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Abstract: While remarkable advances have been made in the treatment of pediatric leukemia 

over the past decades, new therapies are needed for children with advanced solid tumors and 

high-grade brain tumors who fail standard chemotherapy regimens. Immunotherapy with immune 

checkpoint inhibitors acting through the programmed cell death-1 (PD-1) pathway has shown 

efficacy in some chemotherapy-resistant adult cancers, generating interest that these agents may 

also be helpful to treat certain refractory pediatric malignancies. In this manuscript we review 

current strategies for targeting the PD-1 pathway, highlighting putative biomarkers and the 

rationale for investigation of these drugs to treat common pediatric tumors such as sarcoma, 

neuroblastoma, and high-grade glioma. We summarize the completed and ongoing clinical trial 

data available, and suggest potential applications for further study.
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Introduction
Although the majority of children with newly diagnosed cancer are expected to be 

long-term survivors, cure remains elusive for patients with certain tumor types. For 

example, patients with high-risk neuroblastoma, advanced sarcoma, or high-grade 

glioma who relapse after initial therapy are rarely cured, and these diseases collectively 

account for over half of pediatric cancer deaths.1 Given that further increases or modi-

fications in existing cytotoxic therapies are unlikely to provide substantial benefit, there 

is great interest in pursuing alternative approaches for these refractory cancers.

Targeting the immune system as a method for controlling tumor growth is intui-

tively appealing, as it represents an enabling of the body’s defenses instead of the 

usual weakening that is brought about by toxic conventional therapy. There is growing 

evidence that the tumor microenvironment and immune effector cells may help control 

proliferation of a variety of different pediatric tumors, prompting the investigation of 

tumor vaccines or other immunomodulating strategies to eradicate malignant cells, 

or at least restrain tumor growth.2–4

The most effective immunotherapy to date for pediatric solid tumors has been the 

chimeric monoclonal antibody ch14.18 (dinutuximab; Unituxin®), which targets the 

ganglioside GD2 that is ubiquitously present on the surface of neuroblastoma cells. 

Use of dinutuximab following autologous stem-cell transplantation improved the 

2-year event-free survival for high-risk neuroblastoma patients from 46% to 66%,5 

leading to US Food and Drug Administration (FDA) approval of this agent. This 

breakthrough study convincingly showed that, in certain contexts, immunotherapy can 

indeed improve the outcome for particular pediatric tumors. Given this success, and 

the recent expansion of immunotherapies for adult cancers detailed below, attention 
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is now turning to whether targeting the programmed cell 

death-1 (PD-1) pathway will be beneficial for refractory pedi-

atric solid tumors and brain tumors. While responses have 

been seen in adult cancers once thought intractable, these 

agents have not been efficacious in all clinical scenarios, and 

patient selection will be critical for success. In this review, 

we discuss the mechanisms and potential biomarkers for 

PD-1-targeted therapy, and outline how this may potentially 

be applied to pediatric solid tumors.

Overview of PD-1 pathway
In the last three decades, cancer therapy has increasingly 

focused on immunotherapy, based in part on observations 

that cancer patients may have better outcomes when tumor-

infiltrating lymphocytes (TIL) are present.6 The premise is 

that these TIL are capable of recognizing and killing tumor 

cells, thus leading to prolonged patient survival. Cytotoxic 

T-cells are a key mediator of this immune-mediated antitumor 

effect, and there is now great interest in understanding how 

these cells are not only activated but also regulated.

As tumor cells die, dendritic cells present tumor-specific 

antigens through major histocompatibility complex (MHC) 

to T-cells, and provide additional costimulatory signals 

through surface receptors like CD28 (Figure 1).7 Once the 

T-cell becomes activated, other costimulatory molecules are 

expressed, such as 4.1BB, OX40, and CD40L. Activated 

T-cells then undergo clonal expansion and migrate to the site 

of tumor-related antigens, where they infiltrate the tumor and 

kill malignant cells through perforin and granzyme B. Shortly 

after activation, mechanisms for turning off the cells also 

appear, namely the expression of the checkpoint receptors 

CTLA-4 and PD-1. Collectively, these receptors control the 

quality, intensity, and duration of the immune response.

Augmenting clonal expansion of these cytotoxic T-cells 

has been accomplished with aldesleukin (interleukin 2), 

which is FDA approved for the treatment of metastatic renal 

cell carcinoma and melanoma.8,9 However, due to the high 

toxicity and relatively low response rates of aldesleukin, 

focus has shifted from augmenting expansion to prolonging 

the activation of cytotoxic T-cells by blocking checkpoint 

Figure 1 immune response to tumors.
Notes: (A) Dying tumor cells are taken up by antigen-presenting cells (eg, dendritic cells) and presented to T-cells (commonly in the lymph system) where they then 
undergo clonal expansion and trafficking into the tumor. (B) Activated cytotoxic T-cells proliferate, participate in generation of inflammatory and toxic cytokines, including 
fatal secretion of perforin and granzyme; following chronic stimulation checkpoint receptors on the T-cells are bound by their ligands and the T-cell response is terminated. 
Blocking the PD-1 and/or CTLA4 checkpoints with antibodies leads to activation/reactivation of T-cells so they generate an antitumor response.
Abbreviations: MHC, major histocompatibility complex; PD-1, programmed cell death-1; PD-L1, programmed death-ligand 1.
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signals that can terminate the immune response. Although 

checkpoint signals are important to protect against autoim-

mune disease, they also protect the tumor from immune 

attack. The first target for checkpoint inhibition was CTLA-4, 

which competes with CD28 to bind the stimulatory mol-

ecules B7.1 and B7.2. CTLA-4 expression occurs upon 

T-cell activation, and once present CTLA-4 helps terminate 

T-cell activity. Ipilimumab is a monoclonal antibody against 

CTLA-4, and as such helps remove the brakes on the immune 

response and overcome tolerance by prolonging the period 

of T-cell activation. Ipilimumab has received FDA approval 

for the treatment of metastatic melanoma based on improved 

survival when compared to tumor vaccine;10 however, the 

overall response rate was only 11%. A pediatric phase I 

trial of 33 unselected patients with relapsed solid tumors 

treated with ipilimumab identified a maximum-tolerated 

dose of 5 mg/kg in patients ,12 years old and 10 mg/kg in 

older patients.11 This compares to the FDA-approved dose of 

3 mg/kg in adults. Unfortunately, no objective responses were 

seen, and focus has turned to second-generation checkpoint 

inhibitors targeting PD-1 with the hopes of further improv-

ing activity. In adult melanoma patients, pembrolizumab and 

nivolumab (PD-1 inhibitors) have proven to be superior to 

ipilimumab.12,13

PD-1 is another checkpoint that is important in terminat-

ing the response of activated T-cells, and is upregulated by 

chronically activated T-cells. PD-1 is expressed on activated 

effector T-cells and other TIL such as natural killer cells, and 

when activated causes the T-cells to become unresponsive. 

This phenotype of PD-1+ T-cells that is no longer cytotoxic 

is called T-cell exhaustion. Of note, mice deficient in PD-1 

develop autoimmune diseases from unchecked immune 

activation, and blocking this pathway in PD-1-proficient 

mice with chronic viral infections restores antiviral immunity 

and reverses T-cell exhaustion.14 PD-1 signaling is induced 

following binding to either of its two ligands (PD-L1 or 

PD-L2), of which PD-L1 appears to be the more important 

in regulating T-cell antitumor function. PD-L1 is expressed 

in a variety of different tumors, and in dendritic cells, mac-

rophages, and T-cells. Upregulation of PD-L1 expression 

by tumors is driven by inflammation when cytokines such 

as interferon gamma are expressed. Additionally, there is 

also a link between hypoxia, which can lead to infiltration 

of tumor-associated macrophages that express PD-L1. These 

immune-regulatory signals appear to be a mechanism tumors 

utilize to escape immune surveillance. Logically, it follows 

that tumors that express PD-L1 or contain macrophages 

that express PD-L1 might respond best to a PD-1 or PD-L1 

inhibitor.15 This concept is depicted in Figure 2.

There are currently three FDA-approved antibodies 

targeting either PD-1 (nivolumab, pembrolizumab) or 

PD-L1 (aletuzumab), with several others in clinical trials. 

A summary is provided in Table 1. To date, there has been 

no published comparison of efficacy in patients treated with 

antibodies within a class (eg, nivolumab vs pembrolizumab), 

or between classes (PD-1 vs PD-L1). The toxicities of these 

Figure 2 escaping immune surveillance.
Notes: T-cells in the immune system recognize and eliminate immunogenic transformed cells. However, some cells do not express enough neoantigens to be recognized by 
the immune system, while others express ligands for checkpoint receptors on T-cells to terminate the immune response.
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Table 1 Checkpoint inhibitors available in the USA and select inhibitors in advanced studies

Drug Target Indication Stage of development

ipilimumab CTLA4 Melanoma FDA approved
Tremulimumab CTLA4 Head and neck Phase III – NCT02369874

Mesothelioma Phase III – NCT01843374
Non-small-cell lung cancer Phase III – NCT02542293

Pembrolizumab PD-1 Non-small-cell lung cancer FDA approved
Melanoma
Head and neck cancer

Nivolumab PD-1 Non-small-cell lung cancer FDA approved
Melanoma
Renal cell cancer
Head and neck cancer
Hodgkin lymphoma

Pidilizumab PD-1 Diffuse large B-cell lymphoma Phase II – NCT02530125
Multiple myeloma Phase I/II – NCT02077959

PDR001 PD-1 Neuroendocrine tumors Phase II – NCT02955069
Atezolizumab PD-L1 Non-small-cell lung cancer FDA approved

Bladder cancer
Durvalumab PD-L1 Head and neck cancer Phase III – NCT02369874

Non-small-cell lung cancer Phase III – NCT02453282
Avelumab PD-L1 Non-small-cell lung cancer Phase III – NCT02576574

Breast cancer Phase iii – NCT02926196
Ovarian cancer Phase III – NCT02580058

Abbreviations: FDA, Food and Drug Administration; PD-1, programmed cell death-1; PD-L1, programmed death-ligand 1.

compounds are nearly similar, with autoimmune adverse 

events being most common and concerning.16 Historically, 

immunotherapy was thought to only be efficacious in the 

setting of minimal residual disease;17 however, PD-1-targeted 

antibodies have routinely produced responses in patients 

with bulky disease.

Putative biomarkers and mechanisms of 
resistance for PD-1-targeted therapy
At present, there is no single biomarker that accurately pre-

dicts response to anti-PD-1 therapy. Based on the current 

understanding of the immune system’s antitumor response, 

there are several key elements that can explain how tumors 

escape immune surveillance and grow. Tumors that are 

not immunogenic will not be recognized by the immune 

system. Immunogenic tumors can avoid immune surveil-

lance by preventing inflammation and lymphocyte penetra-

tion into the tumor, or they can avoid immune surveillance 

by terminating the immune response through expressed 

checkpoint ligands.

Intuitively, tumors that have escaped immune surveil-

lance and express PD-L1 on the cell surface should benefit 

from either anti-PD-1 or anti-PD-L1 therapy. However, 

clinical trial experience shows that this is not always the 

case.18 Key areas of investigation include how expression 

of PD-L1 is assessed, what threshold is linked to clinical 

benefit from these agents, and whether PD-L1 expression is 

required for therapeutic success. As seen in Table 2, PD-L1 

is most commonly assessed by immunohistochemistry 

(IHC), although a variety of different antibodies, different 

tissues (fresh, frozen, paraffin embedded, primary vs meta-

static), and different thresholds for positivity have been used  

(reviewed in Hutarew).19 Despite these limitations, most 

trials involving lung cancer and melanoma patients show 

a general association between outcome and PD-L1 expres-

sion, although it is not necessarily required for therapeutic 

benefit.18 In contrast, PD-L1 expression in urothelial cancer 

or renal cell cancer seems even less predictive of response to 

nivolumab20,21 or pembrolizumab22, as some patients clearly 

benefit despite little or no expression. These results suggest 

that the utility of PD-L1 as a biomarker is limited and may 

not be broadly applicable across all tumor types.

PD-L1 expression is induced by inflammatory cytokines 

such as interferon gamma, and the expression of this cytokine 

may mark the mechanism the tumor has utilized to escape 

immune surveillance and consequently be a biomarker for 

PD-1 inhibitor activity. For example, in a preliminary report 

describing the treatment of patients with non-small-cell lung 

cancer with the anti-PD-L1 antibody durvalumab, patients 

whose tumors coexpressed interferon gamma and PD-L1 

had improved survival (hazard ratio [HR] 0.4, P=0.016) 

compared with those expressing PD-L1 alone (HR 0.64, 
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P=0.18).23 These findings suggest that some type of panel of 

biomarkers may be most efficacious for patient selection.

Another putative biomarker for response to anti-PD-1 

therapy is the total mutational burden, with studies showing 

improved response rates in patients with .100 mutations 

in tumor tissue.18 Somatic mutations have the potential 

to encode “non-self” immunogenic antigens (also called 

neoantigens), which may make the tumor more visible to 

the immune system. Mutations may be induced by exposure, 

such as sunlight or cigarette smoke, and perhaps this may be 

one reason why PD-1 agents have been successful in mela-

noma and lung cancer. Alternatively, mutations also may be 

dramatically increased in tumors demonstrating mismatch 

repair (MMR) deficiency, and this can result in microsatel-

lite instability (MSI) and sensitivity to PD-1 inhibition. For 

example, patients treated with pembrolizumab for colon 

cancer showed response rates as high as 40% in patients 

whose tumors showed MMR deficiency, compared with 

0% in MMR-proficient tumors.24 Whole-exome sequencing 

demonstrated a mean of 1,782 mutations per tumor in the 

Table 2 Review of select biomarker studies and their ability to enrich responding patient populations

Biomarker Drug Disease/
setting

Cutoff Outcome Comment

Tumor PD-L1 Pembrolizumab59 NSCLC 1%–24% OS – 10 mo Automated IHC assay with antibody 22C3
Mostly  
second line

25%–49% OS – 10 mo Food and Drug Administration-approved test – 
positive = TPS 50%+

50%–74% OS – 16 mo  
 75%+ OS – 17 mo  

Nivolumab60 NSCLC 
second line

,5% OS – 10 mo IHC assay with antibody 28-8

(nonsquamous 
histology)

5%+ OS – 19 mo

Atezolizumab61 NSCLC ,1% OS – 13 mo SP142 assay
Second line .1% OS – 16 mo

.5% OS – 16 mo
 .50% OS – 21 mo

Nivolumab62 Melanoma ,5% PFS – 5 mo IHC assay with antibody 28-8
First line .5% PFS – 22 mo From pooled analysis

Pembrolizumab63 Melanoma ,1% PFS – 3 mo IHC assay with antibody 22C3
Prior 
treatment

1%+ PFS – 12 mo

Inflammatory 
gene

Pembrolizumab64 Head and neck 
cancer

Positive predictive value 40% interferon gamma genes: CXCL9, CXCL10

Signature Second line Negative predictive value 95% iDO1, iNF gamma, HLA-DRA, and STAT1
Atezolizumab65 NSCLC Teff/iNF high OS – NR median 

follow-up ~15 mo
Teff/iNF gamma gene signature

Second line Teff/iNF low OS ~10 mo Determined by gene expression of CD8A
GZMA, GZMB, INF gamma, EOMES, CXCL9

 CXCL10 and TBX21
Mutational 
burden

Pembrolizumab66 NSCLC High (above median) ORR – 59% Nonsynonymous

Prior 
treatment

Low (below median) ORR – 12 Exom sequencing with 9049 nonsynonymous, 
coding point mutations considered

Pembrolizumab66 NSCLC High (above median) PFS – 14.5 mo Total exonic mutations
Prior 
treatment

Low (below median) PFS – 4.1 mo

Pembrolizumab24 Colorectal 
cancer

Mismatch repair deficient ORR – 40% Microsatellite instability analysis using an assay 
from Promega

Second line Mismatch repair proficient ORR – 0%
Angiopoietin 2 PD-1 inhibitor25 Melanoma Low baseline with small 

increase w/tx
OS =34.6 mo Serum-based assay

Second line High baseline with high 
increase w/tx

OS =7.9 mo Monitored serially – association with vascular 
endothelial growth factor 

Abbreviations: iNF, interferon; iHC, immunohistochemistry; mo, months; NSCLC, non-small-cell lung cancer; OS, overall survival; PD-1, programmed cell death-1; PD-L1, 
programmed death-ligand 1; PFS, progression-free survival.
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MMR-deficient cohort, compared to 73 in the proficient 

group. Assessing for mutational burden and MSI can now be 

done by commercial assays, and may be another potentially 

important factor to consider regarding patient selection.

Finally, there is some recent information suggesting that 

angiopoietin-2 (Ang2) may also be a biomarker for PD-1-

targeted therapy, and importantly one that can be assessed 

by peripheral blood at various time points. Ang2 is a critical 

regulator of tumor-associated blood vessel maturation, and 

is involved with the recruitment of monocytes/macrophages 

into the tumor microenvironment and induction of PD-L1 

expression in M2-polarized macrophages. Wu et al found 

that for 43 melanoma patients treated with PD-1 block-

ade, those with high circulating levels of Ang2 (defined 

as .3,175 pg/mL) or rising levels during treatment had 

reduced overall survival,25 suggesting that Ang2 may medi-

ate resistance to checkpoint inhibitors, and could be used to 

select and follow patients. Although pediatric data are lim-

ited, one study of 35 various pediatric solid tumor or brain 

tumor patients showed that the median circulating Ang2 

level at diagnosis would be considered low at 2,482 pg/mL, 

suggesting potential sensitivity to PD-1 inhibition according 

to this parameter.26 A list of biomarkers used in key clinical 

trials is provided in Table 2.

There are several proposed mechanisms of resistance to 

PD-1 blockade, and include interruptions of any step along 

the pathway of T-cell cytotoxicity. Some tumors such as 

prostate cancer have very little PD-L1 expression despite 

the presence of TIL, and so may be resistant for this rea-

son.27 Mutations in tumor can account for downregulation of 

MHC and decreased immunogenicity,28 or altered dendritic 

cell migration.29 In addition, involvement of other PD-1-

independent pathways may help tumor cells evade T-cell 

destruction. Some tumor cells are induced by interferon 

gamma to express indoleamine 2,3-dioxygenase, which can 

render experimental models of melanoma resistant to PD-1 

blockade.30 Other complex mechanisms such as extreme 

T-cell exhaustion or impaired development of effective 

T-cell memory may also contribute to resistance (reviewed 

in O’Donnell et al).31

Preclinical testing in pediatric cancers
In considering whether PD-1 targeting would be appropriate 

for pediatric cancers, a key issue is whether potential bio-

markers suggested by adult studies are present in childhood 

tumors as well. Although limited, there is a growing body of 

evidence about PD-L1 expression, mutational burden, and 

MSI in important childhood cancers such as bone and soft 

tissue sarcoma, neuroblastoma, and high-grade glioma.

Pediatric sarcoma
In two of the larger studies to date of osteosarcoma, IHC 

analysis showed PD-L1 expression in 25%–47% of primary 

tumor samples, and tumors expressing PD-L1 were signifi-

cantly more likely to have infiltrating immune cells, which 

often expressed PD-1.32,33 Importantly, PD-L1 expression 

correlated with worse event-free survival, and these findings 

are consistent with the concept that PD-L1 in tumor cells may 

interact with PD-1-expressing cells in the microenvironment 

to help evade immune rejection by the host. Interestingly, 

PD-L1 expression has been reported to be more common 

in metastatic lesions than in primary tumors,34,35 which is 

relevant considering that metastases are more likely than 

primary tumors to cause death in this disease. Further, osteo-

sarcoma has a greater inherent genomic instability and higher 

mutational burden than many other pediatric solid tumors,36 

which may also predispose to benefit from PD-1-targeted 

therapy. Finally, use of the immune adjuvant mifamurtide has 

previously shown benefit in osteosarcoma37 and is approved 

by the European Medicines Agency, further demonstrating 

the potential role of immunotherapy for this disease.

PD-L1 expression has been less well studied in Ewing 

sarcoma, another important pediatric sarcoma that may origi-

nate either in bone or soft tissue. One study demonstrated 

expression in 8 (57%) of 14 primary bone tumor samples,32 

while 8 (38%) of 21 soft tissue primaries have reported 

PD-L1 expression in other studies.38,39 For rhabdomyosar-

coma, the most common pediatric soft tissue sarcoma, data 

are limited but Chowdhury et al have reported expression in 

13 (86%) of 15 alveolar rhabdomyosarcoma and 8 (50%) of 

16 embryonal rhabdomyosarcoma patient samples.32 More 

robust analysis of the tumor microenvironment is not yet 

available, although infiltrating PD-1 CD8 lymphocytes are 

present in a subset of these tumors.

Neuroblastoma
Neuroblastoma is the most common extracranial solid 

tumor in children, and high-risk disease accounts for up 

to 15% of pediatric cancer deaths. An early study did not 

identify PD-L1 expression in any of the 18 tested samples 

from neuroblastoma patients.40 In contrast, Chowdhury et al 

reported PD-L1 surface expression in 31 (72%) of 43 patient 

tumor samples,32 with lower survival in patients express-

ing PD-L1. Dondero et al confirmed that PD-1 expression 

is present in lymphocytes obtained from metastatic bone 

marrow samples, and that PD-L1 expression in tumor cells 

is inducible with interferon gamma.41 Interestingly, the pro-

duction of cytokines such as interferon is particularly high 

in patients following treatment with the recently approved 
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monoclonal antibody dinutuximab, suggesting potential 

benefit for combination therapy.

High-grade glioma
PD-L1 expression has been identified in 6 (30%) of 20 

pediatric high-grade glioma samples,42 and larger studies in 

adults showed expression in 68% of 62 glioblastoma samples, 

with a strong trend for worse outcome in these patients.43 

In addition, a subset of pediatric high-grade glioma tumors 

has evidence of MSI, which reflects the increased muta-

tional status of the tumor and the potential greater number 

of neoantigens that could induce a host immune response. 

Viana-Pereira et al have reported MSI to be present in 14 

(19%) of 71 high-grade glioma samples, significantly higher 

than that seen with adult tumors.44 While some of those 

patients may have had the rare congenital MMR deficiency 

syndrome (MMRDS, previously called Turcot syndrome),45 

MSI may also arise independently outside of this defined 

cancer predisposition. The potential benefit for using anti-

PD-1 antibodies to treat these hypermutated tumors was 

shown by Bouffet et al, who reported sustained responses in 

two siblings with pediatric glioblastoma and MMRDS who 

were treated with single-agent nivolumab.46 Taken together, 

these findings support further investigation of PD-1-targeted 

drugs for this disease.

Completed and upcoming clinical trials 
with PD-1 agents to treat pediatric 
cancers
To date, there have been only a few reports of treatment 

of pediatric cancer patients with agents targeting the PD-1 

pathway. Apart from the glioma patients with MMR defi-

ciency treated with pembrolizumab as above,46 all other 

reports involve genetically unselected patients. Blumenthal 

et al retrospectively described outcomes in 22 patients with 

recurrent primary brain tumors treated with pembrolizumab, 

of whom five were children with pontine glioma (2), glio-

blastoma (1), atypical teratoid/rhabdoid tumor (1), and 

medulloblastoma (1).47 These children were ages 3–7 years, 

and received an adjusted flat dose of 50 mg every 3 weeks for 

a median of four infusions (range 2–10). Disappointingly, no 

responses were seen in either pediatric or adult patients.

Although preclinical data would suggest that osteo-

sarcoma would be sensitive to agents targeting PD-1, this 

has not been the case in the limited data available to date. 

For example, in the SARC028 multi-institutional phase II 

trial of pembrolizumab, only one of 19 patients with recur-

rent osteosarcoma had an objective imaging response.48 In 

addition, no responses were seen in 13 patients treated with 

recurrent Ewing sarcoma, although there has been one anec-

dotal case report of a heavily pretreated patient with relapsed 

disease who had a sustained response to pembrolizumab.49 

Interestingly, the SARC028 study did show activity for a 

subset of adult soft tissue sarcoma, namely undifferentiated 

pleomorphic sarcoma, in which four of 10 patients experi-

enced a partial response. This sarcoma histiotype is somewhat 

heterogeneous, and it is not known whether PD-1 agents will 

have similar efficacy in the soft tissue sarcoma subtypes more 

commonly seen in pediatrics such as rhabdomyosarcoma.

Table 3 lists several key ongoing clinical trials in 

pediatric patients, which are expected to better establish 

the potential role of anti-PD-1 antibodies and hopefully 

identify biomarkers that can be used for patient selection. 

The Children’s Oncology Group is performing an important 

phase I/II study that will determine both the recommended 

phase II doses of single-agent nivolumab and the combina-

tion of nivolumab with the CTLA-4 inhibitor ipilimumab in 

patients with unselected recurrent solid tumors or lymphoma 

(ClinicalTrials.gov identifier NCT02304458). In the phase II 

expansion portion of the study, activity of nivolumab will 

be assessed in at least 10 patients in each of the following 

cohorts: neuroblastoma, osteosarcoma, rhabdomyosar-

coma, Ewing sarcoma, Hodgkin lymphoma, non-Hodgkin 

lymphoma, and melanoma. If sufficient activity is not seen 

in a cohort treated with nivolumab, then the activity of the 

combination of nivolumab and ipilimumab will be assessed 

Table 3 Ongoing trials of agents targeting the PD-1 or PD-L1 pathway for treatment of pediatric cancer

ClinicalTrials.gov 
identifier

Population Agent Other drugs Design Sponsor/comments

NCT02304458 Relapsed solid tumors Nivolumab +/−ipilimumab Phase i/ii COG
NCT02332668 Melanoma, PD-L1 positive 

solid tumors or lymphoma
Pembrolizumab – Phase i/ii 35 institutions

NCT02359565 Recurrent high-grade glioma Pembrolizumab – Phase i/ii PBTC
NCT02813135 Recurrent solid tumors Nivolumab Cyclophosphamide Basket trial european study
NCT02541604 Recurrent solid tumors Atezolizumab – Phase i/ii Hoffmann-LaRoche
NCT03006848 Recurrent osteosarcoma Avelumab – Phase ii St Jude

Abbreviations: COG, Children’s Oncology Group; PBTC, Pediatric Brain Tumor Consortium; PD-L1, programmed death-ligand 1; PD-1, programmed cell death-1.
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for that tumor type. This expansive trial includes many cor-

relative studies and should help better define the role of PD-1 

inhibition in treating pediatric tumors.

Other ongoing studies include a Pediatric Brain Tumor 

Consortium phase I/II study in which pembrolizumab is 

being evaluated for treatment of recurrent high-grade glioma 

or other hypermutated brain tumors (NCT02359565). Pem-

brolizumab is also being studied in a pediatric phase I/II 

trial as single-agent treatment for recurrent melanoma or 

PD-L1-positive tumors (NCT02332668). In addition, anti-

PD-1 antibodies are also being included in so-called “basket 

trials” for recurrent pediatric solid tumors, in which patients 

are stratified based on molecular characteristics of the 

tumor rather than the histiotype (NCT02813135). In regard 

to PD-L1 antibodies, a phase I/II study of atezolizumab is 

now open for patients ,30 years with recurrent solid tumors 

(NCT02541604), and a phase II study of avelumab is open 

for patients with recurrent osteosarcoma (NCT03006848).

Safety and response considerations
As opposed to the myelosuppression usually seen with 

conventional chemotherapy, the toxicity of anti-PD-1 anti-

bodies has often been immune-related such as pneumonitis, 

colitis, hepatitis, hypophysitis, and thyroiditis.16 In gen-

eral, the occurrence of these toxicities has correlated with 

antitumor effects, consistent with the mechanism of action 

of these agents. In the limited number of pediatric patients 

studied to date, the severity and scope of adverse events 

seem similar to adults. The development of pneumonitis and 

pleural effusions is of particular concern in pediatric sarcoma 

patients, who commonly have bulky lung or pleural metas-

tases that may be associated with effusions. Such patients 

being treated with anti-PD-1 antibodies should be monitored 

carefully, and be considered for drainage or other medical 

management that could include steroids.50

Another characteristic of PD-1-targeted therapy is the 

potential for the temporary increase in size of lesions as a 

consequence of therapy-related inflammation. This effect is 

termed pseudoprogression, and has led to the development 

of a modified response assessment system called immune-

related response criteria that are now used in trials of these 

agents.51 This revised system allows for more interval growth 

of tumor to occur before the determination of progressive 

disease is made, based on past observations of patients going 

on to have prolonged disease stability despite some initial 

growth of tumor. The concept of tumor pseudoprogression 

may have the greatest clinical implications in the treatment 

of brain tumors, as at least one death has now been reported 

in a pediatric patient with recurrent glioblastoma who was 

treated with nivolumab and developed fatal cerebral edema 

despite operative intervention.52

Combination therapies
Given the common tendency of cancers to develop resistance 

to monotherapies, it is likely that some patients may benefit 

only when PD-1 agents are combined with other drugs that 

may be synergistic. The only FDA-approved combination is 

nivolumab together with the CTLA-4 inhibitor ipilimumab 

for the treatment of metastatic melanoma. While this intui-

tively appealing strategy of double checkpoint inhibition 

increases the response rate and overall survival, the rate 

of grade 3–4 toxicity is also increased when compared to 

nivolumab alone,53 emphasizing that toxicity considerations 

will be important when planning combination therapies.

Some conventional chemotherapy drugs such as cyclo-

phosphamide, platinum analogs, and taxanes can elicit 

immunogenicity by recruiting immune cells to the microen-

vironment, stimulating natural killer-dependent antitumor 

immunity and T-cell responses, and disrupting immune 

suppressor mechanisms by depleting regulatory T-cells and 

myeloid-derived suppressor cells.54 These immunomodula-

tory effects may be optimized by using lower or more pro-

tracted dosing,55 and this strategy is being utilized in an 

ongoing pediatric study combining pembrolizumab with 

low-dose oral cyclophosphamide (NCT02813135).

The ability of radiotherapy to induce immune responses 

is only now beginning to be understood. Preclinical studies 

suggest that the combination of a PD-1 antibody with radia-

tion can be synergistic,56 and combination phase III studies 

are now underway for glioblastoma (NCT02617589) and 

lung cancer (NCT027768558). If this strategy is successful in 

adults, it is likely that pediatric trials combining radiotherapy 

and anti-PD-1 antibodies will soon follow. Other possible 

combinations include targeted agents such as dabrafenib 

or trametinib together with anti-PD-1 therapy,57 or even 

tumor vaccines58 or oncolytic viruses such as tailmogene 

laherparepvecm, which produces GM-CSF and is being 

evaluated together with pembrolizumab in a phase III trial 

for melanoma patients (NCT02263508).

Conclusions and future directions
The use of PD-1-targeted agents has revolutionized the 

treatment of certain adult cancers, generating excitement in 

part because some of the most responsive tumors have been 

previously refractory to conventional therapies. Still emerg-

ing is the identification of a reliable biomarker or panel of 
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characteristics that can allow appropriate patient selection. 

Available information to date suggests that PD-L1 expres-

sion on tumor cells, a strong lymphocytic presence in the 

tumor microenvironment, and an increased mutational 

burden are important but not yet definitive markers that 

suggest efficacy. These features are variably present in some 

high-risk pediatric tumors, and support further investigation 

of PD-1-targeted therapy. However, data from adult studies 

clearly show that the presence or absence of these putative 

biomarkers does not guarantee the success or failure of this 

therapeutic strategy. Although off-label use is tempting for 

patients with multiply recurrent tumors, caution should be 

taken in light of the still unproven benefit of these agents 

for pediatric cancers, and the potential for organ toxicity 

related to immune effects. Trials are underway, which will 

better define the role these drugs may play for treating 

pediatric cancers, either as single agents or in combination 

with chemotherapy, radiation, or other molecularly targeted 

or biologic therapies.
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