incorporation of organic moieties was further con-

firmed by TGA of MSNs (Figure 5). Results showed that 

MSN-FA and MSN-Met lost up to 17.18% and 17.80% 

of their total mass at 800°C, while MSN-NH
2
 only lost 

up to 15.16% of its mass at the same temperature. These 

analyses confirm the higher carbon contents of folate and 

Met-modified silica than that of MSN-NH
2
. The difference in 

weight loss between MSN-FA and MSN-Met with MSN-NH
2
 

can be attributed to decomposable folic acid and Met–epiclon 

groups, respectively. Based on TGA results, the calculated 

molar organic contents of folate and Met–epiclon are about 

0.0457 mol/g and 0.0474 mol/g, respectively.

DTX loading and release
Previous studies showed that MSNs tend to have a high 

loading capacity, but low-loaded drug amounts are obtained 

for poorly water-soluble and large molecule drugs.40,50–53 

However, in this study, the large-pore MSNs caused high pay 

loading of DTX.41,42 The drug-loading amounts of DTX in 

MSN-NH
2
, MSN-FA, and MSN-Met are shown in Table 1, 

which increased compared to the prior studies.54 Higher load-

ing of DTX into MSN-NH
2
 and MSN-FA pores is related 

to the strong electrostatic attraction between the negative 

charge of DTX and the positive charge of MSNs surface. 

The zeta potential of MSN-NH
2
 and MSN-FA was found to 

be positive, but MSN-Met has shown negative zeta potential. 

Another possible reason for this phenomena (lower loading 

of DTX into MSN-Met) could be due to the steric hindrance 

of the epiclon–Met on the surfaces of MSNs resulting in 

acting as a band for entrance of DTX.55,56 In addition, the 

in vitro release profiles of DTX from MSNs under different 

pH conditions were drawn as shown in Figure 6. All MSNs 

showed a pH-dependent DTX release pattern in the buffer 

medium in neutral and acidic pH. Hence, amine groups at 

inner pore surfaces led to controlled and pH-sensitive release 

of the DTX molecules by electrostatic attraction. Considering 

the fact that the tumor tissues are more acidic than the normal 

tissues, the ideal pH sensitive system is the one in which 

drugs are hardly released in normal tissues and consequently 

inhibit toxic side effects but can be released in tumor tissues 

or cancer cells to the enhancement of drug efficiency.

intracellular uptake
MSN cellular uptake and accumulation after exposure of 

MCF-7 cells to MSNs-FITC were indicated by flow cytom-

etry (FCM) results. Figure 7 shows the more affinity of 

MCF-7 cells to the MSNs-FITC in comparison with free 

FITC as negative control (1.4%±0.3% intracellular uptake). 

Figure 4 eDaX spectra obtained of Msn-Met.
Abbreviations: eDaX, energy dispersive X-ray analysis; Msn, mesoporous silica 
nanoparticle; Met, methionine; c, carbon; n, nitrogen; O, oxygen; si, silicon; s, sulfur.

°

Figure 5 Tga curves for Msn-nh2, Msn-Fa, and Msn-Met.
Abbreviations: Tga, thermogravimetric analysis; Msn, mesoporous silica nano-
particle; Fa, folic acid; Met, methionine.

Table 1 Loading efficiency percentage and loading capacity 
percentage of Msn-nh2, Msn-Fa, and Msn-Met with DTX

Nanoparticles Loading 
efficiency (%)

Loading 
capacity (%)

Msn-nh2 20.81±2.33 7.68±0.32
Msn-Fa 18.19±2.74 6.78±0.33
Msn-Met 9.78±1.81 3.77±0.28

Note: Data presented as mean ± standard deviation.
Abbreviations: Msn, mesoporous silica nanoparticle; Fa, folic acid; Met, methionine; 
DTX, docetaxel.
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FCM studies on MCF-7 cells showed an 8.3%±0.09% 

intracellular uptake for MSN-NH
2
, but high intracellular 

uptake ratios of 23.2%±1.7% and 79.3%±1.9% were obtained 

for MSN-Met and MSN-FA, respectively. These outcomes 

indicated that the higher affinity of MCF-7 cells to targeted 

MSNs than MSN-NH
2
. On the other hand, these results cor-

roborate the better cell viability of MSN-FA in MCF-7 cells 

than of other MSNs, which is confirmed by the half maximal 

inhibitory concentration (IC
50

) results. According to the past 

studies, it seems that the cellular uptake of the MSNs may 

happen through macro pinocytosis.57–59 However, the exact 

mechanism of cellular uptake of MSNs is not completely 

clear and requires more research. The comparison of MSNs 

uptake in MCF-7 cells demonstrated that, although MCF-7 

cells express a much higher level of LAT1, LAT2, and FA 

Figure 6 In vitro DTX release profiles from MSN-NH2, Msn-Fa, and Msn-Met.
Note: results are expressed at ph =5.5 and 7.4, 37°c (n=3).
Abbreviations: DTX, docetaxel; Msn, mesoporous silica nanoparticle; Fa, folic 
acid; Met, methionine; h, hours.

Figure 7 Fluorescent intensity of (A) free FiTc, (B) Msn-nh2, (C) Msn-Fa, and (D) Msn-Met in McF-7 cells analyzed by Facs.
Abbreviations: FITC, fluorescein isothiocyanate; MSN, mesoporous silica nanoparticle; FA, folic acid; Met, methionine; FACS, fluorescence-activated cell sorting. FL, 
logarithm of fluorescence intensity.
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receptors, they internalized much more targeted MSNs (MSN-

Met and MSN-FA) compared to MSN-NH
2
. Consequently, the 

uptake of MSNs can be enhanced by using folic acid and Met 

as targeting ligands, and data confirm the important role of the 

targeting moiety.60–63 These observations suggest that the intra-

cellular uptake of MSN-Met and MSN-FA was more target-

specific. Figure 7 shows that MSN-FA intracellular uptake in 

MCF-7 was higher than that found in MSN-Met. Further, it can 

be deduced that the uptake of MSN-FA in MCF-7 cells was 

3–4 times higher than the MSN-Met uptake and 9–10 times 

more efficient than MSN-NH
2
. This indicates efficient uptake 

of the MSN-FA for breast cancer cells. Moreover, the results 

confirm that the MSN-FA was cell permeable, indicating a 

potential application in intracellular drug delivery.

inhibitory effect against tumor cells
MTT assay was used to evaluate the cytotoxicity. DTX/

MSNs cytotoxicity compared with free DTX at equivalent 

concentrations is shown in Figure 8. After 24 hours, 48 hours 

and 72 hours of exposure, DTX-loaded MSNs exhibited 

dose-dependent cytotoxicity. All the DTX/MSN types 

exhibited significantly more cytotoxic effect than free DTX 

in all mentioned incubation times. The poor solubility of DTX 

may limit its internalization into cells, but the uptake of MSNs 

may lead to the more efficient DTX accumulation and higher 

cytotoxicity of DTX/MSNs. MTT assay results at different 

time periods indicate that pretreatment with free DTX and 

DTX/MSNs will cause lower cell viability at longer incubation 

period. Targeted DTX/MSNs were more cytotoxic compared 

to DTX/MSN-NH
2
, and DTX/MSN-FA toxicity was higher 

than DTX/MSN-Met. The MTT assay results show that tar-

geted DTX/MSNs increased cytotoxicity and DTX/MSN-FA 

was more successful, which was confirmed by uptake and 

apoptosis outcomes. As shown in Table 2, the obtained IC
50

 

results show no significant cytotoxicity after 24 hours of treat-

ment of blank MSN-NH
2
, MSN-Met, and MSN-FA on MCF-7 

cells. It can be concluded that MSNs are biocompatible car-

riers and play no role in toxicity in MCF-7 cells.64,65 Overall, 

results attest to the potential of DTX/MSNs for DTX delivery 

by increasing the effectiveness of targeted delivery.

Figure 8 cytotoxicity of DTX/Msn-nh2, DTX/Msn-Met and DTX/Msn-Fa compared to free DTX against McF-7 cells after treatment for (A) 24 hours, (B) 48 hours, 
and (C) 72 hours. Data represent mean ± sD (n=3).
Abbreviations: DTX, docetaxel; Msn, mesoporous silica nanoparticle; Met, methionine; Fa, folic acid; sD, standard deviation.
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Table 2 Outcomes for ic50 calculations based on the linear model

Nanoparticles IC50 (nM)

Msn-nh2 12,335±356.27
Msn-Fa 12,890±499.11
Msn-Met 12,564±217.20
DTX/Msn-nh2 8.14±0.62
DTX/Msn-Fa 5.72±0.58
DTX/Msn-Met 6.99±0.27
Free DTX 81.85±7.51

Note: Data represent mean ± sD (n=3).
Abbreviations: Msn, mesoporous silica nanoparticle; Fa, folic acid; Met, methionine; 
DTX, docetaxel; sD, standard deviation; ic50, half maximal inhibitory concentration.

Death mechanisms of McF-7 cells
The death mechanisms of MCF-7 cells treated with the 

DTX/MSN-NH
2
, DTX/MSN-Met, and DTX/MSN-FA 

nanoparticles and free DTX for 24 hours were evaluated by 

FCM and FACS protocols (Figure 9). Early apoptosis was 

Figure 9 evaluation of the death mechanisms for McF-7 cells treated with (A) DTX, (B) DTX/Msn-nh2, (C) DTX/Msn-Met, and (D) DTX/Msn-Fa for 1 day by FcM 
and Facs protocols.
Abbreviations: DTX, docetaxel; MSN, mesoporous silica nanoparticle; Met, methionine; FA, folic acid; FCM, flow cytometry; FACS, fluorescence-activated cell sorting; FL, 
logarithm of fluorescence intensity.

induced in 4.46%, 11.79%, and 14.13% of the MCF-7 cells 

after treatment with the DTX/MSN-NH
2
, DTX/MSN-Met, 

and DTX/MSN-FA nanoparticles, respectively. Treatment 

with DTX had a slight influence on the MCF-7 cells and 

induced early apoptosis in 1.32% of the cells, which could be 

attributed to the poor internalization of DTX into cells. Treat-

ment of MCF-7 cells with the DTX/MSN-NH
2
, DTX/MSN-

Met, and DTX/MSN-FA nanoparticles and free DTX induced 

late apoptosis and necrosis in 20.52%, 3.39%, 56.99%, and 

3.82% of the cells, respectively. The free DTX shows very 

little influence on the apoptosis and necrosis of MCF-7 cells 

than other DTX-loaded nanoparticles. However, DTX/MSN 

samples with the same DTX concentration could simulta-

neously induce distinct early and late apoptosis of MCF-7 

cells in 1 day (Figure 9). DTX/MSNs could induce more 

late apoptosis of MCF-7 cells than early apoptosis. Com-
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Table 3 The percentages of the different types of cell deaths 
induced by DTX, DTX/Msn-nh2, DTX/Msn-Met, and DTX/
Msn-Fa as observed by FcM

Cell type 
concentration

DTX MSN-NH2 MSN-FA MSN-Met

living cells (%) 94.07±1.08 74.77±2.22 47.22±2.62 29.64±1.50
early apoptotic 
cells (%)

1.58±0.27 4.60±0.78 13.54±1.84 15.20±1.34

late apoptotic 
cells (%)

2.32±0.42 14.81±1.49 34.91±3.08 52.42±1.22

necrotic cells (%) 2.03±0.34 5.82±1.87 4.33±0.40 2.74±0.44

Note: Data presented as mean ± standard deviation (n=3).
Abbreviations: DTX, docetaxel; Msn, mesoporous silica nanoparticle; Met, 
methionine; FA, folic acid; FCM, flow cytometry.

Figure 10 In vivo fluorescence imaging of healthy BALB/c mice after injection of (A) Msn-nh2, (B) Msn-Fa, and (C) Msn-Met (n=3).
Abbreviations: Msn, mesoporous silica nanoparticle; Fa, folic acid; Met, methionine; h, hours.

pared with DTX/MSNs, DTX/MSN-FA remarkably would 

induce early and late apoptosis of MCF-7 cells at the same 

particle concentrations, and DTX/MSN-Met showed higher 

early and late apoptotic cells than DTX/MSN-NH
2
, which 

is also dependent on the target group as showed in previous 

studies.24,66 To sum up, DTX/MSNs could induce MCF-7 cell 

apoptosis by a synergistic apoptosis effect, which could be 

attributed to an enhancement of DTX uptake with synergistic 

effects of target groups by MCF-7 cells (Table 3).

in vivo distribution of nanoparticles
For in vivo biodistribution analyses, first biodistribution 

behaviors of all MSNs were evaluated in healthy BALB/c 

mice by Kodak in vivo imaging system. At the next stage, 

NIR fluorescence images of ex vivo organs were obtained 

from scarified BALB/c mice 2 hours after injection. 

The biodistribution behavior of MSN-NH
2
, MSN-Met, and 

MSN-FA at equal concentrations (1 mg/0.1 mL) was assessed 

to compare the effect of the target-directed folic acid and 

Met agents for active targeted delivery, with MSN-NH
2
 

as a passive delivery agent. A single dose of FITC-MSNs 

and PBS as the control group was injected within the heart 

in triple groups. Figure 10 displays the NIR fluorescence 

images of the healthy BALB/c mice at prescheduled time 

points after the injection of FITC-MSNs. The images show 

that the highest accumulation time point was 2 hours after 

injection. As shown in Figure 10, 2 hours after the admin-

istration of FITC-MSNs in healthy BALB/c mice, more 

MSN-NH
2
 were accumulated in the liver, but MSN-Met and 

MSN-FA were more observed in the kidney as confirmed by 

ex vivo results. At the best intensity time point of treatment, 

the animals were scarified in order to observe nanoparticle 

distributions. This examination was performed on both 

healthy and tumor-induced mice. Fluorescence intensities of 

ex vivo organs were measured by Kodak Molecular Imaging 

Software 5.X for image analysis. Organs and tumor-induced 

tissues that take different FITC-MSNs amounts are displayed 

in Figure 11. Among healthy BALB/c mice organs, higher 

accumulations of MSNs were accumulated in the lung, liver, 

and kidney than in other organs. Notably among tumor-

induced BALB/c mice organs and tumor tissues, the highest 
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fluorescence intensities of all FITC-MSNs were seen in the 

tumor tissues. Additionally, MSN-NH
2
 accumulation in the 

liver was much higher than that in the kidney. Conversely, 

targeted MSNs were more accumulated in the kidney than 

in the liver. This can be related to renal execration trends of 

targeted MSNs by surface modification.66

The accumulations of MSNs in different organs were 

analyzed by calculating the mean fluorescence intensities. 

As plotted in Figure 12A and B, the most accumulated 

organ for all MSNs was the lung, whereas the accumulation 

of MSNs decreased in the liver, kidney, spleen, and heart, 

respectively. However, targeted MSNs had a tendency to be 

present more in the kidney that has less metabolic action than 

in the liver. Moreover, obviously higher fluorescence was 

observed in the tumor tissue compared with other tissues and 

fluorescence intensity in the tumor tissue was relatively high 

in MSN-FA (P,0.05). Higher accumulation of all MSNs in 

tumor tissues with high permeability completely confirmed 

passive targeted delivery by nanoparticles.67,68 On the other 

hand, folic acid modification on to the surface of the MSNs 

induced an efficient delivery, and this is while MSN-Met 

accumulation in tumor tissues was relatively small, which 

suggests folic acid as a suitable targeting agent for active 

target-directed delivery.39,69,70

Figure 11 images of dissected organs of (A) healthy and (B) tumor-induced BalB/c mice after injection of Msn-nh2, Msn-Fa, or Msn-Met (n=3).
Abbreviations: Msn, mesoporous silica nanoparticle; Fa, folic acid; Met, methionine.

Figure 12 Biodistribution of Msn-nh2, Msn-Fa, and Msn-Met in (A) healthy and (B) tumor-induced BalB/c mice 2 hours following injection.
Notes: Obtained data were calculated as percentages of mean intensity and represented as mean ± sD (n=3). **P,0.05; ***P,0.01; ****P,0.001.
Abbreviations: Msn, mesoporous silica nanoparticle; Fa, folic acid; Met, methionine; PBs, phosphate-buffered saline; sD, standard deviation.
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Conclusion
Functionalized and DTX-loaded MSNs (DTX/MSN-NH

2
, 

DTX/MSN-Met, and DTX/MSN-FA) that were designed in 

this study have a high drug-loading capacity and pH-sensitive 

drug release kinetic. The examination of cytotoxicity and 

cell death mechanisms shows that cytotoxicity of targeted 

nanoparticles increased and more apoptosis and necrosis 

occurred. Biodistribution behavior by ex vivo fluorescent 

imaging on sacrificed tumor-induced BALB/c mice attested 

to the accumulation of MSNs in tumor tissues, which con-

firmed the targeting ability of MSN-FA compared with that 

of MSN-Met and MSN-NH
2
. Overall, the results showed 

that DTX/MSN-FA exhibited enhanced target-directed drug 

delivery for breast cancer, which can cause a decrease in 

dose, raise cytotoxic effects and efficiently repress cancer 

cells. In conclusion, DTX/MSN-FA exhibited enhanced 

antitumor efficacy, which makes them promising substances 

for cancer therapy.
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