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Abstract: The co-inhibitory receptor programmed cell death (PD)-1, expressed by immune 

effector cells, is credited with a protective role for normal tissue during immune responses, by 

limiting the extent of effector activation. Its presently known ligands, programmed death ligands 

(PD-Ls) 1 and 2, are expressed by a variety of cells including cancer cells, suggesting a role 

for these molecules as an immune evasion mechanism. Blocking of the PD-1-PD-L signaling 

axis has recently been shown to be effective and was clinically approved in relapsed/refractory 

tumors such as malignant melanoma and lung cancer, but also classical Hodgkin’s lymphoma. 

A plethora of trials exploring PD-1 blockade in cancer are ongoing. Here, we review the role 

of PD-1 signaling in lymphoid malignancies, and the latest results of trials investigating PD-1 

or PD-L1 blocking agents in this group of diseases. Early phase studies proved very promising, 

leading to the clinical approval of a PD-1 blocking agent in Hodgkin’s lymphoma, and Phase III 

clinical studies are either planned or ongoing in most lymphoid malignancies.

Keywords: immune checkpoint blockade, programmed cell death 1, b7 antigens, hematological 

cancer, lymphoma, chronic lymphocytic leukemia

Background
Regulation of T-cell activation consists of two distinct signals. The primary signal 

is represented by a specific interaction between the T-cell receptor (TCR) and the 

antigen bound by the major histocompatibility complex molecule on the surface of the 

antigen presenting cells (APCs). The second signal is mediated through co-stimulation 

of lymphocyte receptor CD28 by B7 ligands (CD80, CD86) induced on the APC by 

pathogens, playing an important role in T-cell activation and tolerance. However,  

co-inhibitory signaling can limit activation and suppress effector T-cell actions and is 

as such credited with a protective role, by limiting immune damage to healthy tissue 

and inducing tolerance. Molecules such as cytotoxic T lymphocyte associated protein 4 

(CTLA-4), programmed cell death 1 (PD-1) and its ligands, programmed death-ligand 

(PD-L) 1 and 2, are members of the B7/CD28 ligand–receptor family and represent 

the most investigated inhibitory immune checkpoints at present.1

The PD-1 (CD279) receptor is a transmembrane protein of the immunoglobulin 

superfamily and was first identified and characterized in 1992 in mice.2,3 It is a  

co-inhibitory receptor found on the surface of T cells, B cells, monocytes, and acti-

vated natural killer cells.4 The receptor interacts with its two ligands, PD-L1 (B7-H1, 

CD274) and PD-L2 (B7-DC, CD273)5,6 expressed by APCs, PD-L1 being regarded 

as the main mediator of PD-1 dependent immunosuppression.7 This ligand is consti-

tutively expressed on T cells, B cells, macrophages, and dendritic cells, as well as 

nonimmune cells, such as endothelial cells, β pancreatic cells, glial cells, epithelial 
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cells, and muscle fibers.8–10 In contrast to PD-L1, PD-L2 has a 

more narrow expression profile, restricted to APC and helper 

T cells, but an affinity approximately two to sixfold higher, 

hence the possibility of competition between ligands for the 

binding of the receptor.5,11,12 Also, the mechanism of action 

of the two ligands differs: PD-L1 binds to both PD-1 and 

CD80, whereas PD-L2 interacts directly with PD-1.6

The PD-1-PD-L pathway downregulates the immune 

response to maintain a balance between T cell activation 

and healthy tissue destruction, thus preserving peripheral 

tolerance (Figure 1).13–15 T cell activation is followed by 

upregulation of PD-1 and production of cytokines, such as 

interferon (IFN)-γ and interleukin (IL)-4. These cytokines 

upregulate PD-L1 expression through a positive feedback 

mechanism, having a role in preventing autoimmunity and 

tissue destruction.16,17 In case of an inadequate immune 

response, prolonged antigen stimulation causes PD-1 upregu-

lation and T cell exhaustion. The critical role of downregu-

lation of the immune system through PD-1 stimulation has 

been demonstrated in a series of studies on chronic viral 

infections such as HIV, hepatitis B and hepatitis C, whereas 

CD8+ T cells have impaired proliferation responses and 

cytokine production, and are often described as exhausted 

T cells.18–20 In these cases there is a persistent T cell activa-

tion with PD-1 upregulation and, consecutively, PD-1-PD-L1 

pathway stimulation, resulting in inactive T cells, infection 

persistence and a minimized immune aggressive effect on 

healthy tissues.21

Role of PD-1-PD-L pathway in cancer
Involvement of the PD-1-PD-L pathway in cancer has been 

demonstrated in a broad variety of solid malignancies, such 

as breast cancer, colon carcinoma, lung cancer, renal cell 

cancer, melanoma, ovarian cancer, bladder cancer, pancreatic 

cancer, and various hematologic malignancies.7,22–26 PD-1 

levels are considerably upregulated on tumor-infiltrating 

lymphocytes (TILs) in comparison to peripheral blood or 

healthy tissues infiltrating T cells, and consecutively TILs 

exert an impaired antitumor activity.5,27–30 Compared to PD-1− 

lymphocytes, PD-1+ TILs exhibit an “exhausted” phenotype, 

through decreased TCR signaling, defective calcium flux and 

diminished cytokine production including IL-2, IFN-γ, and 

TNFα.28,29,31–34 PD-L1 expression is encountered in a large 

variety of tumors as well: lung, breast, colon, skin, ovarian, 

Figure 1 PD-1- PD-L1 axis blockade in cancer. 
Notes: Signaling through PD-1 induces T cell anergy, with the physiological role of protecting from autoimmune damage. This mechanism is exploited by tumor cells 
expressing PD-1 ligands to escape immunity by suppressing host antitumor T cell responses (left). PD-1 or PD-L1 blocking antibodies have the capability to restore cytotoxic 
T cell functions including iFN-y and perforin production, which can lead to impressive antitumor responses (right).
Abbreviations: PD, programmed cell death; PD-L1, programmed cell death receptor ligand-1.
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gastric, pancreatic cancers, and different types of hematologic 

malignancies.17,35–38 The ligand is upregulated at the surface 

of cancer cells, intratumoral macrophages and APCs from the 

surrounding tumor microenvironment. PD-L1 appears to act 

as an antiapoptotic factor in cancer cells, as its expression is 

strongly associated with in vivo tumorigenesis and invasion, 

and in vitro resistance to T cell mediated lysis.1,39 The ligand 

upregulation is triggered by proinflammatory cytokines such 

as IFN-γ produced by lymphocytes present in the tumor 

microenvironment.38 Therefore, activation of the PD-1-

PD-L1 immune checkpoint pathway in cancer represents 

an adaptive mechanism of resistance used by cancer cells 

against TILs, suggesting the presence, yet exhaustion of an 

antitumor T-cell immune response.

In vitro studies have demonstrated that blockade of 

PD-1 or PD-L1 using monoclonal antibodies restored T cell 

cytotoxic capacity and IFN-γ production (Figure 1).1,40 

 Subsequently, clinical studies have confirmed these findings, 

with PD-1 and PD-L1 blocking antibodies being successful at 

present and having been recently approved by the US Food 

and Drug Administration for the treatment of metastatic 

melanoma, nonsmall cell lung cancer, renal cell and urothelial 

carcinoma, head and neck cancer, and classical Hodgkin’s 

lymphoma (cHL) (Table 1).

Potential biomarkers for the efficacy of 
PD-1–PD-L blockade
PD-L1 and/or PD-1 expression were actively investigated as 

potential biomarkers to predict the efficacy of PD-1-PD-L1 

axis blockade. Initial studies and preclinical data in solid 

tumors have found a correlation between PD-L1 expres-

sion and clinical benefits of PD-1 blockade, suggesting that 

the ligand might be a promising biomarker, with a better 

association to the treatment response in comparison with 

PD-1 expression.41 A strong correlation between PD-L1+ 

expression in malignant cells and the response to PD-1 

blockers has been demonstrated in lung cancer,42 but also 

in melanoma,43 breast cancer,44 hepatocellular carcinoma,45 

and colorectal cancer,46 whereas in renal cell carcinoma and 

urothelial carcinoma PD-L1+ infiltrating cells correlate best 

with response to anti-PD-L1 antibodies.47–49

Some of the difficulties encountered in PD-L1 evalua-

tion were the limited tumoral tissue availability, the tissue 

heterogeneity, and the markers’ dynamic, the expression of 

which is influenced by infections, malignancies, and treatment. 

Although early phase studies in advanced solid cancers such 

as melanoma, lung cancer, colorectal cancer, renal-cell cancer, 

and prostate cancer demonstrated clinical benefits in PD-L1+ 

tumors and none in PD-L1− cohorts,1,7,50 a recent Phase III 

randomized trial of nivolumab, an anti-PD-1 human IgG4 

monoclonal antibody, in melanoma showed improved survival 

in all subgroups, regardless of the levels of PD-L1 expression, 

but objective response rates (ORRs) were significantly higher 

in the PD-L1+ subgroup (52.7%) than in the PD-L1− one 

(33.1%).51 Nevertheless, even patients with tumors lacking 

PD-L1 expression can benefit from anti-PD-1 therapy, prob-

ably due to tumor microenvironment responsiveness.1,49,52 

Therefore, a lack of PD-L1 expression is not an appropriate 

biomarker for patient exclusion, with PD-L1 status being rather 

appropriate for stratification into groups that would benefit 

from anti-PD-1 monotherapy and groups that are in need of 

combination therapy in order to achieve a better response.52 

However, the recent approval by the US Food and Drug 

Administration (FDA) of anti PD-1 agent pembrolizumab for 

nonsmall cell lung cancer is conditional on the demonstration 

of tumor PD-L1 expression by an FDA-approved test.

The differences between data obtained in various clinical 

trials may be attributed to different cutoff values for PD-L1 

expression varying in different trials from as low as 1%53 to 

the more frequently used 5%,54,55 and even as high as 50% of 

tumor cells.53 Uniformization and standardization of PD-L1 

expression assessment, including the positive cutoff value, 

Table 1 US Food and Drug Administration-approved PD-1 checkpoint blockers

Drug Activity Approved for Observations

Nivolumab Anti-PD-1 human igG4 mAb Metastatic melanoma Single or in combination with ipilimumab
Classical Hodgkin’s lymphoma After ASCT and brentuximab vedotin failure
Nonsmall cell lung cancer Progression after platinum and/or other agents
Renal cell carcinoma After prior anti-angiogenic therapy

Pembrolizumab Anti-PD-1 humanized igG1 mAb Melanoma (unresectable/metastatic)
Nonsmall cell lung cancer Approval restricted to PD-L1 expressing tumors
Head and neck squamous cell 
carcinoma

Progression after or on platinum-containing 
treatment

Atezolizumab Anti-PD-L1 humanized igG1 mAb Metastatic nonsmall cell lung cancer Progression after platinum and/or other agents
Urothelial cancer Metastatic or locally advanced

Abbreviations: ASCT, autologous stem cell transplantation; PD-1, programmed cell death receptor 1; PD-L1, programmed cell death receptor ligand 1.
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the selective staining of tumor cells or infiltrating immune 

cells and the types of antibody used, is of major significance 

for future trials. A sensitivity analysis of 20 trials of PD-1 

axis blockers’ efficacy according to PD-L1 expression in 

solid tumors which used thresholds of 1% and 5% ligand 

expression by immunostaining, underscored the above 

shortcomings and concluded that a cutoff of 5% should be 

used for PD-L1 expression assessment.56

The mechanism of anti-PD-1 therapy action differs 

between solid tumors and hematologic malignancies. PD-1 

evaluation as a prognostic marker in lymphoid malignancies 

has yielded variable results. While in Hodgkin’s lymphoma, 

PD-1 expression correlated with overall survival (OS) being 

a stage-independent negative prognostic factor,57,58 the same 

receptor expressed by TILs represents a positive prognostic 

marker for progression-free survival (PFS) and OS in cases 

of follicular lymphomas.59

Besides surface expression of PD-1 and its ligands, 

other biomarkers have been evaluated to predict efficacy 

of the PD-1 signaling blockade. These include the presence 

of soluble PD-L1 (sPD-L1) in patients’ sera,60,61 the ratio of 

immune cells subtypes in the tumor microenvironment,62,63 

and immune gene expression signature.64 Specific biomarkers 

of PD-1 axis blockade investigated in lymphoproliferative 

disease will be discussed in the respective sections below.

PD-1-PD-L1 pathway blockade in 
hematological malignancies
Hematological cancers have, too, developed diverse strate-

gies of evading the immune system. Since the impressive 

effect of PD-1 blockade has been proven, PD-1 or PD-L1 

targeted antibodies are being investigated for the treatment 

of various types of hematological malignancies. The use of 

immune checkpoint blockade in these pathologies is limited, 

but has shown clinical benefit in relapsed or refractory disease 

settings.3 Markers of the PD-1 pathway, evaluated by immu-

nohistochemistry or flow cytometry, have been confirmed 

in hematologic diseases such as multiple myeloma (MM), 

acute myeloid leukemia, and Hodgkin and non-Hodgkin 

lymphomas (NHL).57,65 Of the NHLs, PD-1 and ligands 

expression has been confirmed in chronic lymphocytic 

leukemia (CLL),66 follicular lymphoma (FL), diffuse large 

B-cell lymphoma (DLBCL), primary mediastinal large B-cell 

lymphoma (PMBL), anaplastic large-cell lymphoma, and 

angioimmunoblastic T-cell lymphoma (AITL).57,67–69

The timing of PD-1 blockade initiation is crucial and there 

are several temporal aspects under consideration in the opti-

mization of treatment outcome. First, initiation of anti-PD-1 

antibody treatment prior to chemotherapy may enhance 

antitumor immune responses offering a better support for 

subsequent treatment. Second, use of immune checkpoint 

blockade concomitantly with classical chemotherapy could 

enhance the antitumor response by creating a tumor antigen-

rich environment consecutive to cell lysis, which can further 

stimulate the immune system. Finally, a third option would 

be the administration of PD-1 blockers after the cytotoxic 

treatment, boosting the antitumor response during a period of 

immune reconstitution subsequent to chemotherapy-induced 

myelosuppression.57 Also, chemotherapy induces PD-1 

expression on immune cells, favoring the immune checkpoint 

blockade being administered postcytotoxic treatment.21,70,71 

Based on this reasoning, anti-PD-1 therapy could be applied 

either before autologous/allogeneic stem cells transplanta-

tion (ASCT), or to target residual disease after transplanta-

tion, when PD-1 pathways may serve as a tumor survival 

mechanism.52,72,73

The response to PD-1 blockade varies significantly 

between different types of lymphoma, due to the diverse 

mechanisms responsible for the expression of co-inhibitory 

molecules, and no definitive correlations have been yet 

established. PD-L1 is an inducible molecule that can be 

stimulated by viral infections, TILs, or genetic changes 

within the tumor.69,74 Also, high levels of sPD-L1 may be 

secreted by tumor-infiltrating cells following proinflamma-

tory cytokine stimulation.36

While in solid tumors PD-L1 is highly expressed on 

cancer cells but minimally expressed in the surrounding 

normal tissue,22 in up to 73% of T-cell NHL subtypes PD-L1 

expression is more prevalent on tumor-infiltrating cells 

as compared to malignant cells, contributing to immune 

suppression.75,76

DLBCL cells employ multiple mechanisms for the 

upregulation of PD-1 and its ligands, occasionally present on 

the same tumor cell, in contrast to FL, where PD-1 is highly 

expressed in the microenvironment, highlighting different 

immune evasion strategies.62,68,77,78

Strong PD-L1 expression in DLBCL tumor cells is signif-

icantly associated with Epstein–Barr virus (EBV) infection, 

and is higher in activated B cell-like than in germinal center 

B cell-like phenotypes. The levels of PD-1+ TIL correlated 

positively with the level of PD-L1 expression in tumor cells 

or macrophages.79

Similar to HL, where EBV latent membrane protein 1 

(LMP-1) increases PD-L1 promoter activity, PD-L1 expres-

sion in DLBCL may be upregulated by EBV infection.80,81 

Similar to genetic aberrations encountered in HL, several 
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gene expression profiling studies demonstrated the presence 

of gains/amplifications of a region of chromosome 9p24 

in ~70% of PMBL cases, leading to a high expression of 

PD-L1 and 2, which distinguishes PMBL from other types of 

DLBCL and could serve as a molecular diagnostic tool.82–84

Primary central nervous system lymphomas (PCNSLs) 

and primary testicular lymphomas have also been shown to 

exhibit 9p24.1 copy gain and chromosomal translocation of 

PD-L1/PD-L2, as well as EBV-mediated upregulation of the 

ligands in PCNSL.85

An association between viral infections and PD-L1 

expression was also observed in other lymphoid malignan-

cies. Studies on EBV-positive natural killer/T-cell lym-

phoma found a high expression of PD-L1 in lymphoma 

cells, upregulated by LMP1 through the MAPK/NF-κB 

pathway. High PD-L1 expression (.38%) and serum 

sPD-L1 levels $3.4 ng/mL were interpreted as independent 

prognostic factors for lower complete remission (CR) rates, 

PFS, and OS.86 Also, in extranodal NK/T-cell lymphoma 

(ENKTL) treated with asparaginase, high posttreatment 

sPD-L1 level (.1.12 ng/mL) was demonstrated to be a 

predictive biomarker for early relapse and poor prognosis 

and also a marker of minimal residual disease.87 However,  

results from another study show that high PD-L1 expression 

in advanced stages of EBV+ ENKTL correlates with improves 

OS,88 further studies being warranted to establish the prognos-

tic value of PD-L1 expression in these cases. In adult T-cell 

leukemia/lymphoma (ATLL), HTLV-1 bZIP factor expressed 

by HTLV-1 infected cells upregulates PD-1 expression on 

both neoplastic and normal CD4+ T cells, but impedes its 

suppressive signals by inhibiting co-localization of PD-1 and 

tyrosine phosphatase (SHP-2), favoring the proliferation of 

infected cells and immune suppression.89,90 Both asymptom-

atic HTLV-1 carriers and ATLL patients express high PD-1 

levels on HTLV-1-specific cytotoxic T cells, with elevated 

levels in patients with EBV and CMV co-infection. PD-L1 

expression was only identified in ATLL cells of the patients 

and administration of an anti-PD-L1 or anti-PD-1 antibody 

stimulated HTLV+ CD8+ T cell immune response.91,92

In the next sections, we review results of PD-1 blockade 

studies in lymphoproliferative diseases, the most relevant 

clinical trial efficacy reports being summarized in Table 2.

Hodgkin’s lymphoma
Hodgkin’s lymphoma (HL) is an ideal candidate for anti-PD-1 

therapy, because of its particular histological structure, which 

involves a rather small number of primary tumor-associated 

CD-30+ Reed Sternberg or Hodgkin cells surrounded by a 

granuloma-like, immune cell-rich environment. A viral or 

genetic-induced PD-L1 overexpression by Reed Sternberg 

malignant cells was also described.93 Thus, not surprisingly, 

of the several clinical studies evaluating PD-1 blockade 

efficiency in hematologic malignancies, the most promising 

results have been recorded for patients with cHL. Consecu-

tively, cHL is the first hematologic malignancy in which an 

anti-PD-1 agent, nivolumab, has been approved, in early 

2016, as salvage therapy after prior ASCT and brentuximab. 

The breakthrough therapy designation by the FDA is based  

on results of a Phase I (CheckMate-039)93 and a Phase II 

(Checkmate-205)94,95 trial (Table 2).

The PD-L1 gene has been identified in HL and is located 

on the short arm of chromosome 9p24. Amplification 

of genetic material in the 9p24 region is associated with 

PD-1 ligand overexpression in nodular sclerosis HL and 

also PMBL: mostly PD-L1 in HL and PD-L2 in PMBL. 

Amplification of this region also results in amplification 

of JAK2, which through JAK2-STAT signaling further 

stimulates PD-1 ligand overexpression.66,83 Immune cells 

surrounding Reed Sternberg cells include PD-1+ T-cells, 

whose function and IFN-γ production can be stimulated 

by immune checkpoint blockade.38,65 Epstein–Barr infec-

tion, commonly associated with HL, is another mechanism 

involved in PD-L1 upregulation,80 viral infections being 

known as able to exploit the PD-1-PD-L pathway in order 

to induce immune tolerance.40,52

Chronic lymphocytic leukemia
CLL is the most frequent B cell malignancy, characterized 

by an increased proliferation and accumulation of mono-

clonal CD5+ CD19+ B cells in the bone marrow, lymphoid 

organs, and peripheral blood, promoting a tumor microen-

vironment which dampens the immune response and favors 

malignant cell proliferation and treatment resistance.96,97 

Recent studies described a functional impairment in the T-cell 

compartment (both CD4+ and CD8+) reflected by alterations 

of their number, function and memory, as a consequence of 

interaction with leukemic cells.37,98 T-cells are found in a 

state of chronic activation and have the tendency to accumu-

late, presenting an inversion of the normal CD4:CD8 ratio, 

higher levels of CD8+ T cells being associated with a more 

aggressive disease.99

The PD-1–PD-L1 axis has been shown to be involved 

in CLL pathogenesis. Immunohistochemistry and immu-

nofluorescence assays of PD-1 and PD-L1 expression in 

lymph nodes of CLL patients demonstrated the presence of 

PD1+ CD4+ T cells and PD-L1+ CD23+ B cells.37 Both T cells 
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PD-1–PD-L blockade in lymphoid malignancy
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and leukemic cells are present in lymph nodes proliferation 

centers, suggesting their probable interaction and involve-

ment in CLL pathogenesis.

A study on the effects of early in vivo PD-L1 blockade in 

a mouse model of CLL showed that administration of anti-

PD-L1 antibodies prevented disease progression. Decreased 

spleen sizes were observed, as well as changes in the tumor 

load and peripheral blood lymphocytosis. PD-L1 blockade 

prevented CD8:CD4 ratio inversion, T cell exhaustion, and 

determined increased CD8 cytotoxicity, growth fraction, 

in vivo proliferation, and CD8 synapse formation.100–102

PD-1 expression is found on CD4+ and CD8+ T cells, their 

proliferation being associated with a negative prognosis,99 

while PD-L1 expression on leukemic cells and mononuclear 

cells in peripheral blood and bone marrow is higher in CLL 

patients than in healthy controls.66,103 Apparently, ligand 

expression does not correlate with age, sex, LDH levels, 

white blood cell count or disease stage.66 However, PD-L1 

significantly correlates with PD-1, TIL number, and IFN-γ 

levels, PD-1–PD-L1 interaction suppressing intratumoral 

cytokine production, and ligand blockade stimulating IFN-γ 

secretion through a negative feedback mechanism.66,76

Rusak et al reported that patients with advanced stage CLL 

have a considerably increased number of PD1+ CD4+ T cells in 

the peripheral blood compared to patients with incipient stages 

of the disease.104 Also, patients with lower levels of these 

lymphocytes achieved CR more frequently through PD-1 

blockade, suggesting that the number of PD1+ CD4+ T cells 

correlates with the response obtained with this immunother-

apy approach. These findings suggest that quantitative flow 

cytometric evaluation of PD1+ CD4+ T cells could be used for 

prognostic purposes in newly diagnosed patients.104

Non-Hodgkin lymphoma
PD-1-PD-L blockade is under investigation in various 

types of NHL, based on evidence of frequent expression of 

PD-1, PD-L1, and PD-L2 in lymphoid malignancies. Cancer 

cells drive changes in the host immune response to generate 

unique microenvironments that promote cancer cell growth. 

The PD-1-PD-L1 interaction represents an important cause 

of lymphoma induced T-cell defects, causing changes in 

T-cell subsets, their effector function, expression of surface 

molecules, and gene expression profiles. Studies on FL and 

DLBCL found overexpression of 25 immune escape genes 

including the ones involved in PD-1–PD-L and CTLA-4 inhib-

itory axis, the LAG3 and TIM3/galectin T-cell exhaustion  

axis.68 Expression of these genes and proteins is considerably 

higher in DLBCL than in FL. Detectable circulating soluble 

PD-L1 was reported in DLBCL, and was associated with T
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a poor prognosis.105 In a Phase I study of the anti-PD-1 

nivolumab in patients with relapsed or refractory T and 

B-cell lymphomas ORR were 40% in patients with FL, 

36% in DLBCL, 15% in mycosis fungoides (MF) and 40% 

in peripheral T-cell lymphoma (PTCL). In the same study 

it was discovered that malignant cells from MF expressed 

high levels of PD-L2 and fluorescence in situ hybridization 

assays revealed chromosomal rearrangements (disomy 9p, 

polysomy 9p, and PD-L2 translocation), responsible for the 

ligand overexpression.25 Results of clinical trials of PD-1 axis 

blockade in NHL are summarized in Table 2.

Diffuse large B-cell lymphoma
PD-L1 is highly expressed by DLBCL (.60% of cases), as 

compared to other solid tumors, such as melanoma (30%) or 

nonsmall cell lung cancer (25%–36%).68 PD-L1 expression 

by lymphoma cells is considered an independent factor for 

the OS, being associated with a poor prognosis. The number 

of PD-1+ TILs is associated with PD-L1+ lymphoma cells and 

PD-L1+ stromal cells, suggesting a role for the PD-1–PD-L1 

pathway in the tumor microenvironment.78

Pidilizumab, a humanized IgG1 monoclonal antibody, 

was initially developed as an anti-PD-1 antibody and was 

the first one to be evaluated in lymphoid malignancies. 

Phases I and II studies in DLBCL and FL showed promis-

ing results, prompting the development of further anti-PD-1 

antibodies.100 A multicenter Phase II clinical trial where 

pidilizumab was administered to patients with relapsed or 

refractory DLBCL after ASCT reported a 16 month PFS of 

72%. The reported overall response rate among patients with 

measurable disease after ASCT was 51%, including 34% CRs 

and 17% partial remissions.73 The PFS after posttransplant 

pidilizumab administration of 72% compares favorably to 

the PFS of 52% obtained after ASCT alone, in a cohort of 

autografted patients with chemosensitive DLBCL.52,73 Inter-

estingly, by the end of 2015, the manufacturer of pidilizumab 

announced that the drug was no longer to be regarded as a 

PD-1 inhibitor. However, trials of pidilizumab in lymphoma 

yielded encouraging results and will go on, despite the 

mechanisms of the immune regulatory action of the drug 

not being precisely known.

Quan et al evaluated the efficacy of PD-1 blockade 

in Epstein–Barr virus (EBV)-associated DLBCL (EBV+ 

DLBCL), an aggressive lymphoma, highly resistant to cur-

rent treatments and a potential target for immunotherapy. The 

number of effector/memory PD-1+ T cells is more elevated in 

the lymph nodes than in the peripheral blood, suggesting the 

immune suppressive effect of the tumor microenvironment 

in DLBCL. CD8+ PD-1+ and CD4+ PD-1+ T cells also 

expressed CTLA-4, marker of T cell exhaustion. Lymphoma 

cells upregulate PD-1 expression on T cells and inhibit their 

proliferation and secretion of IL-2, IFN-γ, tumor necrosis 

factor-α (TNF-α) and IL-10. PD-1 blockade reversed these 

effects, increasing T-cell proliferation and cytokine secre-

tion. Also, it was shown in vitro that PD-1 blockade is more 

potent in EBV+ than in EBV− DLBCL.81 A French multicenter 

randomized trial in DLBCL patients receiving standard 

chemoimmunotherapy versus high-dose therapy revealed that 

levels of sPD-L1, with a cutoff of 1.52 ng/mL, had negative 

predictive value for OS, elevated levels being significantly 

correlated with a poorer prognosis in the standard chemoim-

munotherapy arm, and suggesting a potential benefit of PD-1 

axis blocking therapy in these patients.105

Follicular lymphoma
FL is a hematologic malignancy characterized by an indolent 

heterogeneous evolution, relapses alternating with remissions 

and a 7–10 years median survival. In 10%–15% of the cases 

it behaves aggressively or transforms to DLBCL, leading to 

poor treatment response and short survival.59 Gene expres-

sion profile and immunophenotyping of nonmalignant cells 

from FL have highlighted the involvement of the microen-

vironment in the clinical evolution and treatment response.59 

Unlike CLL, where T cell defects also appear in the peripheral 

blood, in FL T cells are impaired only in the lymph nodes.

There is controversial evidence regarding PD-1 expres-

sion and its prognostic value in FL. Muenst et al showed 

that grade 1 FL has a higher number of PD-1+ TILs than 

secondary DLBCL derived from FL. Also, PD-1+ TILs may 

influence tumor behavior in FL and secondary DLBCL aris-

ing from FL, being associated with improved disease specific 

survival in these entities.106

Carreras et al concluded that increased numbers of 

CD4+ and CD8+ lymphocytes are favorable prognostic 

markers. PD-1+ cells and T
regs

 are localized in the tumoral 

follicular compartment, playing a role in inhibition of T cell 

activation and immunomodulation of the microenvironment. 

PD-1+ TILs are an independent prognostic marker of survival 

in patients with FL and their number decreases with trans-

formation to DLBCL.59 In a study on 70 FL patients selected 

for either very good or very poor outcome, CD4+ follicular 

cells were associated with poor outcome, whereas PD-1+ 

follicular cells and CD8+ interfollicular cells were associated 

with a good outcome. As far as tumor-microenvironment 

cell ratios were concerned, high CD4/CD8 and CD4 

follicular/interfollicular ratios appeared to be markers of 

poor outcome.62 A study conducted by Myklebust et al 

showed that PD-L1 expression is present in histocytes,  
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in T cell-rich areas between the follicles, playing an inhibitory 

role in T-cell activation.77 High numbers of tissue-infiltrating 

macrophages were associated with unfavorable evolution 

and TILs from FL have an impaired activity, probably medi-

ated by the malignant B cells of the lymphoma. Follicular 

localization of T
regs

 correlated with poor clinical outcome 

and increased risk of transformation.77

FL microenvironment includes a variety of T-cell subsets 

that express PD-1: antitumor effector T cells (helper CD4+ T  

and cytotoxic CD8+ T cells), protumoral follicular helper 

T cells (T
FH

) and follicular regulatory T cells, with a role 

in suppressing lymphoma cells and T
FH

.107 T
FH

 are localized 

in intrafollicular regions and highly express PD-1, whereas 

exhausted T cells reside in interfollicular areas and express 

low levels of PD-1.108 Therefore, inconsistency regarding the 

prognostic value of PD-1+ T cells in FL is probably caused 

by the multiple types of cells expressing PD-1 receptor 

and by the effects of the PD-1 blockade on every subset.107 

Patients with higher numbers of PD-1+ effector T cells may 

have a positive response at anti-PD-1 antibody administra-

tion, whereas patients with higher numbers of PD-1+ T
FH

 

may have no response or develop disease progression after 

PD-1 blockade.109

Reported clinical trial results showed promising results 

for nivolumab in R/R FL, albeit not as good as in cHL 

(Table 2).

Cutaneous T-cell lymphoma (CTCL)/
mycosis fungoides
PD-1 is frequently expressed in the early stages of CTCL, 

where .25% of atypical lymphocytes express the receptor. 

PD-1 expression diminishes in the tumor stage of the lym-

phoma and in cases of large cell transformation. PD-L1 is 

expressed by the majority of atypical lymphocytes during 

all stages of lymphoma evolution and increases with disease 

progression and large cell transformation.110 Therefore, 

administration of anti-PD-1 antibodies may restore the 

immune function of the lymphocytes and could be used 

in the early stages of CTCL, when PD-1 expression is the 

most pronounced. In more advanced stages when PD-L1 

is highly expressed and the lymphoma is more aggressive, 

administration of anti-PD-L1 antibodies should improve the 

antitumor immunity.110

Peripheral T-cell lymphoma
PTCLs are malignancies derived from postthymic T-cells. 

The most common types include AITL and PTCL, not 

otherwise specified (NOS). Both AITL and PTCL are 

characterized by atypical lymphocytes in the paracortical 

zones of the lymph nodes. Results from a study on PD-1 

expression in PTCL demonstrated that extrafollicular expan-

sion of PD-1+ T cells was encountered in 93% of the AITL 

cases and 62% of PTCL.111

In another study all cases of AITL showed reactiv-

ity for PD-1, which is expressed on the cell surface and 

in the cytoplasm of neoplastic CD4+ T cells. In reactive 

lymph nodes, PD-1 expression is mainly localized in the  

germinal centers, similar to another marker encountered in 

AITL, CXCL13, a chemokine that distinguishes AITL from 

PTCL.67 However, studies showed that PD-1 can serve as a 

sensible, but not specific marker for the diagnosis of AITL 

and PTCL-NOS, because a similar abnormal PD-1 staining 

pattern is observed in nonmalignant diseases such as viral 

lymphadenitis, highlighting the importance of differential 

diagnosis in these situations.111,112

Multiple myeloma
MM, an incurable B cell malignancy, is a monoclonal 

gammopathy characterized by neoplastic proliferation of 

plasma cells and their accumulation in the bone marrow, 

causing bone marrow failure, anemia, and osteolytic bone 

lesions with secondary hypercalcemia. Excessive production 

of monoclonal protein leads to predisposition to infection 

and systemic amyloidosis with organ failure (renal, heart, 

liver, and nervous system).113 The disease mainly affects the 

elderly and has a median survival of 4–5 years.114

CD138+ malignant plasma cells and tumor microen-

vironment cells such as myeloid-derived suppressor cells 

have an increased expression of PD-L1 compared with 

normal plasma cells, in which expression of this ligand is 

insignificant.115–118 PD-L1+ plasma cells levels do not correlate 

with tumor burden, suggesting that the ligand expression 

is also influenced by factors from the microenvironment. 

Indeed, populations of dendritic cells accumulate in the bone 

marrow, express PD-L1 and affect T cell antitumor activity.119 

Stromal cells upregulate PD-L1 levels on myeloma cells, 

stimulate their proliferation, and dampen the response 

to chemotherapy, accelerated disease progression being 

observed in patients with high PD-L1 expression.114,120

Myeloma cells accumulate and exert their action in the 

bone marrow. Their local immunosuppressive effect leads 

to the presence of a PD-1+ T cell population with higher 

dysfunction compared to circulating T cells, as shown in 

preclinical studies.23,116,121 PD-1 expression is also elevated 

on natural killer cells from myeloma patients compared to 

healthy controls.122 Direct interaction between the ligand 
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present on myeloma cells and the receptor expressed by T and 

natural killer cells inhibits the antitumor immune response 

and contributes to chemotherapy resistance, while admin-

istration of an anti-PD-1 antibody stimulates lymphocyte 

cytolytic activity against malignant cells and reduces the 

tumor growth induced by stromal cells.122–124

In myeloma patients’ serum, high concentrations of 

soluble PD-L1 were identified and this fraction might also 

interact with PD-1, contributing to the immune suppression. 

Correlations between soluble PD-L1, disease aggressiveness, 

and poorer responses to treatment have been established. 

A value over 2.78 ng/mL was proposed as an independent 

prognosis factor for a shorter PFS.123

Administration of anti-PD-L1 antibodies after chemo-

therapy overthrows tumor-induced immunosuppression 

and restores lymphocyte production of IFN-γ consecutive to 

tumor antigen stimulation. When both CD4+ and CD8+ T cells 

were reactivated, PD-L1 blockade determined successful 

myeloma eradication in preclinical studies.125,126

Conclusion
Like with other cancers, immune checkpoint blockade 

inhibitors are a promising immunotherapeutic option in 

hematologic malignancies, and PD-1-PD-L1 axis blockers 

are the most investigated candidates to date. While there 

are over 600 ongoing clinical trials of PD-1-PD-L axis 

blockade in oncology, only a small proportion of these are 

investigating hematologic cancers. Nevertheless, results in 

hematologic malignancies are extremely promising, and 

the US FDA granted accelerated approval for nivolumab in 

cHL in 2016. Fuelled by these results, the number of clini-

cal trials is increasing at a high rate, and many drugs in this 

class are currently under development. With more early trial 

results published at this high rate, we expect that immune 

checkpoint blockade will soon become an integral and well 

represented target, and feature as part of the management of 

hematologic malignancy.
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