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Abstract: Amyloid-β peptide (Aβ) toxicity in Alzheimer’s disease (AD) is associated with 

the c-Jun N-terminal kinase (JNK) signaling pathway. Curcumin may prevent Aβ fiber forma-

tion, slowing AD progression. A model of AD was established in 32 Sprague Dawley rats by 

injection of 10 μg Aβ
1–40

 into the right hippocampus. Saline was used in sham control (n=16). 

Sixteen AD model rats received 300 mg/kg curcumin and another 16 received saline daily for 

7 days. Spatial learning and memory were assessed using a Morris water maze. Hippocampus 

neuron apoptosis and hippocampal levels of JNK-3 and p-JNK-3 were assessed by terminal 

 deoxynucleotidyl transferase dUTP nick end labeling, reverse transcription-polymerase chain 

reaction and Western blotting. Aβ
1–40

 injection induced slower spatial learning, memory deficit, 

neuronal apoptosis and increased JNK-3 expression and phosphorylation (all P<0.05). Curcumin 

relieved spatial learning and memory deficits, hippocampus neuronal apoptosis, and reduced 

JNK-3 and p-JNK-3 levels (all P<0.05). In conclusion, curcumin may inhibit JNK-3 phosphory-

lation to protect against hippocampal neuron apoptosis after Aβ injection.
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Introduction
Alzheimer’s disease (AD) is the most common type of dementia seen in patients world-

wide; in China, in those aged over 60, AD has a prevalence of 1.9%.1 AD has an even 

higher prevalence in western countries, with >5 million people affected in the USA, 

and this is expected to rise in future.2 AD is a neurodegenerative disease characterized 

by the deposition of senile plaques in the brain, a pathogenesis that probably starts 

years before the symptoms of AD develop.3 Senile plaques are mainly composed of 

diverse amyloid-β peptides (Aβ).4 The pathologic process of AD is complicated. Aβ 

neurotoxicity is thought to be an important reason for the pathologic development of 

AD, leading to neuronal degeneration and ultimately dementia.5 Wide deposition of Aβ 

in the brain could cause neurotoxicity through the induction of oxygen free radicals, cell 

apoptosis, inflammation and calcium overload.6 It has been suggested that the toxicity 

of Aβ is associated with the c-Jun N-terminal kinase (JNK) pathway.7,8 Cell apoptosis 

needs extracellular signals to be transmitted to the nucleus, for which the JNK pathway 

is suggested to be critical.9 The JNK signaling pathway is one of the important path-

ways of the mitogen-activated protein kinase (MAPK) family. The activation of JNK 

pathway is closely related to cell apoptosis; it can mediate cytokines, protein synthesis 

inhibitors and osmotic stress.10 The JNK pathway could be activated by various factors 
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such as reactive oxygen species, ischemia/reperfusion and 

inflammation. The JNK subfamily are members of MAPK, 

they are constitutive serine/threonine protein kinases. There 

are three genes encoding JNK in vertebrates, JNK1, JNK2 

and JNK3.11 JNK1 and JNK2 are widely expressed and JNK3 

is specifically expressed in the brain.

Curcumin is a major ingredient of Curcuma longa, com-

monly called turmeric and a member of the ginger family, 

which is a safe compound with low toxicity with diverse 

bioactivities including anti-inflammation, antitumor, anti-

oxidation and antiapoptosis.12 As no side effect has been 

reported of this compound from clinic and laboratory studies, 

curcumin is implicated to be a safe and effective treatment 

strategy of AD.13,14 It is now a promising multitarget drug 

for treating AD.15,16 Curcumin has been demonstrated to 

inhibit the deposition and improve the disaggregation of Aβ. 

It inhibited the aggregation of Aβ in old amyloid precursor 

protein transgenic mice.17

The hippocampus plays an important role in learning and 

memory, especially short-term memory. It is one of the most 

vulnerable parts of brain; it suffers damage earlier than the 

cortex. Early in AD development, the neurons significantly 

decrease in the Cornu Ammonis region of the hippocampus. 

Therefore, the hippocampus is thought to be an important 

target region for studying AD.18 In this study, the AD rat 

model was established by injection of Aβ
1–40

 into rat right 

hippocampus. We investigated the effects of curcumin on 

neuronal apoptosis and JNK-3 phosphorylation in the hip-

pocampus of Aβ-induced AD rat to provide an experimental 

and theoretical basis for the clinical treatment of AD with 

curcumin.

Materials and methods
Study design
Male Sprague Dawley rats aged 3 months old (N=48; body 

weight [BW]: 230–250 g) were obtained from the Laboratory 

Animal Center of Zhengzhou University (Henan, People’s 

Republic of China). Animals were maintained in a light–dark 

(12–12 h) cycle at constant temperature (25°C) and humidity 

(60%–70%) with free access to regular chow diet and drink-

ing water. The rats were fasted without water deprivation 

12 h before surgery. The rats were randomly divided into 

three groups (n=16 in each group) including Aβ-induced 

AD rat model group, AD model rats treated with curcumin 

(curcumin-treated group) and sham-operation group. Animal 

care and experimental protocols were conducted according 

to the guidelines of the Institutional Animal Care and Use 

Committee of Zhengzhou University and the 148th Hospital. 

All experiments were reviewed and approved by the Ethics 

Committee of the Second Affiliated Hospital of Zhengzhou 

University and the 148th Hospital.

Aβ-induced AD rat model
Aβ

1–40 
(Sigma-Aldrich, St. Louis, MO, USA) was dissolved 

in normal saline (NS) to a concentration of 10 μg/μL and 

allowed to aggregate at 37°C for 7 days before use. The 

Aβ-induced AD rat model was established according to pre-

vious reports.19–22 Briefly, the rats were anesthetized with an 

intraperitoneal injection of 3.5% chloral hydrate (1 mL/100 

mg BW), and the right hippocampus of each rat was injected 

with 10 μL of Aβ
1–40

 according to the following coordinates: 

anteroposterior –2.8 mm, mediolateral ±2.2 mm and dorso-

ventral –3.0 mm from bregma. The injection lasted for 10 

min, and the needle, along with the syringe, was left on the 

injection site for another 5 min to ensure the completion of 

Aβ infusion. NS was injected in the sham-operation group. 

After surgery, the animals were kept in individual cages until 

they recovered from anesthesia. The successful establishment 

of the model was based on the results of the rat’s behavior 

in the Morris water maze test.23 Curcumin (Sigma-Aldrich)-

treated rats were given curcumin (10 μL dimethyl sulfoxide 

[DMSO] was added to 990 μL volume of NS, and the final 

concentration of DMSO was 1% v/v; 75 mg curcumin was 

added to the above mixture of DMSO and NS, and curcumin 

and the mixture were blended in a t-branch pipe in order to 

ensure the curcumin is completely dissolved). The solution is 

the required volume for a rat. The rats were intraperitoneally 

injected once each day (n=16, 300 mg/kg BW) for 7 days.24 

Rats in the sham-operation group and Aβ-induced AD model 

group were given 0.1% DMSO (n=16 in each group).

Morris water maze test
One month after the animal model was established, the spa-

tial learning ability and memory capability of the rats were 

evaluated by Morris water maze test.23

To test place navigation, the rat was placed in a large 

circular pool and had to find a platform that allowed it to 

escape the water. This allowed the learning ability of rats 

to be quantitatively measured. The experiment lasted for 5 

days, and the rat was tested twice a day. The rat was placed 

into the pool facing the wall from two different locations, and 

the time taken to find the platform and the swimming pattern 

within 2 min were recorded. The escape latency was 120 s if 

the rat could not find the platform within 2 min; the rat was 

guided by the observer with a wooden rod to the platform, 

and placed back in the cage after 10 s on the platform.

For memory probe trials, the escape platform was 

removed on day 6 of the experiment, and the rat was placed 
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into the pool from a random location. The swimming pattern 

and time were recorded within 2 min, and the time spent in 

each quadrant was recorded.

Tissue processing
On the day of sacrifice, after completion of the Morris water 

maze test, eight rats from each group were given 3.5% 

sodium chloride by intraperitoneal injection; the brains were 

then collected in a dish on ice. The bilateral hippocampus 

was collected and stored in sterile vials that were pretreated 

with diethylpyrocarbonate-treated water overnight. After 

being stored for 2–3 h in liquid nitrogen, the samples were 

then stored at −80°C. The other eight rats from each group 

were perfused intracardially with 4% paraformaldehyde, 

fixed and the hippocampus was collected. Sections as thin 

as 4 μm were sliced from paraffin-embedded hippocampus 

for subsequent terminal deoxynucleotidyl transferase dUTP 

nick end labeling (TUNEL) assay.

Apoptosis of hippocampal neuron was 
determined by TUNEL assay
We used the TUNEL assay as a sensitive method of measur-

ing apoptosis.25 After paraffin dewaxing was completed, sec-

tions were incubated with protease K (20 mg/L, pH 7.4–8.0) 

followed by TUNEL reaction mixture (Sigma-Aldrich) 

and converter-peroxidase for 1 h at 37°C, respectively. 

3,3′-Diaminobenzidine substrate was then applied onto the 

sections at room temperature. The slides were counterstained 

with hematoxylin. TUNEL reactions without terminal deoxy-

nucleotidyl transferase enzyme were performed as negative 

controls.

JNK-3 messenger RNA (mRNA) in 
hippocampus was evaluated by reverse 
transcription-polymerase chain reaction 
(RT-PCR)
Total RNA was isolated from the hippocampus tissues by 

one-step Trizol (TakaRa, Dalian, People’s Republic of China) 

method. RNA purity was determined using absorbance at 

260 and 280 nm (A260/280), and the integrity of the RNA 

was verified by electrophoresis on formaldehyde gels. The 

parameters for the reverse transcription step were 30°C, 10 

min; 50°C, 30 min; 99°C, 5 min; 5°C, 5 min. The cDNA 

synthesized in the reverse transcription reaction was used as 

a template for the polymerase chain reaction. A total of 10 μL 

of cDNA, 0.5 μL of sense and antisense primer, respectively, 

were used in the reaction mixture (Table 1). The  amplification 

conditions were 94°C for 3 min; 35 cycles of 94°C for 30 s, 

57°C for 30 s and 72°C for 40 s; 3 min final extension at 72°C 

and 4°C hold. A RT-PCR Kit was purchased from TakaRa. The 

results were run on an agarose gel and analyzed by Quantity 

One-4.6.2 software (Bio-Rad Laboratories Inc., Hercules, CA, 

USA). The gray-scale ratios of target gene bands to β-actin 

bands were calculated as the relative levels of the target genes.

Western blot analysis of JNK-3 and 
p-JNK-3 protein expression levels
Total proteins were extracted from the hippocampus tissues 

using the protein lysate kit (KeyGEN, Nanjing, People’s 

Republic of China). Then, equal amounts of proteins (30 μg) 

were separated by 5% sodium dodecyl sulfate polyacrylamide 

gel electrophoresis and electrophoretically transferred to 

polyvinylidene fluoride membranes (KeyGEN). The trans-

ferred membranes were blocked overnight in 5% non-fat 

milk diluted in Tris-buffered saline with 0.05% Tween 20. 

The membranes were then exposed to anti-JNK-3 mono-

clonal antibody (rat; Sigma-Aldrich) and rabbit anti-rat 

against p-JNK-3 polyclonal antibody and β-actin antibody 

(KeyGEN) at a dilution of 1:1000 for 2 h at 4°C. After 

washing, the membranes were incubated in horseradish 

peroxidase-conjugated secondary antibody (1:5000, goat 

anti-rabbit IgG and rabbit anti-rat IgG) for 1 h at 4°C. The 

resulting immunoblots were visualized using Super enhanced 

chemiluminescence substrate (Tiangen Biotechnology Co., 

Ltd., Beijing, People’s Republic of China). The results were 

analyzed by Quantity One-4.6.2 analysis software. The gray-

scale ratios of target protein bands to β-actin bands were 

calculated as the relative expression levels of the proteins.

Statistical analysis
All statistical analyses were conducted using SPSS version 

11.0 (SPSS Inc., Chicago, IL, USA). All data are expressed 

as mean ± standard error of the mean. Statistical analysis 

was performed using one-way analysis of variance. P<0.05 

was considered statistically significant.

Table 1 Primer sequences for RT-PCR

Gene Primer sequences Products (bp)

b-Actin Sense: 5′-CGT AAA GAC CTC TAT GCC 
AAC A-3′

529

Antisense: 5′-CGG ACT CAT CGT ACT 
CCT GCT-3′

JNK-3 Sense: 5′-CGG ATT CCG AGC ACA ATA 
AAC-3′

237

Antisense: 5′-AGG GTC GTA CCA AAC 
GTT GAT GT-3′

Abbreviations: JNK, c-Jun N-terminal kinase; RT-PCR, reverse transcription-
polymerase chain reaction.
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Results
Effects of curcumin on spatial learning 
and memory deficits in Aβ-induced 
AD rats
The place navigation of the rats in the Morris water maze 

test is shown in Table 2. It shows that the escape latency 

was gradually shortened, indicating that the spatial learning 

ability in finding the escape platform was increased with a 

series of training. The escape latency of rats from the AD rat 

model group was significantly longer, compared with that of 

rats from the sham-operation group (P<0.05). The time of 

curcumin-treated group was similar to that of sham-operation 

group and significantly shorter than that of AD rat model 

group (P<0.05). The swimming pattern was along the pool 

wall or random, suggesting successful establishment of the 

animal model. Once the escape platform was removed as 

shown in Table 3, rats in the AD model group spent signifi-

cantly less time in the original platform quadrant (the second 

quadrant) compared with the sham-operation group and the 

curcumin treatment group (P<0.05, Table 2), indicating sig-

nificant retardation of memory. But there was no significant 

difference between curcumin treatment group and sham-

operation group (P>0.05), suggesting that curcumin has a 

positive effect on cognitive impairment of rats and leads to 

improved learning and memory capability.

Effect of curcumin on neuronal apoptosis 
in the hippocampus of Aβ-induced 
AD rats
In the sham-operation group, blue products were found in cell 

nuclei. Sporadic TUNEL-positive cells in the hippocampus 

were found with an optical density value of 0.24±0.03. More 

TUNEL-positive cells were seen in the Aβ-induced AD model 

group as brown granular shapes in the nuclei, the optical den-

sity value of which was 0.84±0.07. However, granular cells 

were reduced in the curcumin-treated group and the optical 

density value was reduced to 0.48±0.05 (P<0.05, Figure 1).

Effects of curcumin on JNK-3 mRNA 
and protein expression levels in the 
hippocampus of AD model rats
JNK-3 mRNA was significantly increased in the rat hip-

pocampus of the Aβ-induced AD model group compared 

to the sham-operation group (1.25±0.15 versus 0.61±0.12, 

P<0.05; Figure 2). Results from Western blotting showed that 

the protein expression level of JNK-3 was also significantly 

induced in the Aβ-induced AD model group compared to the 

sham-operation group (1.75±0.17 versus 0.81±0.14, P<0.05; 

Figure 3A). However, after curcumin treatment, both mRNA 

and protein expression levels of JNK-3 were significantly 

decreased, compared to the Aβ-induced AD model group 

(0.73±0.08 versus 1.25±0.15 and 1.03±0.07 versus 1.75±0.17, 

respectively, all P<0.05), although they were still higher than 

those in the sham-operation rats (Figures 2 and 3A).

Effect of curcumin on the protein 
expression of p-JNK-3 in the 
hippocampus of AD
p-JNK-3 protein expression level followed a similar pattern 

to the expression of total JNK-3 (Figure 3B). The sham-

operation group had a level of 0.45±0.13, and this was 

significantly increased in the Aβ-induced AD model group 

at 0.90±0.12 (P<0.05). The curcumin-treated group had a 

decreased p-JNK-3 protein expression level, compared to the 

Table 2 Comparison of escape latencies in Morris water maze learning trials among treatment groups

Groups Escape latencies (seconds)

Day 1 Day 2 Day 3 Day 4 Day 5

Sham-operation group 62.5±13.4 37.9±12.7 22.4±4.37 14.2±6.51 11.3±5.07
AD model group 93.3±12.9* 83.7±14.4* 53.5±11.3* 45.5±11.7* 31.3±10.2*

Curcumin-treated group 65.1±12.9** 40.5±11.3** 24.6±5.79** 16.8±5.57** 14.2±5.36**

Notes: Data are shown as mean ± standard error of the mean  (n=16 in each group). *P<0.05 versus sham-operation group; **P<0.05 versus Aβ-induced AD model group.
Abbreviations: Aβ, amyloid-β peptide; AD, Alzheimer’s disease.

Table 3 Comparison of swimming time spent in each Morris water maze quadrant among treatment groups

Groups Time spent in water maze quadrant (%)

Quadrant I Quadrant II Quadrant III Quadrant IV

Sham-operation group 21.58±6.35 43.42±7.38 18.34±3.54 16.38±7.56
AD model group 26.45±9.44 27.55±5.48* 22.52±4.59 24.23±5.09
Curcumin-treated group 22.25±4.52 40.71±9.22** 18.61±5.91 17.41±9.32

Notes: Data are shown as mean ± standard error of the mean  (n=16 in each group). *P<0.05 versus sham-operation group; **P<0.05 versus Aβ-induced AD model group.
Abbreviations: Aβ, amyloid-β peptide; AD, Alzheimer’s disease.
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Figure 1 Effect of curcumin on hippocampus neuronal apoptosis in an Aβ-induced 
AD rat model.
Notes: (A) Neuronal apoptosis in rat hippocampus was determined by TUNEL 
staining (magnification: ×400, sham-operation group, Aβ-induced AD model group 
and curcumin-treated group). It demonstrated that sporadic TUNEL-positive 
cells were found in the CA1 region of the rat hippocampus and more TUNEL-
positive cells were represented after the injection of Aβ1–40 in the hippocampus. 
After treatment with curcumin, TUNEL-positive cells were obviously reduced, even 
though it was still higher than the control. (B): The data are shown as mean ± 
standard error of the mean (n=8 in each group). *P<0.05 versus sham-operation 
group; #P<0.05 versus Aβ-induced AD model group.
Abbreviations: Aβ, amyloid-β peptide; AD, Alzheimer’s disease; TUNEL, terminal 
deoxynucleotidyl transferase dUTP nick end labeling.
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Figure 2 Effect of curcumin on JNK-3 mRNA expression in the hippocampus in an 
Aβ-induced AD rat model.
Notes: (A): JNK-3 mRNA expression in rat hippocampus was detected by RT-PCR 
in sham-operation group, Aβ-induced AD model group and curcumin-treated group. 
Product lengths of JNK-3 and β-actin are 237 and 529 bp, respectively. β-Actin 
was used as an inner control. (B) The data are shown as mean ± SEM (n=8 in each 
group). *P<0.05 versus sham-operation group; #P<0.05 versus Aβ-induced AD model 
group.
Abbreviations: Aβ, amyloid-β peptide; AD, Alzheimer’s disease; JNK, c-Jun 
N-terminal kinase; mRNA, messenger RNA; RT-PCR, reverse transcription-
polymerase chain reaction; SEM, standard error of the mean.
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Figure 3 Effect of curcumin on JNK-3 and p-JNK-3 protein expression levels in the hippocampus in Aβ-induced AD rat model.
Notes: (A) JNK-3 and (B) p-JNK-3 protein expression levels in the rat hippocampus were detected by Western blot. β-Actin was used as an inner control. The groups were 
sham-operation group, Aβ-induced AD model group and curcumin-treated group. The data are shown as mean ± SEM (n=8 in each group). *P<0.05 versus sham-operation 
group; #P<0.05 versus Aβ-induced AD model group.
Abbreviations: Aβ, amyloid-β peptide; AD, Alzheimer’s disease; JNK, c-Jun N-terminal kinase; SEM, standard error of the mean.
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Aβ-induced AD model group (0.59±0.13 versus 0.90±0.12, 

P<0.05), although it was still higher than that in the sham-

operation rats (Figure 3B). Optical density of neuron apopto-

sis in the hippocampus was positively correlated with p-JNK 

expression in each group (r=0.46, P<0.05).

Discussion
Curcumin has diverse bioactivities including antioxidation, 

anti-inflammation and antiamyloidosis, making it potentially 

effective for AD treatment. The aim of this study was to 

investigate whether curcumin could reduce spatial learning 

and memory deficits in a rat model of AD and if the potential 

benefits were related to apoptosis and the activity of JNK-

3. The study by Begum et al reported that the activation of 

JNK in the cortex of Tg2576 transgenic mouse was inhibited 

by curcumin,15 which was similar to our results. As JNK-3 

is critical for apoptosis and is specifically expressed in the 

brain, we hypothesized that JNK-3 might have a role to play 

in inhibition of apoptosis by curcumin. The JNK pathway 

may be active in neurons around the region of Aβ deposits in 

AD patients, and this is associated with neuronal apoptosis.26

The results showed that curcumin reduced the effects of 

Aβ-induced neuronal injury in terms of spatial learning and 

memory, and this was accompanied by a reduction in the 

level of apoptosis and reduced levels of JNK-3 mRNA and 

protein. Curcumin also reduced the levels of phosphorylated 

JNK-3 that had been increased by Aβ injury.

Aβ-induced neuronal injury rat model is an important 

method for studying the pathologic development of AD, with 

advantages over other methods such as it is less expensive and 

can be undertaken during a short experimental period.19–22 We 

have also had experience of the method and found it easy to 

use in previous studies.27 The rats in this study clearly dem-

onstrated significant spatial learning and memory deficits 

when the AD model was established. These deficits were 

then reduced to levels similar to those of the sham-operation 

group when the rats received curcumin treatment. Cell death 

by apoptosis has been a hot topic of research into AD patho-

logic development in recent studies, and it is suggested that 

excessive apoptosis might be the main reason for AD.28–33

In this study, we found in TUNEL assay that neuronal 

apoptosis was increased by the injection of Aβ in the hip-

pocampus, which was inhibited by curcumin treatment. 

Other studies investigating the role of curcumin in AD have 

found similar results using flow cytometry.34–36 This led us 

to investigate the mechanism by which curcumin might 

inhibit apoptosis. A study of this kind has some limitations; 

any animal model, however close to the disease state, may 

have some differences from the clinical situation. Also, we 

did not perform a full evaluation of all the other factors 

related to JNK signaling or measures of oxidative stress and 

inflammation.

Conclusion
Our work demonstrated a significant increase in the mRNA 

and protein expression levels of JNK-3 and p-JNK-3 in the 

hippocampus of Aβ-induced AD model rats. However, both 

mRNA and protein expression levels of JNK-3 and p-JNK-3 

were inhibited by curcumin administration. The results indi-

cated that curcumin treatment may ameliorate spatial learning 

and memory deficits as well as neuronal apoptosis in the 

hippocampus after Aβ injection, which might be associated 

with inhibition of JNK-3 phosphorylation. This suggests a 

preliminary mechanism for the protective effect of curcumin 

on Aβ-induced neuronal injury in rats.
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