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Abstract: This article investigates the possible effects of transplantation of mononuclear bone 

marrow cells (mBMCs) to ameliorate or prevent the behavioral impairments and the cellular 

damage observed in a quinolinic acid (QA) model of Huntington’s disease. mBMCs were iso-

lated using a standard procedure and implanted within the QA-lesioned striatum. Behavior was 

explored using motor (beam test) and memory (object recognition and Morris water maze) tests. 

Morphology was evaluated using conventional histology (cresyl violet), bisbenzimide (to evalu-

ate cell vitality), and immunohystochemistry to identify neurons or glia. mBMC-transplanted 

animals showed improvements in motor coordination (beam test). Regarding memory, object 

recognition was significantly improved in transplanted animals, while spatial memory (Morris 

water maze test) was not severely affected by QA and, therefore, the results after transplantation 

were significant only in the probe-trial retention test. In samples taken from the animals that 

participated in the behavioral tests, a preserved morphology of striatal neurons and a reduced 

glial reaction indicated a possible neuroprotective effect of the transplanted mBMCs. A parallel 

study confirmed that the transplanted mBMCs have a long survival period (1 year follow-up). The 

results presented confirm the possibility that mBMC transplantation may be a viable therapeutic 

option for Huntington’s disease.

Keywords: mononuclear bone marrow cells, Huntington’s disease, quinolinic acid, transplant, 

Fluoro-Jade C, glial fibrillary acidic protein, neuronal nuclear marker

Introduction
Huntington’s disease (HD) is an inherited neurodegenerative disease characterized by 

motor dysfunction, cognitive decline, and psychiatric disorders.1 The striatum is the 

major site of HD degeneration2 and is characterized by a marked loss of the striatal 

medium-sized spiny projection neurons.3 As no cure is currently available, manage-

ment of symptoms is the primary goal in treating HD.

Some therapies aimed at modifying the course of the disease have been evaluated 

in animal models, eg, pharmacological interventions and modulation of autophagy 

targeting pathogenic pathways, while cell replacement therapies that attempt to replace 

dysfunctional or dying cells, primarily through transplantation, have also been tested.4,5 

Cell therapy strategies in HD have traditionally been aimed at protecting or replacing 

cells lost during the course of the disease and thereby preventing or retarding disease 

progression.

Different animal models that replicate the HD pattern of degeneration have been 

used to study the pathophysiology6 and the treatment7 of HD. Quinolinic acid (QA) is 
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an  excitotoxic substance that, when injected into the striatum, 

induces death of the projecting neurons. The injection of QA 

into the striatum has been, since long, used as an animal 

model of HD.8,9

Transplantation of mononuclear bone marrow stem cells 

(mBMCs) has been successfully used in animals after trau-

matic brain damage10 and striatal ischemia11 to reduce the 

motor deficits induced by the injury.

In a previous study, we have shown that the transplanta-

tion of mBMCs to unilaterally QA-lesioned rats reduces the 

number of turns in the classic amphetamine-induced circling 

locomotion behavior and facilitates the acquisition of a motor 

skill.12 More recently, we have reported an increase in levels 

of brain-derived neurotrophic factor (BDNF), both mRNA 

and protein, measured in the striatum of QA-lesioned rats 

after mBMC transplantation.13

These findings support the idea that the transplanted cells 

contribute to alleviating the negative symptoms of the striatal 

lesion and might probably also restore the cellularity within 

this nucleus of the basal ganglia. In this study, we attempt to 

complement and expand these previous reports in 3 aspects: 

first, we aimed to study the effects of this transplantation on 

motor coordination and memory using behavioral models; the 

second goal was to obtain a preliminary insight into how the 

transplantation of mBMCs influenced the cellular composi-

tion of the lesioned striatum; and the third aim was to deter-

mine the survival of the transplanted cells in the long term.

Materials and methods
Animals
Adult male Sprague Dawley (SD) rats (total N=71) obtained 

from the National Center for Laboratory Animals Produc-

tion (CENPALAB) and weighing 200–250 g (between 9 

and 12 weeks of age) were used in this study. Animals were 

housed in translucent macrolon cages (5 animals per cage) 

under 12 hour light:12 hour darkness cycle and ad libitum 

access to water and food. Experiments were carried out 

in accordance with the Cuban Regulations for the Use of 

Laboratory Animals (CENPALAB 1997) and were approved 

by the Ethical Committee of the International Center for 

Neurological Restoration. Efforts were made to minimize the 

pain and discomfort of the animals, as well as the number of 

aniimal used for experiments.

To characterize the histological conditions in the striatum 

after QA lesioning at the time of transplantation, a group 

of 10 animals was sacrificed 1 mo after the lesioning, and 

the brains extracted and processed by conventional (cresyl 

violet) histology and glial fibrillary acidic protein (GFAP) 

immunohistochemistry.

Experimental groups for behavior and morphology 

included 4 groups (n=10 each) according to treatment: Con-

trol (C); QA lesion (QAL); mononuclear bone marrow cell 

transplantation (mBMC); and Dulbecco’s Modified Eagle’s 

Medium injection (DMEM).

The cell survival study was carried out in a separate 

group of mBMC (N = 3 per group) sacrificed at 10, 30, 

45, 60, 90, 180 days, and 1 year posttransplantation with 

mBMCs.

Lesioning and transplantation
Striatal QA lesions
Unilateral lesions of the right striatum were produced by the 

intrastriatal injection of QA. Rats were anesthetized with 

an intraperitoneal injection of chloral hydrate (420 mg/kg 

body weight). QA injections were administered with the 

help of a stereotaxic apparatus (model 900; David Kopf 

Instruments, Tujunga, CA, USA). Each rat was injected 

in the striatum with 1.2 µL of QA (125.5 nmol) (Sigma, 

Saint Louis, MA, USA) using a 30 G Hamilton syringe at 

the following coordinates: 1.2 mm anterior, 2.8 mm lateral 

to bregma, and 5.5 mm below the dura. The toxin was 

injected over a period of 1 minute, and the cannula was left 

in place for an additional 10 minutes before being slowly 

removed.

Obtaining rat bone marrow
Male SD rats between 32 and 48 days old were anesthe-

tized with an intraperitoneal injection of chloral hydrate 

(420 mg/kg body weight) and a cut on the skin of the hind 

limbs was performed, separating the tissue parallel to the bone 

to extract both femurs; then the animals were euthanized with 

a lethal overdose of chloral hydrate. The extracted bones were 

placed for 30 minutes on a Petri dish containing 0.9% physi-

ologic saline, after which the bone marrow was obtained by 

flushing with sterile phosphate-buffered saline (PBS; NaCl, 

8 g/L; KCl, 0.2 g/L; Na
2
HPO

4
, 1.09 g/L; KH

2
PO

4
, 0.26 g/L, 

pH 7.2) through one of the femoral epiphyses. The bone 

marrow was collected in sterile containers to be later washed 

by centrifugation.12

Isolation of mononuclear cells from rat bone 
marrow
The suspension of bone marrow cells was washed 3 times 

with 1× PBS by centrifugation for 10 minutes at 2000 rpm 

at 20°C. An aliquot of 2.5 mL of Ficoll–Hypaque was 

placed on the bottom of a graduated glass tube, on top of 

which 5 mL of the cellular suspension in PBS was layered. 

This was centrifuged for 45 minutes at 2800 rpm at 20°C. 
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The  mononuclear cell band was extracted with a pipette 

and washed immediately, discarding the supernatant into a 

container with hypochlorite and collecting the cellular pellet, 

which was suspended in 1× PBS .14 These cells have been 

previously well characterized in our laboratory15 and contain 

cells positive for the cluster of differentiation (CD)-34, CD38, 

CD45, and CD90 markers of adult bone marrow stem cells.

Transplantation
Four weeks after the QA lesioning, the animals to be trans-

planted (mBMC) were deeply anesthetized as previously 

described. Rats were placed in the stereotactic apparatus 

and the skin over the skull was reopened. Using a Hamilton 

syringe, the mBMC suspension (50000 cells/µL in DMEM) 

was injected into the lesioned striatum (in 2 deposits; 1 µL per 

deposit) at coordinates slightly different from the ones used for 

the QA lesions: 0.7 mm anterior from the bregma, 2.8 mm lat-

eral from the midline, and 5.5 and 4.6 mm under the dura sur-

face. Cells were injected slowly over a period of 1 minute. The 

needle was left in place for an additional 10 minutes following 

injection and then carefully removed. Sham-transplanted 

animals (DMEM) received an equal volume of tissue culture 

medium injected in the same way, at the same stereotactic 

coordinates.

To assess the viability of the transplanted cells, a sample 

of the mBMCs was marked with the reagent Hoechst 33258 

(1 µg/mL) in DMEM and incubated for 24 hours at 37°C 

with 5% CO
2
. Next, the cells were washed with PBS and cell 

viability was determined by trypan blue exclusion.

Behavioral tests
Transversal beam tests
The transversal beam tests were carried out in a noise-isolated 

and well-illuminated room. The quantitative  measures of 

the animal’s behavior were obtained using a video tracking 

system (Panlab, Barcelona, Spain) and analytical software 

(Smart 2.00) from the same company. A video camera, 

mounted in the center above the transversal beam apparatus, 

provided a picture of this on a computer monitor. The rats 

were placed at the middle point of a beam at a height of 60 cm 

from a supporting surface, equipped with escape platforms at 

each end (Figure 1A). The Smart system analyzes the track-

ing of the animals on the beam. From this, the total length 

(in cm) traveled by the animal during the video recording 

(traveled distance) was measured for a period of 60 seconds. 

The beams were all 60 cm long but varied in cross-sectional 

shape and width. The shape of the cross section could be 

rectangular (RCS) or circular (CCS), with a width of 2.5 cm 

or 1 cm. Accordingly, the following 4 combinations were 

tested: rectangular 2.5 cm diameter, circular 2.5 cm diameter, 

rectangular 1 cm diameter, and circular 1 cm diameter. The 

complete experiment was performed over 2 consecutive days, 

carrying out 2 assays per day; equivalent to 4 trials for each 

beam. The final traveled distance was computed as the mean 

of the 4 values obtained from all assays for each beam type.16

Object recognition test
The test was performed in a square wooden box (50 × 50 cm) 

with walls of 60 cm height. On the first day, 2 objects of 

identical form, color, and size were placed in positions A 

and B (Figure 1B). In each trial, 1 animal was placed in the 

center of the box, near the wall, and with back to the objects. 

The animals were allowed to move freely for 3 minutes 

and the time (in seconds) spent exploring each object was 

measured. On the second day, the object at location B was 

replaced by a new object that differed in size, shape, and 

color. The time spent by the animal exploring each object 

was measured again.17

Morris water maze test
Animals were trained in the Morris water maze (Figure 1C). 

In each trial, the rat was introduced into the water, starting 

A B C

Figure 1 Photograph of each behavioral test.
Notes: (A) Transversal beam with escape platform; (B) object recognition test; and (C) Morris water maze test.
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randomly from 4 different positions (named arbitrarily using 

cardinals) and was allowed to search for a hidden escape 

platform for a period of 60 seconds. If the animal was unable 

to find the platform, it was gently carried onto it. A 30 second 

rest period sitting on the platform was allowed between trials. 

Each training day consisted of 8 consecutive trials, except for 

the fourth day, in which only 4 trials were carried out. Before 

the fifth trial (probe trial) the platform was removed, and the 

animal was allowed to search for it for a period of 60 seconds. 

The number of crossings over the place where the platform 

used to be was counted during this trial.18

Morphology
At the completion of behavioral testing, the rats were deeply 

anesthetized with an injection of 7% chloral hydrate and 

transcardially perfused with 0.9% saline followed by 4% 

paraformaldehyde. The brain was removed and postfixed 

for 2 hours in 4% paraformaldehyde at 4°C. The tissue was 

then successively transferred into 7%, 15%, and 30% sucrose 

solutions in potassium–sodium phosphate buffer at 4°C. 

After the brain sank (2–3 days), it was frozen by immer-

sion in isopentane, cooled with CO
2
, and stored in a freezer 

(–80°C) for later analyses. Serial coronal sections (20 µm) of 

the striatum were obtained using a cryostat at –20°C (Leica). 

A set of 6 sections, taken from the same region in all groups 

throughout the rostrocaudal axis of the dorsal striatum, were 

used for cresyl violet and histochemical analysis.

Cresyl violet
This basic stain was used to show the general cytoarchitecture 

of the striatum. Briefly, the slices were placed for 2 hours in 

absolute alcohol at room temperature, followed by 1 hour 

exposure to a cresyl violet solution. The excess stain was 

washed in water, subsequently dehydrated in rapid transfers 

of absolute alcohol, and finally cleared in xylol. The slices 

were mounted on slides to be observed under an Olympus 

SR-2 (Tokyo, Japan) conventional microscope.

Immunofluorescence and Fluoro-Jade C staining
Brain slices from animals of all trained groups were obtained 

from the region of transplantation. These sections were 

washed several times in PBS, transferred to gelatinized slides, 

and incubated 48 hours with rabbit polyclonal anti-GFAP or 

mouse anti-neuronal nuclear marker (anti-NeuN) (clone A60) 

antibodies, diluted 1:3000 and 1:1000, respectively, in PBS 

containing 0.3% Triton X-100 (PBS-Triton X-100 0.3%) and 

2% bovine serum albumin (BSA 2%). The negative controls 

were set up omitting the primary antibodies. After washing 

several times in PBS, the tissue sections were incubated with 

anti-rabbit or anti-mouse Cy3 antibodies, both diluted 1:500 

in PBS-Triton X-100 0.3% and BSA 2% for 1 hour at room 

temperature. Afterward, to visualize degenerating neurons, 

the slides were air-dried and subjected to Fluoro-Jade® C 

(FJC) staining according to a previous report, 19 with slight 

modifications. Briefly, slides were rinsed for 5 minutes in 

distilled water and then incubated in 0.06% potassium per-

manganate solution for 10 minutes. Following a 2 minute 

water rinse, slides were incubated for 10 minutes in the FJC 

staining solution with 0.001% 4′,6-diamidino-2-phenylindole 

(DAPI). The slides were washed, dried, cover-slipped in acidic 

mounting medium (distyrene plasticizer xylene), and exam-

ined under an epifluorescence microscope. The images were 

obtained with an Olympus IX-81 confocal FV-1000 micro-

scope and analyzed with the Olympus Fluoview software.

Cell survival study
To evaluate the survival of the transplanted cells, a separate 

group of untrained mBMC animals were sacrificed at differ-

ent moments posttransplantation: (n=3 each time) on days 10, 

30, 45, 60, 90, and 180, as well as at 1 year. These animals did 

not participate in the behavioral study. The extracted brains 

were processed as described in the previous section and 3 

series of slices were collected to carry out the observation. 

In all the cases, the striatum was sectioned in 20 µm slices 

using as reference the anterior commissure according to the 

stereotactic atlas.20 The Hoechst 33258-labeled cells were 

then detected by their fluorescence microscopy (λ=420 nm; 

Olympus BX51, DM400).

Figure 2 provides a schematic view of the experimental 

protocol.

Statistical analysis
All data are expressed as mean values ± SEMs. Statistical sig-

nificance of differences for group comparisons was assessed 

by analysis of variance (ANOVA). Post hoc comparisons were 

performed using the Tukey’s honest significant differences 

(HSD) test. Differences between groups were considered to 

be significant when p<0.05.

Results
Striatal QA lesion
Figure 1A shows a coronal section at the striatal level where 

QA (125.5 nmol) was injected into the right striatum (aster-

isk). QA causes neuronal death and structural alterations. 

Notice the marked dilatation (arrow) of the lateral ventricle in 

the side of lesion when compared with the contralateral side. 
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Lesion, transplant, behavior, and morphology study

Cell survival study

TpL

QAL group

0

0 10 30 45 60 90

4 8 9

180 365

10 12Weeks

Days

QAL + DMEM group
QAL + mBMC group

BT

TBT ORT MWM

CV

MS

GFAP + FJC + DAPI
NeuN + FJC + DAPI

Figure 2 Schematic view of the experimental protocol.
Notes: Male Sprague Dawley rats (56–63 days old), were housed in cages (dimensions: 59×38.5×20 cm, 5 rats in each cage). Chemical lesions were made by the injection of 
QA (125.5 nmol in 2 µL PBS) 1 week later. Rats received a transplant of mBMCs (50000 cells/µL) into the lesioned striatum (in 2 deposits; 1 µL per deposit) 1 month later. 
For the behavioral evaluation, a TBT, an ORT, and an MWM test were carried out at 8, 9, and 10 weeks after mBMC transplantation, respectively. After completion of the 
behavioral tests (Week 12), the animals were sacrificed for the morphology studies. CV staining and immunofluorescence with rabbit polyclonal anti-GFAP or mouse anti-
NeuN and Fluoro-Jade C (FJC) staining was conducted using coronal sections (20 µm) stereologically prepared following fixation. Consecutive sections were used for CV, 
GFAP + FJC staining, or for NeuN + FJC staining. The cell survival study was carried out at different times after transplant in a separate experiment.
Abbreviations: BT, behavioral testing; CV, cresyl violet; DAPI, 4′,6-diamidino-2-phenylindole; DMEM, Dulbecco’s Modified Eagle’s Medium; GFAP, glial fibrillary acidic 
protein; L, lesion; mBMC, mononuclear bone marrow cell; MS, morphology study; MWM, Morris water maze; NeuN, neuronal nuclear marker; ORT, object recognition test; 
PBS, phosphate-buffered saline; QA, quinolinic acid; QAL, QA lesion; TBT, transversal beam test; Tp, transplant.

A

B C

Figure 3 Morphological study of the quinolinic acid (QA) lesion.
Notes: (A) Coronal section from the brain of QA-lesioned rat. Notice the reduced volume of the lesioned striatum (asterisk) when compared with the nonlesioned side 
(left). This difference is also evidenced by the expansion of the lateral ventricle (arrow) in the lesioned side (200×). (B) Profuse GFAP staining in the lesioned striatum 
indicating an intense astrogliosis as a consequence of neuronal death when compared with (C) immunohistochemistry for GFAP in nonlesioned striatum. Scale bars: 20 µm.
Abbreviation: GFAP, glial fibrillary acidic protein.
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 Immunohistochemistry for GFAP shows intensive astroglio-

sis in the lesioned striatum (Figure 3B) when compared with 

the contralateral side  (Figure 3C). This represents the condi-

tion of the striatal tissue at the time when the transplantation 

of mBMCs was performed.

Behavioral tests
Transversal beam test
The transversal beam test was performed 1 mo after trans-

plantation with mBMCs. A factorial ANOVA demonstrated 

that the variables “Group” and “Beam” significantly influ-

ence the distance traveled on the beam. The size and shape 

of the beam (factor Beam) significantly influence the results; 

as the test difficulty is increased (width decreased and round-

shaped beam), the results worsen (F
3,167

=6.16, p<0.001; 

Figure 4). Between-group differences were observed in 

this task (F
3,167

=8.52, p<0.001). A post hoc analysis of the 

Group × Beam interaction (Tukey’s HSD test) showed sig-

nificant differences among the control and lesioned groups 

in all conditions except for the square-shaped broad beam. 

The transplanted animals, however, showed an intermedi-

ate behavior, which does not differ from that of the other 

lesioned groups but is also not significantly different from 

that of the control animals. This result confirms that uni-

lateral QA striatal lesion impairs motor coordination and 

suggests an effect of the transplantation in improving this 

motor function.

Object recognition test
On the first day, all groups spend a similar time exploring each 

of the 2 identical objects (F
3,41

=0.91969, p>0.05); however, 

lesioned animals dedicated less total time to exploration than 

control animals (Tukey’s HSD, p<0.05). Transplanted and 

DMEM-treated animals showed a similar behavior as the 

control. On the second day (Figure 5), we found a statistically 

significant influence of the factor GROUP in the explora-

tion of the new object (F
3,41

=4.84746, p<0.05). Lesioned 

animals explore the novel object to a significantly less extent 

compared to the controls and the mBMC-transplanted group 

(Tukey’s HSD, p<0.05). Vehicle (DMEM)-treated animals 

also show some degree of recovery in novelty recognition.

Morris water maze test
Figure 6 shows the experimental groups’ performance 

in the spatial memory test. The escape latency showed a 

progressive reduction, following an asymptotical curve 

in all experimental groups, and no significant differences 

were seen among groups during acquisition (F
18,252

=1.1091, 

p=0.34339; data not shown). However, in the reten-

tion test (Figure 6),  statistically significant differences 
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Figure 4 Results in the transversal beam test.
Notes: Test results in the 4 different types of beams: square big beam (SBB); square 
small beam (SSB); round big beam (RBB); and round small beam (RSB). Each column 
represents the distance traveled on each beam among the different experimental 
groups. QAL indicates the group with lesion by QA. mBMC: lesioned animals 
transplanted with mBMCs. QAL + DMEM: lesioned animals injected with vehicle 
(DMEM). Data are expressed as mean values ± SEM (animals for each group, n=10). 
The letters in the upper part of the graphic indicate statistically significant differences 
among groups detected in the post hoc test after factorial ANOVA (Tukey’s test, 
a,bp<0.05; different letters indicate significant differences), indicating that unilateral 
QA striatal lesion impairs motor coordination.
Abbreviations: ANOVA, analysis of variance; DMEM, Dulbecco’s Modified Eagle’s 
Medium; mBMC, mononuclear bone marrow cell; QA, quinolinic acid; QAL, QA 
lesion.
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Figure 5 Results in the object recognition test.
Notes: One day after visiting the set and exploring 2 identical objects, the rats 
were presented with one familiar object (object A) and a novel object (object C). 
QAL indicates group with lesion from quinolinic acid. mBMC: lesioned animals 
transplanted with mBMCs. QAL + DMEM: lesioned animals injected with vehicle 
(DMEM). Data are expressed as mean values ± SEM (animals for each group, n=10). 
The statistically significant differences correspond to post hoc test after factorial 
ANOVA (a–cp<0.05, Tukey’s test); the letters in the upper part of the graphic 
indicate statistically significant differences among groups detected in the post hoc 
test after factorial ANOVA; different letters indicate significant differences.
Abbreviations: ANOVA, analysis of variance; DMEM, Dulbecco’s Modified Eagle’s 
Medium; mBMC, mononuclear bone marrow cell; QA, quinolinic acid; QAL, QA 
lesion; sec, seconds.
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(F
3,42

=9.1577, p<0.001) were found between the lesioned 

and DMEM-transplanted groups when compared with the 

mBMC-transplanted and control groups. This suggests 

a positive effect of transplantation on spatial memory 

retention.

Morphology
Cresyl violet
Using a basic stain such as cresyl violet allowed a general 

inspection of the striatal morphology in different conditions. 

Figure 7A shows the normal cell distribution in this region. 

QA lesioning drastically reduces cell density and disrupts the 

pattern of cell distribution, as shown in Figure 7B, a situation 

that remains unchanged after DMEM injection (Figure 7C). 

In the transplanted striatum (Figure 7D), the cell density and 

distribution resemble those of the normal striatum.

Immunofluorescence study by GFAP and FJC staining
Intense reactivity for GFAP was demonstrated in the stria-

tum of lesioned and DMEM-treated animals, indicating an 

astrocytic gliosis in the tissue (Figure 8). Such reaction was 

absent in the striatum of control and transplanted animals. 

A similar result was seen after marking with FJC, which 

stains degenerating neurons. Lesioned and DMEM-treated 

animals showed evidence of intense degeneration, which was 

not seen in control and transplanted animals. DAPI was used 

as the marker for cell nuclei, independent of their type. In 

the merged panel at the right, notice the absence of GFAP 

and FJC in the control and transplanted animals. This result 

allows the assumption that transplanted cells were integrated 

into the host tissue.

10 b
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a a

8

6
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l
QAL

DMEM
mBMC

Figure 6 Morris water maze test.
Notes: Effects of mBMC transplantation on retention in the probe trial (without 
platform) in the Morris water maze test. Data are expressed as mean values ± SEM 
(animals for each group, n=10). The statistically significant differences correspond to 
post hoc test after ANOVA (a,bp<0.05, Tukey’s test); the letters in the upper part of 
the graphic indicate statistically significant differences among groups detected in the 
post hoc test after factorial ANOVA; different letters indicate significant differences.
Abbreviations: ANOVA, analysis of variance; DMEM, Dulbecco’s Modified Eagle’s 
Medium; mBMC, mononuclear bone marrow cell; QA, quinolinic acid; QAL, QA 
lesion.

A B

C D

Figure 7 Basic staining with cresyl violet.
Notes: Coronal section of striatum (25 µm) showing the general cytoarchitecture of the striatum in lesioned and mBMC-transplanted animals. (A) Control animal at right 
striatum; (B) Representative damage after QA injections into striatum showing cell loss or (C) after injection of vehicle (DMEM), to constitute a sham-transplanted group; 
and the striatum with mBMC transplantation (shown in D). Scale bars: 20 µm.
Abbreviations: DMEM, Dulbecco’s Modified Eagle’s Medium; mBMC, mononuclear bone marrow cell; QA, quinolinic acid.
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Immunofluorescence study by NeuN and 
FJC staining
NeuN, a neuronal marker, showed positive reactivity in the 

control and the transplanted groups (Figure 9). In contrast, 

these groups were negative for FJC. The merged panel shows 

positive cellular bodies for NeuN in control and mBMC-

transplanted groups, suggesting an integration of transplanted 

cells and raising even the possibility of neuronal differentia-

tion among the transplanted cells, an aspect that we should 

consider in future experiments.

GFAP FJC DAPI Merged

Control

QAL

DMEM

mBMC

Figure 8 Immunohistochemistry study by staining with Fluoro-Jade C, GFAP, and DAPI.
Notes: The rats were injected with 1.2 µL of QA (125.5 nmol; Sigma, Saint Louis, MA, USA) in the striatum and then at 2 months postinjection they were transplanted with 
mBMCs or DMEM. Tissue samples were taken after completion of the behavioral tests. Scale bars: 40 µm. Control: nonlesioned animals. QAL group: quinolinic acid lesion. 
mBMC: lesioned animals transplanted with mBMCs. DMEM: lesioned animals injected with vehicle (DMEM).
Abbreviations: DAPI, 4′,6-diamidino-2-phenylindole; DMEM, Dulbecco’s Modified Eagle’s Medium; FJC, Fluoro-Jade C; GFAP, glial fibrillary acidic protein; mBMC, 
mononuclear bone marrow cell; QA, quinolinic acid; QAL, QA lesion.

FJCNeuN DAPI Merged

Control

QAL

DMEM

mBMC

Figure 9 Immunohistochemistry study by staining with Fluoro-Jade C, NeuN, and DAPI.
Notes: The rats were injected with 1.2 µL of QA (125.5 nmol; Sigma, Saint Louis, MA, USA) in the striatum and then 2 months postlesion they were injected with mBMCs 
or DMEM. Samples were taken after completion of the behavioral tests. Scale bars: 40 µm. Control: nonlesioned animals. QAL group: quinolinic acid lesion. mBMC: lesioned 
animals transplanted with mBMCs. DMEM: lesioned animals transplanted with vehicle (DMEM).
Abbreviations: DAPI, 4′,6-diamidino-2-phenylindole; DMEM, Dulbecco’s Modified Eagle’s Medium; FJC, Fluoro-Jade C; mBMC, mononuclear bone marrow cell; NeuN, 
neuronal nuclear marker; QA, quinolinic acid; QAL, QA lesion.
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Cell viability and cell survival studies
In Figure 10, we show a representative image of a sample of 

the cellular suspension used for transplantation marked with 

bisbenzimide (Hoechst 33258 reagent) to assess cell viability. 

The cellular viability was above 90% in all the cases.

Labeling with bisbenzimide was also used to evaluate ex 

vivo the survival of transplanted cells at different times after 

transplantation in a separate group of nontrained animals. 

Figure 11 shows labeled cells at the different times that 

were analyzed. As can be seen, transplanted cells seemed 

to be integrated into the host striatal tissue and exhibited a 

prolonged survival (up to 1 year).

Discussion
The results of our experiments indicate that mBMCs 

transplanted to the striatum of QA-lesioned rats exerts a 

beneficial influence on the behavioral impairments caused 

by the lesions. QA lesioning provoked an intense glial 

reaction and extensive neuronal loss. These changes were 

not seen in transplanted animals; instead, a population of 

cells expressing a neuronal marker (NeuN) seems to be 

replenishing the striatum. It might be tempting to postu-

late that this population consists of neurons derived from 

phenotypically modified mBMCs. Such transformation 

has been reported in vitro,21,22 but new experiments will be 

required to answer this question in our in vivo model. In 

similarly lesioned and transplanted animals, we were able 

to show that transplanted cells apparently survive for a 

long time. Bisbenzimide might be transferred to other cells 

by cell fusion, but even in such a case, the transplantation 

procedure may still be the likely reason for the behavioral 

improvements.

The role of the basal ganglia in motor control and coor-

dination is well known. Pathologies affecting its component 

structures, as happens in Parkinson’s disease and chorea, 

Figure 10 Viability of transplanted cells.
Notes: mBMC cells marked with bisbenzimide (Hoechst 33258 reagent, 20×) to 
evaluate the viability of the cells in the suspension to be used for transplantation. 
The evaluation was performed on an extra sample, not on the transplanted cells. 
Notice the presence of bright cell nuclei, indicating high viability.
Abbreviation: mBMC, mononuclear bone marrow cell.

A B

C D E

F G H

Figure 11 Cell survival study.
Notes: Striatum implanted with mBMCs marked with bisbenzimide (Hoechst 33258 reagent). (A) Control striatum. (B–H) Sections from rats sacrificed 10, 30, 45, 60, 90, 
180 days, and 1 year posttransplantation, respectively. Scale bars: 20 µm. The transplanted cells show durable survival.
Abbreviation: mBMC, mononuclear bone marrow cell.
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are characterized by severe motor impairments.23,24 It is well 

established that QA induces the excitotoxic degeneration of 

medium-sized spiny striatal neurons, a pathologic landmark 

of Huntington’s chorea.8 In animal models, the most fre-

quently used test to measure motor impairments after lesions 

to the basal ganglia is the circling locomotion induced by 

drugs in unilaterally lesioned rats.25,26 We have previously 

shown this type of altered locomotion in QA-lesioned rats 

under amphetamine, in addition to showing that the trans-

plantation of mBMCs reduced this abnormal behavior.12 The 

current paper expands those results showing that other aspects 

of motor function are also affected by striatal QA lesion, as 

is the case of the displacement and stance on the transversal 

beam, confirming the reports of other research groups.27

The impaired motor coordination showed by lesioned and 

DMEM-transplanted rats is attenuated in mBMC-transplanted 

rats, suggesting a restorative effect of mBMCs transplanted 

into the lesioned striatum in terms of motor functions.

The basal ganglia also contribute to memory functions.28 

The object recognition paradigms have been reported to be 

affected by striatal lesions in rats.21 Our results show that 

QA striatal lesion reduces the exploring behavior and the 

identification of the novel object in the object recognition 

test. Transplanted animals explore significantly more and 

show a preference for the exploration of the novel object, 

suggesting a recovery of memory and visual recognition; 

however, the question of whether this is the result of the pres-

ence of replacement cells or an unspecific effect of injection 

emerges after the improvement shown by DMEM-treated 

animals in this test. Considering that DMEM contains high 

levels of aminoacids, vitamins, and glucose, it is, however, 

not surprising that some benefits can be derived after its local 

application in a lesioned tissue.

Results of transplanted animals in the Morris water maze 

test are consistent with the assumption that striatal lesions 

affect mainly procedural memory (ie, acquisition of motor 

skills) and not declarative or spatial memory.29,30 Neverthe-

less, the improved performances in the retention probe trial in 

the mBMC-transplanted animals suggest possible beneficial 

effects on this kind of memory also. We have previously 

shown that this transplantation increases the striatal content 

of BDNF.13 BDNF is a member of the neurotrophin family, 

which seems to act as a plasticity promoter,31 an action that 

may explain the memory improvements after this procedure.

The histology results in our study allow us to presume 

that there might be a relationship between the behavioral 

impairments and the histological damage to the striatum, an 

aspect that other authors have considered not relevant.32,33 We 

have also provided evidence that the beneficial effect of cell 

therapy is associated with an apparent recovery of cells in 

the lesioned striatum, in particular, a population expressing 

a neuronal marker, in line with previous reports.34 The origin 

of those cells is more likely to be related to the transplanted 

cells, but this question should be addressed in future studies.

Other mechanisms probably involved in the restorative 

action of mBMC transplantation could be a protective action 

on neurons35,36 via regulatory factors of the phosphatidylinosi-

tol 3-kinase (PI3K) signaling pathway,37 the alleged capacity 

of mBMCs to differentiate into a neuronal phenotype,7,38 or 

the induced angiogenesis and vasculogenesis required for 

regeneration of the damaged nerve tissue.39

Conclusion
The findings presented here confirm our previous results 

and those of others suggesting that transplantation with 

mBMCs could be a promising strategy for the treatment of 

Huntington’s chorea. However, our findings open questions 

that should be addressed in future experiments. Among 

these are a precise quantitative morphological evaluation 

of the transplanted cells, their survival, proliferation, and 

phenotypic differentiation, to allow the quantitative study 

of the possible existing correlation between the morphologic 

changes and the behavioral improvements.
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