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Abstract: Mutations in the UGT1A1 gene have been implicated in Gilbert syndrome, which 

shows mild hyperbilirubinemia, and a more aggressive childhood subtype, Crigler–Najjar syn-

drome. To date, more than 100 variants have been found in the UGT1A1 gene. Among them, 

UGT1A1*28 and UGT1A1*6 have been reported to be associated with severe toxicities in 

patients treated with irinotecan-based chemotherapy by increasing the dose of SN-38 (7-ethyl-

10-hydroxycamptothecin), an active form of irinotecan. Many association studies and meta-

analyses have demonstrated the contribution of UGT1A1*28 and UGT1A1*6 polymorphisms 

to the toxicities caused by irinotecan-based therapy. The aim of this review was to evaluate the 

impact of these variants upon the toxicities and the efficacy of irinotecan-based chemotherapy.
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Introduction
Irinotecan hydrochloride, inhibiting topoisomerase I, is one of the key anticancer drugs 

in chemotherapy for several cancers such as colorectal cancer, lung cancer, gastric 

cancer, and gynecologic cancers.1–4 The patients treated with irinotecan occasion-

ally experience severe neutropenia and delayed diarrhea; however, the occurrence of 

these adverse reactions has been unpredictable and largely unexplained.5 An active 

metabolite of irinotecan, SN-38 (7-ethyl-10-hydroxycamptothecin), is glucuronidated 

by uridine diphosphate glucuronosyltransferase 1As (UGT1As), such as UGT1A1, 

and is inactivated by forming the SN-38 glucuronide (SN-38G). Among these UGT1A 

enzymes, UGT1A1 protein has the highest ability to glucuronidate SN-38.6 Various 

studies have demonstrated a relationship between UGT1A1 genotypes affecting SN-38 

pharmacokinetics and the experienced toxicity.7 The transport pathway of irinotecan is 

shown in Figure 1. In addition to UGT1A1 polymorphism, polymorphisms of carbo-

xylesterase (CES) and ATP-binding cassette (ABC) genes have been reported to affect 

the metabolism of irinotecan.8,9 In this review, the impact of UGT1A1 genotypes on 

irinotecan treatment will be discussed.

UGT1A1 polymorphisms and disease susceptibility
Mutations in the UGT1A1 gene have been implicated in Gilbert’s syndrome, which 

shows mild hyperbilirubinemia, and a more aggressive childhood subtype, Crigler–Naj-

jar syndrome.10,11 A common cause of decreased UGT1A1 activity is the insertion of a 

TA in the TATA box at the promoter region of the UGT1A1 gene, which was named as 

UGT1A1*28.10 Individuals with homozygous UGT1A1*28 had higher levels of serum 

bilirubin compared with those with heterozygous UGT1A1*28 or the wild-type allele.10
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Gilbert’s syndrome, also known as constitutional hepatic 

dysfunction or familial nonhemolytic jaundice, is an inher-

ited disorder of the liver resulting in an overabundance of 

bilirubin. Most of the patients with Gilbert’s syndrome are 

asymptomatic; however, they sometimes present with epi-

sodes of mild intermittent jaundice due to predominantly 

unconjugated hyperbilirubinemia. Crigler–Najjar syndrome 

is a rare, but more severe, disorder of bilirubin metabolism 

and is divided into two distinct forms (types I and II) based 

upon the severity of the disease. Gilbert’s syndrome is part 

of a continuous spectrum of altered glucuronidation that 

extends to the fatal Crigler–Najjar disease.

Gilbert’s syndrome is primarily linked to UGT1A1*28 

variants, but other variants in the promoter and coding regions 

are also involved in the predisposition of the disease.12 To 

date, more than 100 variants have been identified in the 

UGT1A1 gene.13 Among these polymorphisms, the clinically 

important variants are listed in Table 1.14–19

Recently, a large population-based cohort study, the 

Rotterdam Study,20 investigated the association between 

UGT1A1 genotype and incidence of coronary heart 

 disease (CHD). However, in this study, neither bilirubin 

nor UGT1A1*28 genotype was associated with develop-

ment of CHD. Another large trial evaluating 1,780 unre-

lated individuals aged more than 24 years suggested that 

homozygous UGT1A1*28 alleles and higher serum level 

of bilirubin were related with lower risk of cardiovascular 

disease (CVD).21 Serum bilirubin has a protective effect on 

CVD and CVD-related disease. It seems that individuals 

with Gilbert syndrome and UGT1A1*28 allele and having 

moderate elevation of serum bilirubin could have a lower 

risk of CHD and CVD.

UGT1A1*28 allele and efficacy of 
irinotecan-based therapy
Emerging data on the role of genetic variants in the 

UGT1A1 gene confirm that the UGT1A1*28 allele is 

associated with severe toxicities in irinotecan-based che-

motherapy.22 Additionally, it seems that patients with the 

allele were also associated with better outcome, despite 

severe toxicities.22 A study by Toffoli et al,22 conducted in 

238 patients with metastatic colorectal cancers, showed that 

Irinotecan
(prodrug)

Irinotecan
(prodrug)

CES1/2

UGT1A1

SN-38
(active form)

SN-38G
(inactive form)

Intestine

SN-38SN-38G
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Bile
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(inactive)

APC
(inactive)

ABCB1
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Liver
Diffusion

CYP3A4/5CYP3A4/5

Figure 1 Transport pathway of irinotecan.
Notes: A prodrug, irinotecan, is moved into hepatic cells by passive effusion. Activation to an active form, SN-38, is mediated by CES1/2. Deactivation to an inactive form, 
SN-38G (glucuronidated SN-38), is mainly mediated by UGT1A1. A part of SN-38G is hydrolyzed to SN-38 by bacterial β-glucosidase. Moreover, irinotecan is degraded to 
APC and NPC metabolites by CYP3A4/5. Irinotecan and metabolites are transported by P-glycoprotein, a protein of the cell membrane that pumps foreign substances out 
of cells, which is encoded by ABCB1 gene. Biliary excretion of SN-38G is mainly mediated by the MRP2/ABCC2.
Abbreviations: APC, 7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidino] carbonyloxycamptothecin; CES1/2, carboxylesterases 1 and 2; CYP3A4/5, cytochrome P450 
isoforms 3A4 and 3A5; MRP2/ABCC2, multidrug resistance associated protein-2; NPC, 7-ethyl-10-(4-amino-1-piperidino) carbonyloxycamptothecin; SN-38, 7-ethyl-10-
hydroxycamptothecin; UGT1A1, uridine diphosphate glucuronosyltransferase 1A1.
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*28/*28 cases had a better response rate and progression-

free survival compared with *1/*1 cases. However, most of 

the other studies evaluating survival according to UGT1A1 

genotypes failed to show the significance of UGT1A1 

variants in terms of survival. A meta-analysis by Dias et 

al,23,24 evaluating 10 studies using irinotecan-based che-

motherapy, revealed that there was no significant efficacy 

in terms of response rate, progression-free survival, and 

overall survival. Additionally, another meta-analysis by Liu 

et al25 also confirmed that the UGT1A1 genotype could not 

be a predictor for response rate and survival. These results 

might reflect a lower dose intensity of irinotecan in patients 

with *28/*28 or *1/*28 alleles, due to severe toxicities. 

Representative studies evaluated in these meta-analyses 

are listed in Table 2.22,26–36

UGT1A1*28 allele and the toxicities 
of irinotecan-based therapy
Many studies have evaluated toxicities in patients treated 

with irinotecan-based therapy according to UGT1A1*28 

genotypes.22,26–36 Table 2 summarizes representative studies 

evaluating the incidence of neutropenia and diarrhea. In 

terms of neutropenia, approximately half of these studies 

suggested a significant contribution of *28/*28 alleles to 

severe toxicities. A study by Kweekel et al29 analyzing high-

dose irinotecan regimens (250 or 350 mg/m2) revealed that 

patients with *28 allele had a significantly higher rate of 

febrile neutropenia compared with *1/*1 cases.

Several studies evaluating 5-fluorouracil, leucovorin, 

irinotecan (FOLFIRI) regimen also reported significantly 

higher incidence of severe neutropenia in cases with *28/*28 

alleles.26,28,32–34 Some reports suggested significant associa-

tion between diarrhea and *28/*28 alleles27,31,33 Several meta-

analyses have examined the impact of the *28 allele on the 

toxicities of irinotecan-based therapy. A study by Hoskins 

et al,37 evaluating 821 cases, revealed that severe hemato-

logical toxicities were more frequently observed in *28/*28 

patients, when the irinotecan doses were high (>250 mg/m2) 

or intermediate (150–250 mg/m2). However, the risk was 

not elevated in patients treated with low doses of irinotecan 

(<150 mg/m2).37 Another study by Hu et al38 reported that the 

*28/*28 genotype was associated with an increased risk of 

neutropenia not only at medium (response rate [RR] =2.0, 

95% confidence interval [CI] =1.6–2.5, p<0.01) or high 

doses (RR =7.2, 95% CI =3.1–16.8, p<0.01) of irinotecan 

but also at low doses (RR =2.4, 95% CI =1.3–4.4, p<0.01) 

from the results of meta-analyses evaluating 1,998 patients. 

Additionally, a study by Liu et al39 confirmed that patients 

with *28/*28 genotype had higher incidence of neutropenia 

compared with *1/*1 or *1/*28 genotype cases, in addi-

tion to suggesting that patients with *1/*28 genotype had 

significantly higher rate of severe neutropenia compared 

with *1/*1 genotype cases (odds ratio [OR] =1.84, 95% 

CI =1.24–2.72, p<0.01).

UGT1A1*6 allele and efficacy or 
toxicities of irinotecan-based 
therapy
The most frequent and important variant in the Asian popula-

tion is UGT1A1*6, which is rarely found among Caucasians. 

Representative studies evaluating UGT1A1*6 and clinical 

outcomes in patients treated with irinotecan-based therapy 

are listed in Table 3.40–50

Most of these studies were mainly focused on the tox-

icities of the regimens,40,42,44–46,49,50 and quite a few studies 

reported the clinical outcomes such as response rate and 

survival.39,47,48 Some studies reported that there were no 

significant associations between *6 alleles and the efficacy, 

Table 1 UGT1A1 allelic variants and their biologic impact

Denomination Variants14 Allele frequency (ethnicity)15,16 Expression level Enzymatic 
activity

Clinical consequence

UGT1A1*1 (TA)6TA Common allele 100% 100% None
TATA box polymorphisms
UGT1A1*28 c.–39_–40 ins TA: (TA)7TA 29–45% (Caucasians); 42–51% 

(Africans); 16% (Asians)
Reduced Reduced Gilbert’s syndrome, 

Crigler–Najjar syndrome17

Polymorphisms in the promoter region
UGT1A1*60 c.–3279 T>G 23–39% (Caucasian); 15% (African 

Americans); 17% (Asians)
Reduced Unchanged Gilbert’s syndrome, 

Crigler–Najjar syndrome18

Polymorphisms in exon 1
UGT1A1*6 c.211 G>A p.Gly71Arg 15–20% (Asians) Unchanged Reduced Gilbert’s syndrome, 

Crigler–Najjar syndrome19

UGT1A1*27 c.686 C>A p.Pro229Gln 5–28% (Asians) Unchanged Reduced Gilbert’s syndrome, 
Crigler–Najjar syndrome19
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Table 2 Severe toxicities according to UGT1A1*28 genotyping

Study No of 
patients

Regimens Irinotecan 
dose  
(mg/m2)

Neutropenia G3–4, % Diarrhea G3–4, % Efficacy

Odds ratio  
(95% CI)

Odds ratio 
(95% CI)

Odds ratio  
(95% CI)

Odds ratio 
(95% CI)

*28/*28 vs *1/*1 *1/*28 vs *1/*1 *28/*28 vs *1/*1 *1/*28 vs *1/*1

Rouits 
et al26

73 FOLFIRI, 
mFOLFIRI

85/1w, 
180/2w

23.33  
(3.08–177.04)

6.22  
(1.58–24.47)

2.70 (0.39–18.92) 1.69 (0.44–6.43) –

Marcuello 
et al27

95 IRI-Tomudex, 
etc

80/w, 180/2w, 
350/3w

– – 11.00 (2.27–53.37) 2.36 (0.85–6.57) RR, no 
difference (NS)

Toffoli 
et al22

250 FOLFIRI, 
mFOLFIRI

180/2w 2.08 (0.60–7.28) 1.99 (0.91–4.38) 0.86 (0.10–7.49) 2.52 (0.93–6.81) RR 40% 
(*1/*1), 42% 
(*1/*28), 67% 
(*28/*28) 
(p=0.03)

Côté et al28 89 FOLFIRI 180/2w 6.40 (1.20–34.20) 1.88 (0.58–6.11) – – DFS 52% 
(*1/*1), 42% 
(*1/*28), 87% 
(*28/*28) 
(p=0.06, NS)

Kweekel 
et al29

218 IRI, IRI-Cape 250 or 
350/3w

– – IRI 11.14  
(0.89–140.12) 
IRI-Cape 2.08 
(0.53–8.14)

IRI 1.63 
(0.51–5.21)

–

Braun 
et al30

326 IRI, IRI-5Fu 300–350/3w, 
180/2w

IRI 1.73  
(0.16–18.40) 
IRI–5Fu 1.07 
(0.22–5.25)

IRI 1.28 
(0.52–3.13) 
IRI–5Fu 2.82 
(0.69–11.58)

IRI 1.20  
(0.12–11.91) 
IRI–5Fu 2.75 
(0.49–15.38)

IRI-Cape 1.06 
(0.46–2.46) 

–

Ferraldeschi 
et al31

92 FOLFIRI, 
IRI-Cape, 
etc 

180/2w, 250 
or 350/3w

2.53 (0.40–16.15) 2.14 (0.66–7.03) 14.00  
(1.09–179.00)

IRI 0.48 (0.08–
2.74) IRI–5Fu 
1.24 (0.32–4.77)

–

McLeod 
et al32

212 IFL, IROX 100–125/1w, 
200/3w

IFL 3.04  
(0.44–20.91) 
IROX 11.28 
(2.51–50.70)

IFL 1.71  
(0.40–7.26) 
IROX 1.66  
(0.47–5.88)

IFL 1.94  
(0.47–8.01) IROX 
1.88 (0.50–7.05)

3.32 (0.33–33.25) RR of IROX, 
lower in 
*28/*28 
(p=0.02)

Martinez-
Balibrea 
et al33

149 FOLFIRI, 
FUIRI

80/1w, 
180/2w

4.00 (1.12–14.32) 1.67 (0.67–4.20) 4.96 (1.49–16.55) IFL 0.97 (0.37–
2.52) IROX 1.08 
(0.45–2.63) 1.38 
(0.63–3.04)

RR, PFS, OS, 
no difference 
(NS)

Glimelius 
et al34

136 FLIRI, 
Lv-5Fu-IRI

180/2w 6.88 (1.70–27.75) 1.75 (0.55–5.56) 1.42 (0.15–13.79) 1.85 (0.47–7.25) RR, no 
difference 
(NS)

Shulman 
et al35

214 TEGAFIRI, 
XELIRI, etc

80/w, 180/
biweekly

5.43 (1.50–19.67) 1.53  
(0.48–4.85)

0.66 (0.22–1.95) 0.59 (0.30–1.18) –

Lamas 
et al36

100 IRI-Cape, 
FOLFIRI

100 or 125/w, 
180/biweekly

0.80 (0.09–7.25) 2.49 (0.85–7.29) 0.28 (0.01–5.22) 0.57 (0.14–2.29) –

Abbreviations: CI, confidence interval; RR, response rate; DFS, disease-free survival, PFS, progression-free survival; OS, overall survival; NS, not significant; FOLFIRI, 5-fluorouracil, 
leucovorin, irinotecan; mFOLFIRI, modified FOLFIRI; IRI-Tomudex, irinotecan plus tomudex, IRI, irinotecan; IRI-Cape, irinotecan plus capecitabine; IRI-5Fu, irinotecan plus 
5-fluorouracil; IFL, irinotecan plus 5-fluorouracil; IROX, irinotecan plus oxaliplatin; FUIRI, irinotecan plus high-dose 5-fluorouracil; FLIRI, irinotecan plus bolus 5-fluorouracil/
leucovorin; Lv-5Fu-IRI, irinotecan, plus bolus/infused 5-fluorouracil/leucovorin; TEGAFIRI, uracil, ftorafur, leucovorin, and irinotecan; XELIRI, capecitabine plus irinotecan.

including response rate and  survival.40,44,45 Among the studies 

listed, almost all the studies reported significant relationship 

between UGT1A1*6/*6 and severe neutropenia, compared 

with *1*1 cases. Additionally, half of the studies suggested 

significantly higher incidence of severe neutropenia in patients 

with UGT1A1*1/*6.42,44,48–50 A study evaluating a combination 

therapy with irinotecan and cisplatin reported an increased 

risk of severe diarrhea in patients with *1/*6 alleles.39

A meta-analysis evaluating mainly Asian studies reported 

that patients with *6/*6 alleles had increased incidences 

of severe neutropenia with both high/medium (OR =3.95, 

95% CI =2.05–7.64, p<0.01) and low doses (OR =9.64, 

95% CI =2.05–45.28, p<0.01) of irinotecan. This trend was 

also observed in patients with *1/*6 alleles compared with 

*1/*1 cases: OR =4.42 for low dose, and OR =1.55 for high/

intermediate dose of irinotecan.51
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Genotype-based dose modification 
studies
Accumulated evidence suggests that optimal doses of irino-

tecan according to UGT1A1 genotype are needed. Several 

dose-finding studies have been published; however, most 

of the studies were dose modifications of the FOLFIRI 

regimens (Table 4).52–56 Three studies evaluating irinotecan 

doses in FOLFIRI showed that the maximal tolerated dose 

(MTD) in patients with *1/*1, *1/*28, and *1/*6 alleles was 

higher than the standard doses of the FOLFIRI regimen.52–54 

The MTD in the *1/*1 patients was also higher than that 

of patients with *1/*28 and *1/*6 alleles, and the MTD in 

patients with *28/*28, *6/*6, and *28/*6 alleles was lower 

than the current standard doses of the FOLFIRI regimen.53,54 

In the Asian population, incorporation of UGT1A1*6 in 

addition to UGT1A1*28 would be needed for the safety 

Table 3 Severe toxicities according to UGT1A1*6 genotyping

Study No of 
patients

Regimens Irinotecan 
dose

Neutropenia G3–4 (%) Diarrhea G3–4 (%) Efficacy

Odds ratio  
(95% CI) 

Odds ratio 
(95% CI)

Odds ratio  
(95% CI)

Odds ratio  
(95% CI)

*6/*6 vs *1/*1 *1/*6 vs *1/*1 *6/*6 vs *1/*1 *1/*6 vs *1/*1

Jada et al40 45 IRI 375/3w – – 7.75 (0.40–149.70) 1.11 (0.11–11.49)
Sai et al41 49 IRI 60/1w, 100, 

125, 150/2w
28.00 (0.92–851.54) 8.00 (0.82–78.47) – –

Takano 
et al42

30 IRI-cisplatin 60/1w – 11.20  
(1.73–72.30)

– 16.00 (1.45–176.45) –

Seo et al43 39 FOLFIRI 150/2w – 0.97 (0.24–3.90) – 0.56 (0.10–3.08) RR, OS, no 
difference (NS)

Onoue 
et al44

133 IRI-platinum, 
FOLFIRI

<60, >100 7.78 (1.36–44.50) 4.27 (1.71–10.62) – – –

Satoh et al45 73 IRI 150/2w 9.33 (1.96–44.49) 0.85 (0.16–4.51) 18.18  
(0.68–483.94)

– –

Okuyama 
et al46

39 FOLFIRI 150/2w 4.04 (0.15–108.57) 1.93 (0.44–8.42) – – –

Wang 
et al47

130 FOLFIRI, IFL 180/2w 
125/1w

0.59 (0.06–5.54) 0.97 (0.44–2.13) 4.47 (0.16–30.12) 1.99 (0.77–5.13) PFS, OS, no 
difference (NS)

Gao et al48 276 FOLFIRI, 
XELIRI

180/2w 4.07 (1.50–11.04) 2.02 (1.06–3.86) 1.98 (0.40–9.77) 0.90 (0.27–2.95) RR, no 
difference (NS)

Gao et al49 133 IRI-cisplatin, 
FOLFIRI, etc

180/2w 6.40 (1.30–31.60) 3.34 (1.43–7.79) 2.25 (0.23–21.86) 1.13 (0.27–4.75) –

Ichikawa 
et al50

1,376 FOLFIRI, 
IRIS, etc

150/2w 
125/2w

3.34 (2.19–5.10) 1.64 (1.21–2.17) 1.91 (NS) 0.84 (NS) –

Abbreviations: CI, confidence interval; RR, response rate; PFS, progression-free survival; OS, overall survival; NS, not significant; IRI, irinotecan; FOLFIRI, 5-fluorouracil, 
leucovorin, irinotecan; IFL, irinotecan plus 5-fluorouracil; XELIRI, capecitabine plus irinotecan; IRIS, irinotecan plus S-1.

Table 4 Genotype-based dose-finding studies

Study Chemotherapy Genotype Starting dose, mg/m2 Results, mg/m2 

Toffoli et al52 FOLFIRI *1/*1 215 MTD =370 
*1/*28 215 MTD =310

Marcuello et al53 FOLFIRI *1/*1 180 MTD =390 
*1/*28  110 MTD =340 
*28/*28  90 MTD =130

Kim et al54 FOLFIRI *1/*1 240 MTD ≧330 
*1/*28, *1/*6 240 MTD =300
*28/*28, *6/*6, *6/*28 240 MTD ≧150

Hazama et al55 Irinotecan (every 2w)+ doxifluridine *1/*1 70 MTD >150; RD =150
*1/*28 70 MTD =100; RD =70

Lu et al56 FOLFIRI + bevacizumab *1/*1 180 MTD =260
*1/*28 180 MTD =240 
*28/*28 120 MTD =210

Abbreviations: MTD, maximal tolerated dose; RD, recommended dose; FOLFIRI, 5-fluorouracil, leucovorin, irinotecan.
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of irinotecan-based chemotherapy. All these results sug-

gested that patients with heterozygous UGT1A1 variants, 

in addition to those with homozygous UGT1A1 variants, 

had lower MTD of irinotecan compared with those with 

wild-type alleles.

Current recommendation for 
UGT1A1 genotyping in daily 
practice
The US Food and Drug Administration recommends on the 

irinotecan drug label that patients with the *28/*28 genotype 

should receive a lower starting dose of irinotecan.57 Addi-

tionally the recommendation also noted that “the precise 

dose reduction in this patient population is not known, and 

subsequent dose modifications should be considered based 

on individual patient tolerance to treatment”.57

According to European Society for Medical Oncology 

(ESMO) guidelines, testing for UGT1A1 polymorphisms 

should be considered only if severe toxicity potentially related 

to treatment with irinotecan occurs. The ESMO guideline 

noted that testing for UGT1A1 is particularly important 

when irinotecan is used at high doses (300–350 mg/m2) but 

of less importance when it is administered at lower doses 

(125–180 mg/m2).58

According to the Japanese Society for Cancer of the 

Colon and Rectum (JSCCR) guidelines, it is especially 

desirable to test for a UGT1A1 genetic polymorphism before 

administering irinotecan to patients with a high serum biliru-

bin level, elderly patients, patients whose general condition is 

poor (eg, performance status 2 [PS2]), and patients in whom 

severe toxicity (especially neutropenia) developed after the 

previous administration of irinotecan.59 The guidelines also 

noted that “irinotecan toxicity cannot be predicted with 

certainty on the basis of the presence of a UGT1A1 genetic 

polymorphism alone”, and that “it is essential to monitor 

patients’ general condition during treatment and to manage 

adverse drug reactions carefully, irrespective of whether a 

genetic polymorphism is detected”.

In the USA, single agent irinotecan (350 mg/m2, 

triweekly, monotherapy) is usually used as one of the 

“irinotecan-based therapies”, so the doses of irinotecan 

are usually higher than in Europe (180 mg/m2, biweekly, 

combination) or Japan (150 mg/m2, biweekly, combination). 

Although the recommendations for UGT1A1 genotyping 

are different according to the doses of irinotecan which are 

clinically often used in daily practice, clinical usefulness 

should be always considered in all patients who receive 

irinotecan-based therapy.

Conclusion
Emerging data confirmed an increased risk of severe toxici-

ties, such as neutropenia, in patients with UGT1A1*28 and/or 

UGT1A1*6 genotype when the patients received irinotecan-

based chemotherapy. Homozygous variants and double 

heterozygous variants showed a higher risk of severe toxici-

ties compared with single heterozygous variants. However, 

genotype-based studies suggest that MTD is clearly lower 

in patients with heterozygous UGT1A1 variants compared 

with those with wild-type alleles. Further clinical studies 

that include heterozygous UGT1A1 variants, in addition 

to homozygous variants, are needed to evaluate the clini-

cal utility of UGT1A1 genotyping in patients treated with 

irinotecan-based therapy. On the other hand, although severe 

toxicities were clearly evident when the dose of irinotecan 

was high or intermediate, the incidence of these toxicities 

was significantly higher even when the dose of irinotecan was 

lower. Furthermore, clinical significance in terms of tumor 

response or survival was not found according to UGT1A1 

genotypes. Further investigations, such as genotype-based 

therapy, are needed for increasing the efficacy and decreasing 

the toxicities for patients receiving irinotecan-based therapy. 
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