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Abstract: Multivariate partial least square (PLS) regression allows the modeling of complex 

biological events, by considering different factors at the same time. It is unaffected by data colline-

arity, representing a valuable method for modeling high-dimensional biological data (as derived 

from genomics, proteomics and peptidomics). In presence of multiple responses, it is of particular 

interest how to appropriately “dissect” the model, to reveal the importance of single attributes 

with regard to individual responses (for example, variable selection). In this paper, performances 

of multivariate PLS regression coefficients, in selecting relevant predictors for different responses 

in omics-type of data, were investigated by means of a receiver operating characteristic (ROC) 

analysis. For this purpose, simulated data, mimicking the covariance structures of microarray 

and liquid chromatography mass spectrometric data, were used to generate matrices of predic-

tors and responses. The relevant predictors were set a priori. The influences of noise, the source 

of data with different covariance structure and the size of relevant predictors were investigated. 

Results demonstrate the applicability of PLS regression coefficients in selecting variables for each 

response of a multivariate PLS, in omics-type of data. Comparisons with other feature selection 

methods, such as variable importance in the projection scores, principal component regression, 

and least absolute shrinkage and selection operator regression were also provided.

Keywords: partial least square regression, regression coefficients, variable selection, biomarker 

discovery, omics-data

Introduction
The analysis of high dimensional biological data, as derived from omics-type data 

(for example, genomics, proteomics, and peptidomics) is a very challenging task. 

A limited amount of samples with thousands of features, give rise to known issues, 

as data overfitting and multicollinearity. Moreover, the complex pattern of biological 

events can depend on different factors that must be included in the analysis for a proper 

description of the model. Multivariate partial least square (PLS) regression allows 

the modeling of multiple responses, while dealing with multicollinearity.1 It can be 

used for variable selection, as a process to discover the most relevant features of the 

model (these attributes can be used as biomarker candidates).2 In multivariate PLS, it 

is of interest to “dissect” the importance of single attributes, with regard to individual 

responses. It will exploit the holistic model of responses as offered by a multivariate 

PLS, while focusing onto variables that are important to a specific response. The aim 

of this paper is to select variables “independently” for each response of a multivariate 

PLS. A recent work has compared the performance of the so-called variable importance 

in the projection (VIP) scores3 with PLS regression coefficients, to select variables for 
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single-response PLS models.4 They have considered the case 

with more observations than features (n  p). Another work 

has studied variable selection for the case n  p, based on 

single response PLS.5 This paper considered the case p  n 

(as it is common for omics-type of data), to select features 

from each response of a multivariate PLS. In detail, simulated 

data, mimicking the covariance structure of real microarray 

and liquid chromatography mass spectrometric (LC-MS) data, 

were used to investigate the performance of PLS regression 

coefficients in variable selection. A two-response PLS was 

first considered, as a model case, further drawing conclusions 

on a PLS with more responses. In the simulation, responses 

were generated from true models. Only few predictors were 

relevant to a response, meaning that they had nonzero regres-

sion coefficients. Those relevant predictors were set a priori, 

with the requirement that they were correlated each other. 

The performance of PLS regression coefficients, in selecting 

relevant predictors, could then be investigated by means of 

the area under the curve (AUC) of a receiver operating char-

acteristic (ROC) curve. Results were compared with other 

methods which can be also used for variable selection, such 

as principal component regression (PCR), VIP scores and least 

absolute shrinkage and selection operator (Lasso).

Methods
PLs
The PLS model is based on principal components on both 

the independent data, X, and the dependent data, Y. The basic 

idea is to calculate the principal scores of X and Y and to set 

up a regression model between the scores.

 X = T P´ + E 
(1)

Y = U Q´ + F

Thus the matrix, X, is decomposed into a matrix, 

T (referred to as X-score), and a matrix, P´ (referred to as 

X-loading), plus an error matrix, E. The matrix, Y, is decom-

posed, equivalently, into the Y-scores, U, the Y-loadings, Q´, 

and the error term, F. These two equations (1) are called outer 

relations, and they model X and Y respectively by the score 

vectors T and U. The goal of the PLS algorithm is, then, to 

minimize the norm of F while keeping the correlation between 

X and Y by the inner relation U = TD, where D is a diagonal 

matrix. The X-scores are orthogonal. They are estimated as 

linear combinations of the original variables x
k
 with the coef-

ficients, weights w*kl  (k = 1, 2, …,  p; l = 1, 2, …, a where a 

is the number of components in the model).

 T = XW* (2)

PLS, then, can be seen as a method to construct a matrix 

of latent variables as a linear transformation of X, where 

W*(p × a) is a matrix of weights.

Using the inner relation,

 Y = UQ´+ F = TDQ´+ (HQ´+ F) = TC´ + F* =  
  = XW*C´ + F* = XB + F* (3)

with B (p × m), referred to as PLS regression coefficients, 

equal to

 B = W * C´ (4)

Different numeric algorithms, to obtain a solution of the 

PLS regression problem, appear in the literature. For instance, 

the nonlinear iterative partial least squares (NIPALS) algo-

rithm can be used to sequentially extract the PLS compo-

nents; details on the NIPALS algorithm can be found in.6

PLS regression coefficients can be used to select relevant 

predictors according to the magnitude of their absolute values.4

An alternative method for variable selection based on 

PLS regression is the so-called VIP, first published in.7 The 

VIP score of a predictor is a summary of the importance 

for the projections to find a latent variables. VIP values 

can be calculated by summing variable influence (VIN) 

over all model dimensions.2 For a given PLS dimension a, 

VIN
ak( ) 2

is equal to the squared PLS weight wak( )2
 of that 

term, multiplied by the percent explained of residual sum of 

squares by that PLS dimension. The accumulated (overall 

PLS dimensions) value, VIP VINk ak
a

= ( )( )∑ 2 , is then divided 

by the total percent explained of residual sum of squares by 

the PLS model and multiplied by the number of terms in the 

model. VIP scores can be used to select relevant predictors 

according to the magnitude of their values.4

PCR
Principal component regression (PCR) is a two-step 

multivariate calibration method. In the first step a principal 

component analysis (PCA) of the matrix, X, is performed. 

The measured variables are converted into new ones (scores 

and latent variables). This is followed by a multiple linear 

regression step (MLR) between the scores obtained in the 

PCA step and the response matrix, Y.

PCA creates new orthogonal variables (latent variables) 

that are linear combinations of the original x-variables.

 X = TP´ (5)

T is the score matrix. P is the loading matrix. Two main 

advantages arise from this decomposition. The first one is 
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that the new variables are orthogonal. Then the inversion of T 

(needed in the MLE step) is no longer a problem, as it is when 

original variables are correlated. Moreover, it is assumed that the 

first few PCs, accounting for the majority of the variance of the 

original data, contain meaningful information, while the last ones 

can be deleted. Therefore only r  min(n, p) PCs are retained, 

obtaining a simplified model. After performing PCA on X, the 

second step in PCR consist of the linear regression between 

the scores and the response matrix Y, which is modeled by

 Y = TC + E = XPC + E = XB + E (6)

with the regression coefficients given by

 B = P (T´T)-1 T´Y (7)

Least absolute shrinkage 
and selection operator
The Lasso is a shrinkage and selection method for linear 

regression. It is a constrained version of ordinary least squares. 

It minimizes the residual sum of squares subject to the sum of 

the absolute value of the coefficients being less than a constant s. 

If the data are standardized to have mean 0, the Lasso estimate 

is defined by equation (8). The tuning parameter, s  0, can be 

determined by cross validation. Because of the nature of the 

constraint, it tends to produce some coefficients as zero and it 

may improve the overall prediction accuracy by sacrificing a 

little bias to reduce the variance of the predicted values.

1

ˆ arg min( ) ( ) subject to 
p

lasso

j

y X y X s
b

b b b b
=

= - - ≤∑  (8)

In this work, the Lasso regression coefficients were calculated 

with the least angle regression (LARS) method8 implemented 

in the R´s package LARS.9 Details of the LARS algorithm 

for the Lasso estimate can be found in Chong and Jun.4

ROC curve as performance measure 
in selecting relevant predictors
In order to use the multivariate PLS regression coefficients 

to find relevant predictors, the corresponding density 

distributions for relevant and irrelevant predictors should 

only moderately overlap (see Figure 1). The task of finding 
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Figure 1 Density distributions of the absolute values of multivariate partial least square (PLS) regression coefficients for (left) irrelevant and (right) relevant predictors. A 
multivariate PLs was used to model a response matrix Y = (Y1, Y2), with 100 observations. The matrix of predictors X was simulated from a real microarray dataset. The size 
of predictors was 3751. The relevant predictors (1% of total predictors) were known a priori.
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relevant predictors, for a given response, can be seen as 

a two-class discrimination problem. The two classes, in 

this case, refer to relevant and irrelevant predictors (in the 

following of this section also referred as to positive and 

negative classes). Sensitivity and specificity are the basic 

measures of accuracy for a classification task. They can be 

obtained from the confusion matrix (Table 1), which contains 

information about actual and predicted classifications done 

by a classification system.

Sensitivity is a statistical measure of how well a binary 

classification test correctly identifies a condition (positive 

class; relevant predictors). It represents the proportion of 

true positive cases of all positive cases in the population. 

Specificity represents the proportion of true negative cases 

of all negative cases in the population. Using the notation 

from Table 1,

 Sensitivity = a/(a + b) 

 Specificity = d/(c + d) 

 False positive rate = 1 - specificity 

where the false positive rate (FPR) represents the proportion of 

actual negative cases wrongly assigned to the positive class.

The ROC is a plot of sensitivity versus its false-positive 

rate (FPR) for all possible cut points, illustrating how sensitivity 

and FPR vary together.10,11 One of the most decisive measure 

of accuracy for a classification test is then the area under 

the ROC curve (ROC-AUC).11 The practical range for the 

ROC-AUC is between 0.5 and 1.0. A test with a ROC-AUC of 

1.0 is perfectly accurate, because the sensitivity is 1.0 and the 

FPR is 0.0 (meaning that all relevant predictors were correctly 

identified, without irrelevant predictors wrongly assigned to 

the positive class). In contrast, a value of 0.5 corresponds 

to a test that is purely guessing the result (the probability to 

detect a truly relevant predictor, in this case, is equal to a flip of 

coin). The ROC-AUC can be interpreted as the average value 

of sensitivity for all possible values of specificity.

Experimental design
Design of simulation
Simulated data were used to investigate the performance 

of PLS regression coefficients, to select relevant predictors 

independently for each response of a two-response PLS. For 

this purpose, datasets were generated by assuming a linear 

relationship between true responses Y and the matrix of 

predictors X, as defined by

 Y = (Y
1
, Y

2
) = XB + Error = X · (a, b) + (e, d) (9)

Y1 1
1 1= ( )y yn

t
, ...,  and Y2 1

2 2= ( )y yn

t
, ...,  are the true response 

vectors. The number of observations, n, was arbitrarily 

fixed to 100, being a reasonable choice, given the number 

of samples usually employed in omics-type studies. X = x
ij
 

(i = 1, ..., n;  j = 1, ..., p) is the matrix of predictors ( p is the 

total size of predictors). It was generated using the covari-

ance structure of real datasets. For this purpose, three micro-

array datasets were considered. In addition, an unpublished 

tab delimited LC-MS dataset was used. α = (a
1
, ..., a

p
)t and 

b = (b
1
, ..., b

p
)t, in (9), are regression coefficients, respec-

tively, for Y
1
 and Y

2
. Regression coefficients corresponding 

to relevant (irrelevant) predictors were set to 1.0 (0.0). The 

size of relevant predictors was set to a fixed percentage 

of the total number of predictors, p. ε = (ε
1
, ε

2
, ..., ε

n
)t and 

δ = (δ
1
, δ

2
, ..., δ

n
)t, in (9), are the error terms, respectively, 

for Y
1
 and Y

2
. They were distributed according a standard 

distribution ( ( , ), ( ( , ), , , ..., ).ε σ δ σj jN N i n≈ ≈ =0 0 1 21
2

2
2  

In summary, an experimental design with 36 (=  4 × 3 × 3) 

different cases and three factors was considered: the real 

dataset from which X was generated (4 levels), the propor-

tion of relevant predictors among all predictors (3 levels) 

and the magnitude of signal to noise (3 levels). In each case 

100 replications were made. At each replication, a different 

dataset of 100 observations was generated according to 

equation (9). A PLS model was then calculated. Finally, the 

performance of multivariate PLS regression coefficients, in 

selecting relevant predictors, was calculated by means of a 

ROC analysis. Details on factors that were considered in the 

experimental design are provided in the next sections.

Factor 1:  The influence of the dataset 
used in the simulation
Four real datasets (see Table 2) were used in the simulation. 

The leukemia dataset12 has frequently been used in previous 

microarray data analysis studies. It contains the expression 

levels of 7129 genes for 47 acute lymphoblastic leukemia 

(ALL) and 25 acute myeloid leukemia (AML) patients. Data 

were preprocessed following the procedure described in,13 

remaining with 3751 variables.

The colon dataset14 is an other benchmark dataset, frequently 

used for testing different methods on gene expression data. 

Table 1 Confusion matrix

Predicted

Positive Negative

Actual Positive a b

negative c d
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It consists of the expressions for 6500 genes, measured on 

62 samples: 22 healthy patients and 40 colon cancers. 2000 genes 

were selected by the authors for clustering/classification 

purpose.

The SRBCT dataset15 consists of the expression for 2308 

genes, measured on 83 samples from small round blue cells 

tumor (SRBCT), belonging to four subclasses: non-Hodgkin 

lymphoma (BL), Ewing family of tumors (EWS), rhabdomy-

osarcoma (RMS) and neuroblastoma (NB).

Finally, the Alzheimer dataset16 consists of spectrometric 

data, where cerebrospinal fluid (CSF) of Alzheimer disease 

(AD) and nondemented controls were compared, to find 

peptides likely to correlate with the AD pathogenesis. The 

dataset included 2041 signals measured on 45 AD samples and 

47 controls. Profiling of peptides was based on MALDI mass-

spectrometric analysis of samples, previously fractionated by 

reverse-phase chromatography, to reduce their complexity.

Leukemia, Colon and SRBCT datasets were all available 

in the R´s package plsgenomics.17,18 The Alzheimer dataset 

was unpublished. The matrix of predictors X, in equation (9), 

was generated mimicking the covariance structure of datasets 

from Table 2. The number of samples, in X, was fixed to 100, 

as explained in the Design of simulation section. The number 

of predictors was equal to p = 2.000, p = 3.571, p = 2,308 or 

p = 2.041, depending on the source of simulation (Table 2). 

Details on the algorithm that was used to simulate X can be 

found in the supplementary material.

Factor 2:  The influence of size  
of relevant predictors
The percentage of relevant predictors, among all predictors, 

was arbitrarily set to one of the following three levels:

 Levels for the percentage of relevant predictors  

 = 1%, 2%, 5% (10)

This is equivalent to the assumption that only a small 

percentage of variables are relevant to a response. The relevant 

predictors were chosen to be correlated each other. In micro-

arrays studies it has already been shown that clustering gene 

expression data groups together related genes.19 Then, the 

hypothesis that a cluster of genes may be relevant to model a 

phenomena Y is plausible. In order to group predictors with a 

similar profile, an unsupervised hierarchical clustering algorithm 

was applied to the matrix X (the Pearson’s correlation coefficient 

was chosen as similarity measure). Two branches of the cluster, 

C
1
 and C

2
, were randomly selected (for example see Figure 2). 

Their size was chosen according to equation (10). Predictors 

belonging to C
1
 and C

2
 were set as relevant predictors, respec-

tively, for Y
1
 and Y

2
. Mathematically, it can be obtained as

a
i
 = 0.0 if predictor

i
 ∉ C

1
 b

i
 = 0.0 if predictor

i
 ∉ C

2
 
(11)

a
i
 = 1.0 if predictor

i
 ∉ C

1
 b

i
 = 0.0 if predictor

i
 ∉ C

2

for i = 1, 2, …, p. α = (a
1
, a

2
, ..., a

p
)t and b = (b

1
, b

2
, ..., b

p
)t 

are the regression coefficients in equation (9). An equal contri-

bution to responses, from relevant predictors, was considered. 

Table 2 Real datasets used to simulate a matrix X of predictors

Dataset n p

Colon 62 2,000

Leukemia 72 3,571

sRBCT 63 2,308

Alzheimer 92 2041

Abbreviation: sRBCT, small round blue cells tumor.
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Figure 2 An hierarchical clustering was performed on the matrix of predictors X, simulated using the covariance structure of the leukemia dataset. Two branches of the 
cluster, colored in red and blue, were arbitrarily selected as relevant predictors, respectively, for Y1 and Y2.
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Consequently, regression coefficients of Y
1
 (Y

2
), for predictors 

belonging to C
1
 (C

2
), were set to 1.0. All regression coefficients 

corresponding to irrelevant predictors were set to 0.0.

Factor 3:  The influence of the magnitude 
of noise
In this paper, an important issue was to investigate how noise, 

in equation (9), will affect performance of PLS regression 

coefficients in variable selection. Following a recent work,4 

three levels for the error terms in equation (9) were consid-

ered, defined by

 σ σ1 2= =k kvar( , var(X Xa b) )  (12)

with k, the reciprocal of the signal to noise ratio, equal to 

k = 0.33, 0.74, 1.22, and var(·) in equation (12) represent-

ing the sample variance. These levels were chosen such that 

R-square of the multiple linear regression with an intercept 

become 0.9, 0.65 and 0.4, respectively, when infinite obser-

vations are assumed.4 Some simple calculations using the 

formula for R-square were also given: k = ((1- R2)/R2)

The response matrix Y
Once a matrix of predictors, X, was simulated (as explained 

in the section on Factor 1) and the relevant predictors for each 

response were set by defining the regression coefficients B 

(through a cluster analysis of X, as explained in the section 

on Factor 2), the response matrix Y could be generated 

according to equation (9).

Results and discussion
Following the experimental procedure described in Experimental 

design, 100 replications for each of 36 cases were considered, 

to evaluate the performance of PLS regression coefficients in 

selecting variables independently for each response of a two-

response PLS. A PLS regression model was fitted for each 

case and each replication, using a 10-fold cross validation 

as a criteria to choose the number of latent variables (PLS 

components) in the model. The NIPALS algorithm for PLS 

regression was used through the all study.

Figure 3 shows ROC plots for all 36 cases, providing a 

performance measure for all conditions in the simulation. 

Each curve represents an average ROC curve on the responses 

Y
1
 and Y

2
 (the average was calculated on 200 ROC curves: 

100 replications for each response). Correspondingly, Figure 4 

plots the ROC-AUC values for all cases, redundantly, to 

provide a description for the main effects and interactions of 

factors in the simulation schema.

Results from Figure 3 and Figure 4 show that performance 

of variable selection, based on PLS regression coefficients, is 

robust against noise (increasing k, in the section on Factor 3, 

from 0.33 to 1.22, in average, decreases the ROC-AUC of 

3.1%). In contrast, performance is significantly affected by 

the size of relevant predictors (increasing size from 1% to 

5%, in average, decreases the ROC-AUC of 8.5%). Results 

further suggest a significant interaction between noise and 

size of relevant predictors (increasing k from 0.33 to 1.22 

decreases, in average, the ROC-AUC of 2.2% and 4.7 %, 

depending on the size of relevant predictors being equal or 

different than 5%).

A reason why the size of relevant predictors affects 

variable selection performance, is related to the fact that the 

overall correlation between relevant predictors is dependent 

on their size, due to current experimental design. In fact, 

since relevant predictors were set as belonging to a branch 

of a cluster (see the section on Factor 2), in order to increase 

their size, it is required to choose a bigger branch. This can 

be obtained by selecting a new node in the dendrogram 

(see Figure 5), at an higher level of dissimilarity, which in turn 

weakens the overall correlation between the increased number 

of predictors. As a consequence, sensitivity/specificity of 

variable selection is decreased.

Some evidences that performance of PLS regression 

coefficients, in variable selection, is strongly dependent on 

the correlation between relevant predictors, was given by 

means of an additional simulation. In detail, the Colon data-

set was used to generate a matrix X of predictors. The noise 

factor was set to its lowest level (k = 0.33, see the section 

on Factor 3). Two groups of predictors (with size equal to 

1% of total size of predictors) were “randomly” chosen as 

the relevant predictors, respectively, for Y
1
 and Y

2
. This time, 

since relevant predictors did not belong to a branch of a 

cluster, they were not expected to be significantly correlated 

each other. In this case, a ROC analysis for selection of 

relevant predictors, using PLS regression coefficients, gave 

a ROC-AUC value of 0.67 (data not shown), as compared to 

0.98, when relevant predictors were grouped into a cluster 

of X (results were averaged on 100 replications of the above 

simulation).

Looking at Figure 4, it can be seen that as the size of 

predictors increases, the negative trend for the AUC is 

less significant for the Colon dataset, as compared with 

other datasets from Table 2. In fact, increasing the size of 

relevant predictors from 1% to 5%, decreases, in average, the 

ROC-AUC of 4.6%, 10.1%, 13.9%, and 9.4%, respectively, 

for the Colon, SRBCT, Leukemia, and Alzheimer datasets. 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Advances and Applications in Bioinformatics and Chemistry 2009:2 63

Performance of PLS regression coefficientsDovepress

submit your manuscript | www.dovepress.com

Dovepress 

One reason for differences of performance in the four datasets 

is their different covariance structures. The first 5 components 

of a principal component analysis explained 71%, 42%, 

36%, and 56% of total variance, respectively for the Colon, 

Leukemia, SRBCT, and Alzheimer datasets. These differ-

ences were already visible by comparing the hierarchical 

clustering of the four datasets (data not shown). For example, 

to select a node with 5% of predictors in the corresponding 

dendrograms, a cutoff threshold above 0.6 (in the dissimi-

larity range 0.0–1.0) was required for Leukemia, SRBCT, 

and Alzheimer datasets, as compared to a lower threshold 

of 0.4 for the Colon dataset.
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Figure 3 The performance of PLS regression coefficients, in selecting variables independently for Y1 and Y2, is assessed by means of a ROC analysis. ROC curves are evaluated 
for each of 36 cases of the experimental design. each curve is an average on the two responses Y1 and Y2 (the average was calculated on 200 ROC curves: 100 replications 
for each response).
Abbreviations:  AUC, area under the curve; FP, false positive; PLs, partial least square; ROC, receiver operating characteristic; sRBCT, small round blue cells tumor; TP, true positive.
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Current results are, in general, valid for different levels 

of correlation between Y
1
 and Y

2
, since cor(Y

1
, Y

2
) used 

to vary across replicated runs in the simulation. Anyway, 

it was checked if there was a relation between the obtained 

AUC (in selecting relevant predictors) and the correlation 

between Y
1
 and Y

2
. Interestingly it was not found any repeti-

tive pattern for AUC performance with correlation changes 

between responses.

The overall approach could have been easily applied to 

a PLS with more than two responses. In this work, the same 

schema that was used for a two-response PLS, was also 

adapted to a PLS with three and four responses (selecting 

respectively three and four branches, instead of two, from 

the hierarchical clustering, as explained in the section on 

Factor 2). No significant differences in performance were 

observed between two-, three- and four-response PLS, when 

PLS regression coefficients were used for variable selection 

(results for three- and four-response PLS can be found in the 

Supplementary material, Figures S1 and S2).

Three other feature selection techniques were consid-

ered in the simulation. Specifically, performances of PCR, 

VIP, scores and Lasso regression in variable selection were 

compared to PLS regression coefficients for the case with 

two responses (2-columns Y matrix). The same experimental 

procedure as for PLS was used (36 cases with 100 replica-

tions; see Design of simulation). For each replication, a 

10 fold cross-validation was used to choose the number of 

components of the PCR model from which PCR regression 

coefficients were estimated. For the VIP scores, a univariate 

PLS regression model was fitted for each response and a 

10-fold cross-validation was used to choose the number of 

components. VIP scores were then calculated from each 

model as explained in the section on PLS, above. Finally, 

Lasso regression coefficients were estimated for each response 
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Figure 4 The ROC-AUC values summarize the results of the ROC analysis in selecting variables independently for Y1 and Y2. ROC-AUC values are calculated for each 
of 36 cases of the experimental design, based on the corresponding ROC curves. each point is an average on the two responses Y1 and Y2 (the average was calculated on 
200 ROC curves: 100 replications for each response).  A redundant representation of 36 averaged ROC-AUC describes the main effects and interactions of factors of the 
experimental design.
Abbreviations:  AUC, area under the curve; FP, false positive; PLs, partial least square; ROC, receiver operating characteristic; sRBCT, small round blue cells tumor; TP,  true positive.
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according to equation (8) and a 10-fold cross validation was 

used to estimate the tuning parameter, s. Performances of 

these methods to select variables were assessed by means of 

a ROC analysis applied respectively on the absolute values of 

the PCR regression coefficients, on the absolute values of the 

Lasso regression coefficients and on the VIP score values.

Figure 6 compares the ROC-AUC values for all the 

variable selection methods which were considered in this 

study. Results were summarized by two factors: noise and 

size of relevant predictors (see sections on Factor 2 and 

Factor 1, respectively). For each level of those factors, a 

mean ROC-AUC value was calculated as an average across 

all the replications considering that level. Results for PLS 

regression coefficients, PCR regression coefficients and VIP 

scores were comparable, although VIP scores slightly outper-

formed both other methods for all cases. All the three methods 

significantly outperformed Lasso regression coefficients. 

No significant differences in performance were observed 

between PLS and PCR regression coefficients. Similar results 

were found by4 which compared VIP scores, PLS regression 

coefficients and Lasso regression coefficients to selected 

variables for a single-response Y and p  n.

Conclusions
In this paper, simulated data, mimicking the covariance 

structure of real microarray and LC-MS data, were used 

to explore the performance of PLS regression coefficients 

in selecting variables independently for each response 

of a two-response PLS. The response vectors, Y
1
 and Y

2
 

were modeled according true models. It was assumed that 

relevant predictors were few and correlated each other. It 

was investigated how variable selection performance, of 

PLS regression coefficients, was influenced by three factors: 

the real dataset from which X was simulated, the magnitude 

of the noise and the size of relevant predictors. The results 

showed that the method appears relatively robust against 

the presence of noise. Rather it was dependent on the size 

of relevant predictors, caused mostly by varying correla-

tion levels between relevant predictors. In fact, since the 

overall correlation between relevant predictors increases 

with their size (due to current experimental design, see 

Discussion), the two effects (correlation and size of relevant 

predictors) were confounded. However, it was shown that ROC 

performance decreases drastically in case relevant predictors 

were not correlated each other. This indicates that presence 

of correlation between relevant predictors has a big impact 

on performance of the variable selection strategy. Current 

results, also, showed that best performances were achieved 

with the Colon dataset. A deeper analysis of the four data-

sets unmasked differences in their covariance structures 

This was based on a principal component analysis, as well 

on comparisons of their inner dissimilarity representations, 

H
ei

gh
t

0.
0

0.
2

0.
4

Figure 5 small window on the hierarchical clustering of the leukemia dataset. increasing the number of relevant predictors, requires the selection of a new node (for 
instance N2), at a higher level of dissimilarity in the y-scale.
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as provided by a cluster analysis. In this respect, the Colon 

dataset revealed an higher similarity between its variables, 

as compared to the Leukemia, SRBCT, and Alzheimer 

datasets. It suggests that better performances are achievable 

as stronger the predictors are correlated each other. To give 

some clue that PLS regression coefficients can be used, as 

well, for selecting variables independently for more than 

two responses, the simulation schema considered for a two-

response PLS, was extended to three- and four-response 

PLS. Results for three- and four-response PLS were almost 

identical to the two-response case.

It is, of course, clear that univariate PLS could have 

been consistently used for modeling each response to select 

features. In this case, as many univariate PLS models as dif-

ferent responses would have to be calculated. Then, for each 

model, univariate PLS regression coefficients could be used 

to extract relevant features for the corresponding response. 

It is not difficult to believe that the above strategy would 

bring equivalent results in selecting features as with the 

multivariate PLS approach (data not shown). However, this 

means that a multivariate PLS alone can be used in place of 

k univariate PLS regressions (with k the size of responses). 

As a consequence, the output of PLS will be more compact 

in keeping track of a single model instead of k models. 

A further advantage is that the different responses will be 

modeled on the basis of the same principal components. 

Which in turn will allow to exploit relationships between 

responses, as, for instance, highlighted by a loading-loading 

plot, where all responses are simultaneously represented.

The number of the PLS components to include in the final 

model is central and difficult in the PLS regression frame-

work. In the case of univariate PLS applied to binary clas-

sification problems, the weight vector w1 = ( )w wp11 1, ,……  

defining the first latent component may be used to order 

the p genes in terms of their relevance for the classification 

problem.5 In fact, if the columns of the matrix of predictors X 

were scaled to unit variance, the F
j
-statistic (F-test used in 

analysis of variance) is a monotonic transformation of the 

squared weight coefficient w j1
2 ( j = 1, 2, ..., p).5 A gene 

selection approach based on several PLS latent components 

was applied by2 and.4 Similarly to this work, in both cases 

a cross validation was used to choose the number of PLS 

components. Cross validation technique is useful when the 

goal is to optimize the predictive power of the model but 

not specifically in the case of variable selection. It would 

be interesting to explore the ability of the proposed method 

to select relevant variables as a function of the number of 

retained PLS components. A preliminary analysis performed 

on the Colon dataset revealed that the optimum for variable 

selection often required a lower number of PLS components 

than estimated by cross validation (data not shown). Further 

work is needed to better investigate the relationship between 

variable selection performance and the number of retained 

PLS components.
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Comparison with other variable selection methods for the 

two-response case showed that multivariate PLS regression 

coefficients outperformed Lasso regression coefficients, 

while obtaining identical performances with PCR regression 

coefficients. The VIP scores method slightly outperformed 

all other methods, although it relied on an independent 

model for each response. In fact, based on the its definition, 

a VIP score derived by a multivariate PLS regression would 

not allow to separate the contribution of each predictor to 

different responses.

In conclusion, this paper gives evidence on the applica-

bility of multivariate PLS regression coefficients in variable 

selection applied to omics-type of data. This approach is 

valuable to depict variables that are important to a specific 

response, while exploiting a comprehensive and compact 

model as offered by a multivariate PLS. The current study 

defined also some limits of applicability of the investigated 

method, as a strong correlation between relevant predictors 

was an important prerequisite to obtain good performances.
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Supplementary material
Algorithm to generate the matrix 
of predictors X from a real dataset
Using the R´s package Boost,1 an arbitrary number of i.i.d. 

gene expression profiles, that follow the covariance proper-

ties of a dataset of choice, could be generated.

Briefly, the algorithm to generate the X matrix work as 

follows:

1. using a real gene expression dataset of choice it esti-

mates the (p × p)-covariance matrix ∑, as well as the 

p-dimensional mean vectors m = ( m1, …, m
p
)

2. Then, for an arbitrary sample size n of choice it repeats 

independently:

i.  Generate a random vector by the p-dimensional 

multivariate standard normal distribution

z ≈ N (0,1
pxp

)

ii. Transform z into a gene expression profile via

x Cz≈ + m̂

where C is a square root of the covariance matrix ∑, 

determined by the singular value decomposition.

The above algorithm could be used as well to simulate 

the covariance structure of LC-MS data.

Reference
 1. Dettling M. Bioinformatics. 2004;20:3583–3593.
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Supplementary Figure 1 The performance of PLS regression coefficients, in selecting variables independently for each response of a three-response PLS, is assessed by means 
of a ROC analysis. ROC curves are evaluated for each of 36 cases of the experimental design. each curve is an average on the three responses (the average was calculated on 
300 ROC curves: 100 replications for each response).
Abbreviations:  AUC, area under the curve; FP, false positive; PLs, partial least square; ROC, receiver operating characteristic; sRBCT, small round blue cells tumor; TP, .
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Supplementary Figure 2 The performance of PLS regression coefficients, in selecting variables independently for each response of a four-response PLS, is assessed by means 
of a ROC analysis. ROC curves are evaluated for each of 36 cases of the experimental design. each curve is an average on the four responses (the average was calculated on 
400 ROC curves: 100 replications for each response).
Abbreviations:  AUC, area under the curve; FP, false positive; PLs, partial least square; ROC, receiver operating characteristic; sRBCT, small round blue cells tumor; TP, .
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