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Background: To assess the benefits of bladder wall sub-volume equivalent uniform dose (EUD) 

constraints in prostate cancer intensity-modulated radiotherapy (IMRT) planning.

Methods: Two IMRT plans, with and without EUD constraints on the bladder wall, were 

generated using beams that deliver 80 Gy to the prostate and 46 Gy to the seminal vesicles 

and were compared in 53 prostate cancer patients. The bladder wall was defined as the volume 

between the external manually delineated wall and a contraction of 7 mm apart from it. The 

bladder wall was then separated into two parts: the internal-bladder wall (bla-in) represented 

by the portion of the bladder wall that intersected with the planning target volume (PTV) plus 

5 mm extension; the external-bladder wall (bla-ex) represented by the remaining part of the 

bladder wall. In the IMRT plan with EUD constraints, the values of “a” parameter for the EUD 

models were 10.0 for bla-in and 2.3 for bla-ex. The plans with and without EUD constraints 

were compared in terms of dose–volume histograms, 5-year bladder and rectum normal tissue 

complication probability values, as well as tumor control probability (TCP) values.

Results: The use of bladder sub-volume EUD constraints decreased both the doses to the bladder 

wall (V
70

: 22.76% vs 19.65%, D
mean

: 39.82 Gy vs 35.45 Gy) and the 5-year bladder complica-

tion probabilities ($LENT/SOMA Grade 2: 20.35% vs 17.96%; bladder bleeding: 10.63% vs 

8.64%). The doses to the rectum wall and the rectum complication probabilities were also slightly 

decreased by the EUD constraints compared to physical constraints only. The minimal dose 

and the V
76Gy

 of PTV
prostate

 were, however, slightly decreased by EUD optimization, nevertheless 

without significant difference in TCP values between the two plans, and the PTV parameters 

finally respected the Groupe d’Etude des Tumeurs Uro-Génitales recommendations.

Conclusion: Separating the bladder wall into two parts with appropriate EUD optimization 

may reduce bladder toxicity in prostate IMRT. Combining biological constraints with physical 

constraints in the organs at risk at the inverse planning step of IMRT may improve the dose 

distribution.

Keywords: prostate, IMRT, equivalent uniform dose

Introduction
The EUD was proposed by Niemierko in 1997 to convert a nonuniform partial dose 

distribution into an EUD distribution with the same cancer killing effect. In 1999, it 

was extended to gEUD to describe doses on normal tissues which is more compre-

hensive than a single dose–volume threshold for a unified description compared to 

the nonuniform dose distribution.1 Furthermore, since EUD can be used to describe 

the biological dose–volume characteristics of normal tissues by setting different 

parameters, it may also be used as biological constraint for IMRT optimization to 
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spare normal tissue complications.2,3 Indeed, Wu et al4 

argued that the use of merely physical objective functions 

(ie, dose–volume constraints) in IMRT optimization may not 

be fully adequate to reduce toxicity, since it does not reflect 

the nonlinear radio-induced normal tissue reaction, especially 

when the dose distribution is not uniform. Optimizing the 

IMRT objective function with EUD biological constraints, 

ie, limiting particularly the dose levels highly correlated with 

toxicity, may therefore strongly help to reduce the toxicity. 

The application of EUD constraints implies, however, the 

choice of a specific “a” parameter for each kind of toxicity 

or organ. This parameter “a”, the only one within the EUD 

model, is related to the “n” parameter of the LKB NTCP 

model with the relationship a=1/n.5 For serial organs, such 

as the spinal cord or the rectum, a.1 means that toxicity is 

mainly linked to high doses (hot spots), which are therefore 

to be considered with high priority at the inverse planning 

step of IMRT. For parallel organs, such as parotid, lung, 

liver and kidney, “a” close to zero means that the mean 

dose and cold and hot spots can be equally considered for 

inverse planning.1,6

With regard to prostate radiotherapy, the two most 

frequent toxicities are linked to the rectum and bladder 

irradiation. Indeed, due to the proximity of the anatomical 

structures, the posterior and the superior part of the PTV 

(with margins $5 mm) overlapped with the rectum and the 

bladder wall, respectively, generating a conflict to respect 

the dose constraints in both the PTV and the OARs. The 

amount of overlap volume between PTV and bladder or 

rectum adversely affects sparing of that organ, though other 

metrics of plan quality are less affected.7 A medical choice 

needs to balance either in favor of limiting toxicity or toward 

increasing local control. Depending on the prescribed total 

dose to the prostate, which can range from 74 to 80 Gy, and 

in order to spare more OARs, some compromise with a lower 

dose to the PTV overlapped with rectum and bladder,8 while 

some may also assign different physical dose constraints to 

the OARs by subdividing the target area into “inside” and 

“outside” regions.9 However, specific biological constraints 

could be used in these PTV-OAR overlapped sub-volumes 

to optimize this compromise.

Although the “n” value of the EUD model is relatively 

well identified for the rectal toxicity (range: 0.06–0.24),10 

the “n” value for the bladder is still intangible due to its 

geometric uncertainties.11 The majority of the studies12–20 

suggest bladder as a “serial” organ, its toxicity, mainly 

urgency and obstruction, being related to the highest dose 

delivered within the trigone region. On the other hand, some 

studies21–23 found bladder as a mixed “serial–parallel” organ 

because severe urinary toxicity is related to both low (10 Gy) 

and high (80 Gy) doses delivered to the bladder. The QUAN-

TEC (QUAntitative Normal TissuE models in the Clinic)24 

investigation concluded “prudently” that both maximum 

dose and a relatively large irradiated bladder volume (50%) 

may correlate with bladder toxicity (Grade $3 late RTOG 

[Radiation Therapy Oncology Group]).

In this study, we assumed that bladder toxicities may be 

linked with differently irradiated bladder sub-volumes. The 

goal of this dosimetry study was to quantify the benefit of 

using such multiple bladder sub-volume EUD constraints 

at the inverse planning step of IMRT to decrease bladder 

toxicity in prostate cancer IMRT.

Materials and methods
A total of 53 patients having received IMRT for intermediate- 

and high-risk localized prostate adenocarcinoma were 

included in this dosimetry study. Ethical approval was not 

required by the institutional review board (IRB) of Centre 

Eugène Marquis, because all the patients enrolled in this 

study had finished radiotherapy. Only the CT images of these 

patients were used as the materials in this experiment. All 

the patients have given their consents on the usage of their 

CT images in this study.

CT acquisition and region of interest 
delineation
All patients were immobilized in the supine position with 

an individualized vacuum bag during the CT simulation and 

treatment. A thin rectal catheter was used to improve the 

visibility of the anal canal and the rectum. An intravenous 

iodine contrast CT scan was acquired from the sacroiliac 

joints to the lower edge of the small trochanters with a slice 

thickness of 3–5 mm.

The OARs were defined according to the GETUG 

recommendations.25 The external contour of bladder was 

manually delineated. For the rectum, the external contour 

was delineated from 2 cm above to 2 cm below the CTV 

(clinical target volume). The bladder and rectum walls were 

obtained by regular two-dimensional contractions of 7 and 

5 mm, respectively.

The bladder wall was then separated into two parts as 

shown in Figure 1: bla-in represents the part of the blad-

der wall overlapped with the area corresponding to the 

PTV
prostate+SV

 plus a 5 mm extension and bla-ex represents 

the remaining part of the bladder wall (outside the area 

including the PTV
prostate+SV

 plus the 5 mm extension). Femo-

ral heads were finally delineated up to the upper edge of the 

low trochanters.
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eUD parameters and iMrT planning
The IMRT plans were generated by using ten 18 MV beams 

delivering 80 Gy to the prostate and 46 Gy to the SV in two 

sequential phases. Phase 1 delivered 46 Gy (2.0 Gy/fr in 

23 fr) with 5 coplanar beams (36°, 100°, 180°, 260°, 324°) 

to the PTV
prostate+SV

. Based on the optimization of phase 1, 

phase 2 used another five beams that delivered a boost of 

34 Gy (2.0 Gy/fr in 17 fr) to the PTV
prostate

. Both the “physi-

cal” IMRT plan (without EUD constraints; “Plan
phys

”) and 

the “biological” IMRT plan (with EUD constraints, “Plan
bio

”) 

were generated for each of the 53 patients, with Philips 

Pinnacle 3 v9.2 TPS.

For Plan
phys

, the dose constraints were defined according 

to the “GETUG”26 recommendations: minimum dose .72 Gy 

and V
76Gy 

.95% for the PTV
prostate

; maximum dose (within 

1.8 mL) ,80 Gy and V
70Gy

#50% for the bladder wall; maxi-

mum dose (within 1.8 cc) ,76 Gy and V
72Gy

#25% for the 

rectal wall; and V
55Gy

,5% for the femoral heads.

For Plan
bio

, dose constraints were derived from the corre-

sponding Plan
phys

 by replacing the physical IMRT constraints 

of bladder wall with two “Max EUD” constraints, namely, 

EUD
bla-in

 and EUD
bla-ex

, respectively, in a sequential approach. 

To evaluate the effect of EUD, only penalty weight and 

the objective EUD values were adjusted during the IMRT 

optimization process of Plan
bio

. The toxicity of the “bla-in” 

was considered to be correlated with high dose delivered in 

a small volume, whereas for the “bla-ex”, a large irradiated 

volume was considered as being correlated with toxicity. 

Thus, the corresponding EUD
bla-in

 and EUD
bla-ex

 parameters 

were set to “a=10.0”19 and “a=2.3”, respectively.27,28 During 

the IMRT optimization process of Plan
bio

, if the dose to 

the rectal wall was significantly increased, another “Max 

EUD” constraint was added for the rectal wall, with the 

parameter “a=5.0”.29

Dosimetry end points and statistical 
analysis
Plan

phys
 and Plan

bio
 were compared in terms of DVH, 5-year 

bladder and rectal NTCP values (overall toxicity and 

bleeding episode) and TCP values. To visually present the 

effect on dose–volume variation, the integral DVH curves 

of two targets (PTV
prostate

, PTV
prostate+SV

,) and four OARs 

(rectal wall, bladder wall, bla-ex and bla-in) were averaged 

from both Plan
phys

 and Plan
bio

 of all the 53 patients. These 

average DVH curves were calculated based on the DVH 

files exported from Pinnacle TPS30 and were plotted using 

“Matlab” software (The MathWorks, Inc., Natick, MA, 

USA version 8.0). The DVH end points included D
2%

, D
50%

, 

D
95%

, D
98%

 and D
mean

 of PTV
prostate

, V
70Gy

, D
max

 and D
mean

 of 

bladder, and V
72Gy

, D
max

 and EUD of rectum, according to 

the ICRU Report 83.31 The NTCP values for bladder and 

rectal 5-year toxicities were calculated using an LKB model 

with the following parameters: TD
50

(1)=78.68 Gy, n=0.09, 

m=0.17 for bladder $ Grade 2 LENT/SOMA toxicity and 

TD
50

(1)=85.31 Gy, n=0.36, m=0.30 for bladder bleeding;19 

TD
50

(1)=80.46 Gy, n=0.01, m=0.12 for rectal $ Grade 2 

LENT/SOMA toxicity and TD
50

(1)=82.14 Gy, n=0.02, 

m=0.12 for rectal bleeding.32

To estimate the relative difference in tumor control which 

might reasonably be predicted between two not too dissimilar 

situations, the TCP values were calculated according to the 

model proposed by Fowler33 as follows:

 
TCP D N SF D

LQ clo k LQ k
k

N

( ) exp ( )= −










=
∑ ν

1  

with
  

SF D D nLQ k k k( ) exp( / )= − −α βD2

 

where N
clo

 is the total initial number of clonogenic cells, 

SF
LQ

(D
k
) is the surviving fraction of cells exposed to dose 

D
k
 in voxel k, ν

k
 is the relative volume of voxel k, α is 

the intrinsic radiosensitivity representing the nonrepair-

able radiation damage, β represents a repairable type of 

injury that is responsible for the dose-per-fraction effect 

and n is the number of treatment fractions. The following 

parameters were chosen: N
clo

=138,34 α=0.0391 Gy-1 and 

β=0.0263 Gy-2.35

Figure 1 Delineation of the organs of interest.
Notes: The bladder wall was divided into two parts: the internal-bladder wall 
(bla-in, yellow lines) and the external-bladder wall (bla-ex, blue lines). The red line 
corresponds to the prostate and the green one to the prostate PTV. The purple line 
corresponds to the seminal vesicles (sV) and the cyan one to the sV PTV.
Abbreviation: PTV, planning target volume.
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In order to quantitatively assess the target coverage, the 

CI and HI were calculated for PTV
prostate

. The CI and HI were 

defined as follows:

 

CI =
V

V

V

V
t ref

t

t ref

ref

, ,⋅
 

where V
t
 is the volume of tumor, V

t,ref
 is the volume of tumor 

surrounded by the reference dose curve and V
ref

 is the volume 

of the reference dose curve. CI therefore varies between  

0 and 1. A larger CI value indicates a better conformal dose 

distribution;36

 

HI =
−D D

D
p

2 98

 

where D
2
 stands for the dose on 2% volume of the tumor and 

D
98

 stands for the dose on 98% volume of the tumor. There-

fore, D
2
 and D

98
 describe the maximum and minimum dose 

on the tumor target, respectively. D
p
 is the prescription dose. 

HI varies between 0 and 1. The smaller HI value indicates a 

more homogeneous dose distribution on the tumor target.37

To determine the statistical significance, the Mann–Whitney 

test was performed and P-value ,0.05 was considered to be 

statistically significant. All calculations were performed using the 

SPSS program, version 16.0.2 (SPSS Inc., Chicago, IL, USA).

Results
The integral average DVH values of tumor target and 

normal tissues for the 53 patients are plotted in Figure 2, 

where x- and y-axes indicate absolute dose (in “Gy”) and 

normalized percentage volume (%), respectively, with the 

solid curves corresponding to Plan
phys

 and the dashed curves 

corresponding to Plan
bio

. The statistical comparison of the 

two plans is shown in Table 1.

Both Table 1 and Figure 2 show that compared to Plan
phys

, 

Plan
bio

 decreased significantly the bladder doses, in terms 

of bla-in, bla-ex and the whole bladder wall, as well as the 

complication probabilities. With regard to the rectal wall, 

Figure 2 Mean DVH of the physical plan and biological EUD plan.
Abbreviations: IMRT, intensity-modulated radiotherapy; bla-in, internal-bladder wall; bla-ex, external-bladder wall; DVH, dose–volume histograms; SV, seminal vesicles; 
EUD, equivalent uniform dose; PTV, planning target volume.
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only D
max

 and EUD showed statistical significance while 

the dashed DVH line (Plan
bio

) is closely covered above 

the solid line (Plan
phys

) in the whole dose region, which 

at least indicates that the bladder sparing did not sacrifice 

rectal wall.

Plan
bio

 also slightly decreased the PTV dose coverage 

considering V
76Gy

 and D
min

 of PTV
prostate

, but still met the 

GETUG recommendations (more than 95%). No significant 

difference was found in the TCP value.

Figure 3 visually illustrates the effect of EUD optimization 

on irradiation isodose distribution around prostate target and 

OARs in one of the 53 cases. It is obvious that, by using EUD 

constraint on bla-in, the high-dose line (110% of prescription 

dose, red line) was specifically “expelled” out of the bladder 

wall and fell on the prostate tumor target area. In addition, 

the high-dose line did not impair the internal side of rectal 

wall, and the low-dose line around bla-ex also contracted 

toward the tumor target. However, the corresponding effect 

is that the dosimetry homogeneity in the target decreased as 

price of sparing surrounding normal tissues

Discussion
As a “hollow” organ, the contents of the bladder may be irrel-

evant to estimate the risk of complications. Indeed, Harsolia 

et al21 argued that an analysis of the initial bladder wall vol-

ume, which is the actual biologic structure at risk, correlates 

more accurately with chronic genitourinary toxicity than the 

absolute solid volume of the bladder. In our study, only the 

dose distributed in the three-dimensional volume enclosed 

between the inner and outer surfaces of the bladder wall 

was optimized. This volume, belonging to the trigone area, 

appears to be less variable between and during the treatment 

fractions than the superior part of the bladder or the dome 

whose volume depends on the bladder filling.

The main innovation of this study is applying two EUD 

constraints with different parameters to separated bladder 

Table 1 statistical comparison between plans without and with eUD iMrT

Organs  
at risk

Factors Plan without EUD  
optimization (Planphys)

Plan with EUD  
optimization (Planbio)

P-value

PTVprostate Dmin
c 92.99%±3.35% 92.70%±3.50% 0.008

V76gy
a 96.10%±2.15% 95.15%±2.46% ,0.001

D2%
b 83.60±2.91 gy 83.79±2.86 gy 0.125

D50% 80.38±1.93 gy 80.43±1.91 gy 0.554

D95% 76.75±1.75 gy 76.85±2.20 gy 0.297

D98% 74.92±1.81 gy 75.06±2.32 gy 0.330

Dmean 79.50±1.64 gy 79.42±1.41 gy 0.554

ci 0.74±0.04 0.94±0.02 ,0.001

hi 0.10±0.02 0.11±0.02 ,0.001

TcP 91.12%±0.48% 91.10%±0.41% 0.972

rectal wall Dmax
d 75.90±2.04 gy 75.19±2.17 gy 0.003

V72gy 14.35%±5.26% 14.02%±5.04% 0.067

eUD (a=5.0) 55.94±3.61 gy 55.61±3.44 gy 0.001

nTcP 5yrTe 22.77%±13.04% 19.93%±7.09% 0.199

nTcP 5yrblf 29.51%±9.24% 27.44%±8.10% 0.217

Bladder wall Dmax
d 79.96±0.84 gy 79.63±0.81 gy ,0.001

V70gy 22.76%±10.59% 19.65%±9.96% ,0.001

Dmean 39.82±12.73 gy 35.45±12.58 gy ,0.001

nTcP 5yBTg 20.35%±6.70% 17.96%±6.36% ,0.001

nTcP 5yBblh 10.63%±6.29% 8.64%±5.50% ,0.001

bla-exi eUD (a=2) 33.48±8.93 gy 27.50±8.68 gy ,0.001

bla-inj eUD (a=10) 73.30±3.37 gy 71.23±3.71 gy ,0.001
Fhk V55gy 0.04%±0.18% 0.20%±0.59% 0.026

Notes: aV76gy corresponds to the 95% prescription dose on PTVprostate; 
bD2%, D50%, D95% and D98% are the minimum absorbed dose that covered 2%, 50%, 95% and 98% of the 

volume of PTVprostate, respectively; cDmin stands for the minimum dose on target which is the relative dose of target volume minus 1.8 cc; dDmax is the maximum dose on 1.8 
cc volume; e5yrT means the overall rectal toxicity $LENT/SOMA Grade 2 at 5-year follow-up;31 f5yRbl means the rectal bleeding event (one episode) at 5-year follow-up;31 
g5yBT means the overall bladder toxicity $LENT/SOMA Grade 2 at 5-year follow-up;19 h5yBbl means the bladder bleeding event (one episode) at 5-year follow-up;19 ithe 
external-bladder wall; jthe internal-bladder wall; kbilateral femoral head. 
Abbreviations: CI, conformal index; IMRT, intensity-modulated radiotherapy; EUD, equivalent uniform dose; HI, homogeneity index; NTCP, normal tissue complication 
probability; PTV, planning target volume; TCP, tumor control probability; bla-in, internal-bladder wall; bla-ex, external-bladder wall; FH, femoral head; LENT/SOMA, late 
effects of normal tissues/subjective objective management analytic.
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sub-volumes, which comes from the assumption that 

bladder toxicities may be linked with differently irradiated 

bladder sub-volumes. Most studies12–18 found that at least 

one of the primary mechanisms of urinary function impair-

ment depends on the irradiation of a “small” volume (ie, the 

caudal portion of bladder unavoidably included in the PTV) 

to a “high” dose, which indicated a serial-like behavior. 

Marks et al38 found that the majority of the bladder can be 

irradiated with ~30–50 Gy without serious complications 

in contrast to a small fraction of the bladder that received 

60–65 Gy with serious complications. In our previous study,19 

the estimated volume factor “n” of LKB NTCP model for 

bladder was about 0.1, which also pointed to the serial-like 

behavior. On the other hand, Harsolia et al21 found that a 

large number of points in bladder wall DVH (V
10–82

) cor-

related with chronic urinary toxicity and chronic urinary 

retention, which suggested a serial–parallel-like behavior. 

Thus, the bladder tissue located in low-dose area should 

also be considered by physicians and physicists. From the 

aforementioned debates, a single EUD parameter value to 

bladder may not be appropriate to present its serial–parallel 

characteristics in biological IMRT. Therefore, we assume 

the reason that although most commercial TPSs provide the 

biological IMRT optimization interface with EUD or NTCP, 

they are not widely used in the daily practice because of the 

intangible choice of the biological parameters.

Table 1 shows that, with regard to most normal tissue fac-

tors, the plan with EUD was significantly better than the one 

without EUD, especially in decreasing the bladder doses as 

well as the related predicted toxicities. However, the negative 

impact on the tumor target coverage should not be ignored. 

Indeed, Table 1 shows that the D
min

, V
76 Gy

 and HI of PTV
prostate

 

are significantly decreased in Plan
bio

. The explanation is 

related to the PTV and OAR overlapped area, generating a 

conflict between the objectives. However, these slight changes 

in tumor targets appear to be moderate by looking at the aver-

age DVH curve (Figure 1), and all the dosimetric parameters 

finally fully respected the GETUG constraints. Moreover, 

the TCP values from physical and biological optimization 

schemes were not significantly different. Thus, the differ-

ence in the tumor target dose coverage may not affect the 

treatment benefits. Wu et al and Senthilkumar et al4,39,40 also 

pointed out that EUD-optimized IMRT may impact negatively 

on the PTV DVH curve (lower prescription dose coverage 

percentage and lower homogeneity versus higher hot spots on 

tumor). Li et al41 compared a biological IMRT optimization 

strategy to a physical IMRT optimization strategy among 

three commercial TPSs (Monaco, Pinnacle and Eclipse) and 

argued that although biological IMRT better spared normal 

tissues, the same dose coverage on target could hardly be 

achieved, compared to physical IMRT. This situation can 

also be observed in Figure 3, where the higher isodoses were 

“pushed” out of the bla-in and congregated in a smaller target 

area. The biological constraints should therefore be used with 

the assistance of physical constraints, especially for sparing 

serial organs (confining maximum dose on normal tissues).

Figure 3 Dose distribution comparison on tumor target between plans with or without eUD iMrT optimization.
Notes: The left figure (A) presents the dose distribution without EUD IMRT optimization, while the right figure (B) presents the dose distribution with eUD iMrT 
optimization. The yellow dose curve covering prostate and seminal vesicle assign for the prescription dose 76 Gy of phase 1. The green arrows indicate that the higher dose 
(red curve, 80 Gy) in the internal-bladder wall is expelled out of the bladder wall area. The green area corresponds to the prostate PTV. 
Abbreviations: bla-in, internal-bladder wall; bla-ex, external-bladder wall; EUD, equivalent uniform dose; IMRT, intensity-modulated radiotherapy; PTV, planning 
target volume.
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Table 1 also shows that the femoral head dose would be 

very slightly increased due to the beam angles, but remained 

very low (V
55

% ,0.4%) without having any clinical impact. 

VMAT or helical tomotherapy technique may play a posi-

tive role in avoiding the femora. Considering the recent new 

radiotherapy equipment, such as tomotherapy and cyberknife, 

treatment beams are much thinner (due to the small subfields 

or the thin circular collimators) and have higher degrees 

of freedom.42,43 If the separated bladder sub-volume EUD 

constraints really bring the benefit of sparing the internal 

bladder wall, tomotherapy and cyberknife will provide more 

specific OAR protection by taking advantage of the accurate 

beam ray, especially for avoiding high-dose injury during 

hypofractionation or radiosurgery treatment.44

Conclusion
Bladder wall sub-volume EUD constraints may be applied in 

the biological IMRT optimization to reduce bladder toxicity 

in prostate IMRT. The use of both physical and biological 

constraints in the optimization process may improve the 

IMRT dose distribution.
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