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Abstract: Esophageal squamous cell carcinoma (ESCC) is one of the most common 

malignancies worldwide and occurs at a relatively high frequency in People’s Republic of 

China. However, the molecular mechanism underlying ESCC is still unclear. In this study, the 

mRNA and long non-coding RNA (lncRNA) expression profiles of ESCC were downloaded 

from the Gene Expression Omnibus database, and then differential co-expression analysis was 

used to reveal the altered co-expression relationship of gene pairs in ESCC tumors. A total of 

3,709 mRNAs and 923 lncRNAs were differentially co-expressed between normal and tumor 

tissues, and we found that most of the gene pairs lost associations in the tumor tissues. The 

differential regulatory networking approach deciphered that transcriptional dysregulation was 

ubiquitous in ESCC, and most of the differentially regulated links were modulated by 37 TFs. 

Our study also found that two novel lncRNAs (ADAMTS9-AS1 and AP000696.2) might be 

essential in the development of ectoderm and epithelial cells, which could significantly stratify 

ESCC patients into high-risk and low-risk groups, and were much better than traditional clinical 

tumor markers. Further inspection of two risk groups showed that the changes in TF-target 

regulation in the high-risk patients were significantly higher than those in the low-risk patients. 

In addition, four signal transduction-related DCmRNAs (ERBB3, ENSA, KCNK7, MFSD5), 

which were differentially co-expressed with the two lncRNAs, might also have the predictive 

capacity. Our findings will enhance the understanding of ESCC transcriptional dysregulation 

from a view of cross-link of lncRNA and mRNA, and the two-lncRNA combination may serve 

as a novel prognostic biomarker for clinical applications of ESCC.

Keywords: ESCC, differential co-expression analysis, differential regulation analysis, dys-

regulation, lncRNA, prognostic biomarker

Introduction
Esophageal cancer (EC) is one of the most lethal types of digestive tract malignancy 

in the world.1,2 Esophageal squamous cell carcinoma (ESCC) is the predominant 

subtype of EC, with the highest incidence in People’s Republic of China.3 Although 

the diagnosis and treatment have been advanced during recent years, ESCC still ranks 

among the fourth leading cause of cancer-related death.4 Because it is hard to detect 

at the early stage, and the tumor recurrence and metastasis after surgery are also very 

intractable, the long-term outcome of this malignancy is dismal, with an overall 5-year 

survival rate less than 10%.5–7 A poor understanding of carcinogenic mechanism and 

a lack of biomarkers with desired sensitivity and specificity pose a major challenge 
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in diagnosing ESCC. Therefore, comprehensive surveying 

of the molecular mechanism will facilitate parsing of the 

esophageal tumorigenesis progress and detection of efficient 

prognostic biomarkers.

Protein coding genes are usually regarded as tumor 

markers in ESCC pathology,8 but only ~1.2% of the human 

genome encodes for protein-coding genes, and the large 

majority is transcribed into non-coding RNAs (ncRNAs).9–11 

Long non-coding RNAs (lncRNAs), which are longer 

than 200 nucleotides without protein coding capability, 

can regulate the expression of genes in various biological 

processes.12,13 Aberrant lncRNA expression participates in 

carcinogenesis by disrupting the major biological processes,14 

and could also serve as a potential diagnostic or prognostic 

biomarker for diverse human malignancies.15–17 For example, 

HOTAIR is a well-known lncRNA, whose expression levels 

powerfully predict metastases and survival in different cancer 

types,13,18 including ESCC.19,20 However, the understanding of 

these lncRNAs is insufficient, and the functional implications 

of most lncRNAs remain to be explored.

Genome-wide gene expression profile has become an 

instrumental resource and been used pervasively in cancer 

research. Many of prognostic and diagnostic mRNAs and 

lncRNAs have been identified by the traditional differential 

expression approach. However, this method focuses on 

the differentially expressed individual genes and cannot 

present the changes in gene interconnection in response to 

different conditions.21 Fortunately, differential co-expression 

analysis is not only emerging to complement the shortage, 

but also can hint the altered regulatory relationships and 

cancer-specific dysregulations.22–24 Construction of differ-

ential co-expression models, which integrate mRNAs and 

lncRNAs, could uncover the underlying functional roles of 

lncRNAs in tumorigenesis progress. Therefore, it is reliable 

to study the molecular biological mechanism of cancero-

genesis and identify cancer-related prognostic lncRNAs by 

using differential co-expression analysis.

Here, we used a differentially co-expressed method 

by integrating information of mRNAs and lncRNAs from 

119 ESCC tissues and matched adjacent normal tissues to 

identify a set of differentially co-expressed genes (DCGs; 

mRNAs and lncRNAs) and links. To systemically explain 

the mechanism of transcriptome alteration in ESCC, we 

developed a differential regulatory network by harnessing 

these differentially co-expressed mRNAs (DCmRNAs). 

Furthermore, based on the differentially co-expressed 

lncRNAs (DClncRNAs), we found two novel lncRNAs, 

ADAMTS9-AS1 and AP000696.2, that could predict the 

survival of patients with ESCC and might be essential in 

the development of the ectoderm and epithelial cells. Our 

study demonstrates that the transcriptional dysregulation 

is the critical cause of ESCC tumorigenesis, and the two-

lncRNA signature may be regarded as a novel prognostic 

molecular marker, which is better than traditional biomarkers. 

Furthermore, it will be helpful to further experimental studies 

on lncRNAs in ESCC.

Materials and methods
Expression profile dataset
The normalized gene expression datasets of ESCC 

(GSE5362425 and GSE5362225) were downloaded from 

National Center for Biotechnology Information Gene Expres-

sion Omnibus database. The training dataset (GSE53624) 

included 119 ESCC and matched adjacent normal tissue 

samples. The independent testing dataset (GSE53622) con-

tained 60 ESCC and matched adjacent normal tissue samples. 

All of patients in GSE53624 and GSE53622 were followed 

up for 5 years at least. The median follow-up time of patients 

in GSE53624 and GSE53622 was 32.2 and 39.5 months, 

respectively. The clinical characteristics of the two dataset 

populations are presented in Supplementary materials, 

Table S1. The expression profile of ESCC was performed 

using Agilent-038314 CBC Homo sapiens lncRNA+mRNA 

array V2.0 platform. (Agilent Technologies, Santa Clara, 

CA, USA). Each array contained probes interrogating 32,000 

human mRNAs and 39,000 human lncRNAs. The probes with 

the same sequence were merged, resulting in 35,025 unique 

probes. GENCODE database was taken as reference to anno-

tate mRNAs and lncRNAs. Then, we employed the Basic 

Local Alignment Search Tool (BLAST) program to map the 

unique probes to the reference; 17,245 mRNAs and 5,760 

lncRNAs with at least one unique probe were retrieved.

Differential co-expression analysis
Differential co-expression analysis for the expression pro-

file of the training dataset was conducted in R environment 

(V3.2.3) using differentially co-expressed genes and links 

(DCGL) package (V2.0).22–24 First, the genes were filtered 

by the method of gene variance with default options, which 

resulted in a total of 12,426 genes preserved. Next, differential 

co-expression profile and differential co-expression enrich-

ment (DCe) methods were adopted to identify DCGs, while 

differentially co-expressed links (DCLs) were identified by 

the modified limit fold change model incorporated in the DCe 

method. In summary, 4,632 DCGs and about 6,384,526 

DCLs were obtained, with each DCL containing at least one 

DCG. The DCGs consisted of 3,709 DCmRNAs and 923 

DClncRNAs. In order to remove the low correlation DCLs, 
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the correlation coefficients of gene pairs less than 0.2, 0.3 

and 0.4 in both normal and tumor conditions were used as 

cutoffs. As similar results could be observed under the three 

criteria (see “Results” section), we selected 0.3 to be the final 

cutoff for removing low correlation DCLs, and the remaining 

DCLs were used for further analysis.

Functional analysis of escc-associated 
Dcgs
The gene ontology (GO) and pathway enrichment analysis 

were performed using DAVID software26 to investigate 

the functional roles of DCmRNAs in the development of 

ESCC (Benjamin adjust P-value ,0.01). In addition, priori 

knowledge was incorporated to verify the association of 

DCGs with the disease. Gene enrichment analysis was also 

performed for the DCmRNAs based on 572 cancer genes 

from Cancer Gene Census,27 1,601 human drug targets from 

DrugBank,28 as well as 363 ESCC-related genes from seven 

high-quality literatures (Fisher test, P-value ,0.05).29–35 

Meanwhile, gene enrichment analysis was performed for 

the DClncRNAs based on 253 cancer-related lncRNAs from 

Lnc2Cancer (Fisher test, P-value ,0.05).36

Dcmrnas: construction of regulatory 
network
The regulatory networks were constructed to reveal the molec-

ular mechanism of transcriptional alteration in ESCC. The 

transcription factor (TF)-target relationships predicted in our 

previous study were treated as the reference network of tran-

scriptional regulation.37 The gene set of 3,709 DCmRNAs was 

used for the construction of ESCC-related TF-target networks 

in the normal and tumor conditions by using linear regression 

model.37 The important differentially regulated genes (DRGs) 

were identified by calculating the differential regulation (DR) 

value of genes between the two regulatory networks.37 The DR 

value could measure whether a DRG was highly relevant to 

the tumorigenesis. According to the changes of the regulation 

efficacy between a TF and its target, the differentially regulated 

links (DRLs) were identified, which were equal or greater than 

the average value across all TF-target pairs.

DClncRNAs: the identification of novel 
prognostic lncrnas
The 923 DClncRNAs were taken as the initial gene set for 

screening prognostic biomarkers. To choose the cancer-

related candidates, only the lncRNAs differentially co-

expressed with cancer genes, drug targets or ESCC genes 

were considered. To shrink the DClncRNAs, we considered 

the differential expression between the normal and tumor 

tissues (Paired Student’s t-test, Benjamin-Hochberg adjust 

P-value ,0.05), and the top 10 lncRNAs with the highest 

fold changes were selected as the prognostic candidates.

To obtain an optimal combination from the top 10 

lncRNAs, 5-fold cross-validation was used. There are 1,023 

combinations (210−1) for the 10 lncRNAs. For each combi-

nation, prognostic accuracy was calculated by the K-means 

algorithm based on their expression profile to stratify ESCC 

samples into high-risk and low-risk groups. Kaplan–Meier 

survival analysis was performed for the two groups, and 

statistical significance was assessed using the log-rank test 

by using the R survival package.38 The optimum lncRNA 

combination was determined by the most significant average 

P-value in the 5-fold cross-validation.

To explore the function of the identified prognostic 

lncRNAs, functional enrichment analysis was performed 

for mRNAs, which were differentially co-expressed with 

them. By doing this, 675 DCmRNAs were used to predict 

their prognostic capacities. The hazard ratio (HR) of genes 

were evaluated by using the SurvComp package in R, and a 

univariate Cox regression model was implemented to analyze 

the relationship between the gene expression and survival 

time. The genes with P-value ,0.05 were selected for the 

survival analysis39,40 as we did for lncRNAs.

Results
Identified DCGs and DCLs
A total of 17,245 mRNAs and 5,760 lncRNAs across 119 

ESCC and matched adjacent healthy tissue samples were 

retrieved from the training dataset. After being filtered by 

variance, 9,078 mRNAs and 3,348 lncRNAs were preserved 

for differential co-expression analysis by the DCGL package 

(see “Materials and methods” section). As a result, DCLs 

containing 4,632 DCGs were yielded for further analysis, 

including 3,709 DCmRNAs and 923 DClncRNAs.

To investigate the functions of the ESCC DCGs, func-

tional enrichment analysis was carried out for the DCmR-

NAs, and significant GO terms are listed in Supplementary 

materials, Figure S1. These DCmRNAs might take part in 

ESCC cell growth (such as development, differentiation 

and proliferation of cells), in agreement with the fact that 

cancer is a disease involving dysregulation of multiple fun-

damental cell processes such as development, proliferation, 

differentiation, migration and apoptosis.41 The DCmRNAs 

were also enriched in two Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathways of extracellular matrix (ECM)-

receptor interaction and arachidonic acid metabolism, which 

were reported to contribute to esophageal squamous cell 

carcinogenesis.42–44 Gene enrichment analysis proved that 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com
http://pan.baidu.com/s/1pLBcaF5
http://pan.baidu.com/s/1pLBcaF5


OncoTargets and Therapy 2017:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

3098

li et al

the DCGs were also significantly enriched in drug targets 

(P-value =9.85E-6), ESCC genes (P-value =1.15E-14) and 

cancer related lncRNAs (P-value =3.04E-5), except cancer 

genes (P-value =0.34). We purposed that there would be some 

novel and important cancer-related genes in the DCGs.

After removing the DCLs with the absolute correlation 

coefficient less than 0.3 in both normal and tumor conditions, 

the rest of DCLs included 939,936 mRNA-lncRNA asso-

ciations; 2,192,442 mRNA-mRNA associations and 112,005 

lncRNA-lncRNA associations. We divided the DCLs into 

three types, “loss-of-association”, “gain-of-association” and 

“reverse-of-association”. If the absolute correlation coefficient 

of a DCL was equal or greater than 0.3 in the normal, but 

smaller than 0.3 in the ESCC, it would be grouped into the 

“loss-of-association” type. On the contrary, it belonged to the 

“gain-of-association” type. The “reverse-of-association” was 

the case wherein the absolute correlation coefficient was larger 

than 0.3 in both normal and tumor conditions, but the direction 

of association was reversed during tumorigenesis (Figure 1A). 

Our results showed that almost 80% DCLs lost associations, 

20% gained new associations and only few of DCLs reversed 

associations (Figure 1B). We also tested other cutoffs of 0.2 

and 0.4, and similar results were obtained (Supplementary 

materials, Figure S2). When DCLs were classified into three 

types, mRNA-lncRNA, mRNA-mRNA and lncRNA-lncRNA, 

this result still held, suggesting a widespread alteration of gene 

relationships in the transcriptome of ESCC.

comparison of regulatory network
We hypothesized that the dysfunctional regulation of TFs may 

be one of the important causes for transcriptome alteration. To 

prove the hypothesis, we used the 3,709 DCmRNAs to build 

normal and ESCC regulatory networks (see “Materials and 

methods” section). The regulated links could represent the 

causal influences in the network. By comparing the difference 

of the two regulatory networks, 4,442 and 3,492 regulated links 

were observed in the normal and ESCC conditions. The changes 

of the regulation efficacy were employed to screen the TF-target 

pairs, and 2,208 DRLs contributed by 37 TFs were identified. 

We found that seven of top 10 DRmRNAs that had the largest 

DR values (Supplementary materials, Table S2) were TFs, 

and these TFs regulated nearly half of DRLs. Among them, 

TCF3, TP53, MYB and JUN were cancer-related genes in the 

database of Cancer Gene Census.27 Next, DRLs were divided 

into five types according to the changes of the regulation 

efficacy in the tumor compared with the normal cells, “loss-

of-regulation” (42.66%), “gain-of-regulation” (24%), “reverse-

of-regulation” (20.11%), “weaken-of-regulation” (9.15%) and 

“strengthen-of-regulation” (4.08%) (Figure 2A). This result was 

consistent with our differential co-expression analysis that most 

DCLs belonged to the loss-of-association type.

Then, the GO term functional enrichment analysis was 

separately performed for TF-target pairs in the five types of 

DRLs. We found that the five types were all significantly 

enriched in positive regulation of biosynthetic and meta-

bolic processes and transcription (Supplementary materials, 

Table S3), and some biological functions were specific to 

each type (Figure 2B). Interestingly, 20.11% of reverse-of-

regulation DRLs had the most significant GO terms, and they 

were enriched in both positive and negative regulation of bio-

synthetic and metabolic process and transcription, suggesting 

their capacity of bi-directional regulation. The KEGG pathway 

enrichment analysis revealed that the reverse-of-regulation 

DRLs significantly enriched in Wnt signaling pathway, which 

was proved to be associated with the ESCC progression and 

metastasis.33,45–47 Our results demonstrated that the alterations 
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Figure 1 The presentation of the DCLs. The expression profile was used for differential co-expression analysis to identify DCLs. (A) The cartoon sketch presented the 
association types between genes, and the DCLs were grouped into three different types. (B) The percentages of three types of Dcls. The loss-of-association Dcls was 
the predominant type.
Abbreviations: Dcls, differentially co-expressed links; escc, esophageal squamous cell carcinoma; lncrna, long non-coding rna.
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of gene-to-gene relationships in the ESCC may be mediated 

by the dysregulation of TFs to some extent.

Identified novel lncRNAs associated with 
the overall survival of escc patients
lncRNAs carry out the regulatory functions base on their 

complex structures which are convenient for binding proteins, 

RNA, DNA, and closely associate with the progression of dis-

ease that have been widely regarded as biomarkers. In order to 

investigate whether the DClncRNAs could become prognostic 

indicators for the survival of ESCC patients, differential co-

expression method identified 923 DClncRNAs, which served 

as the initial prognostic candidates. In order to narrow down 

the DClncRNAs, a total of 820 cancer-related lncRNAs were 

found through differential co-expression with cancer genes, 

drug targets and ESCC genes, simultaneously (Figure 3). 

The differential expression analysis was adopted to narrow 

down the candidates (see “Materials and methods” section). 

Figure 2 comprehensive analysis of the distribution and function of Drls. The normal and tumor regulatory networks were constructed for the Dcmrnas. With the 
comparison of the two regulatory networks, 2,208 DRLs were identified. (A) The proportions of the five different types of DRLs. (B) Functional enrichment analysis for each 
type of DRLs indicated the specific function of DRLs (Benjamin adjust P-value ,0.01).
Abbreviations: Dcmrnas, differentially co-expressed mrnas; Drls, differentially regulated links; gO, gene ontology.
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Figure 3 An integrative pipeline for transcriptome-wide identification of prognostic lncRNAs. (A) Differential co-expression analysis identified 923 DClncRNAs by using 
the mRNA and lncRNA expression profile. Part of differential co-expression network is shown in the plot. The green triangles are the DClncRNAs, the purple triangles 
are lncRNAs and the purple ellipses are mRNAs. (B) a total of 820 cancer-related lncrnas were found through differential co-expression with cancer genes, drug targets 
and ESCC genes. (C) Differential expression analysis was performed to narrow down the candidate lncrnas. The fold changes of top 10 lncrnas are presented in the plot. 
(D) The 5-fold cross-validation was used to identify the optimal combination for predicting the survival of escc patients. K-means algorithm and Kaplan–Meier survival 
analysis were used to calculate the prognostic accuracies of 1,023 combinations. The highest prognostic accuracies of 1–10 lncrna combinations and the prognostic 
accuracies of 45 2-lncrna combinations are shown in the plot.
Abbreviations: Dclncrnas, differentially co-expressed lncrnas; escc, esophageal squamous cell carcinoma; lncrna, long non-coding rna.
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The top 10 lncRNAs in terms of their fold change were selected 

for the cross-validation analysis. A two-lncRNA combination, 

ADAMTS9-AS1 (ENSG00000241158.5) and AP000696.2 

(ENSG00000231324.1), was identified as the optimal combina-

tion for predicting the survival of ESCC patients (Figure 3).

The expression of the two lncRNAs categorized 119 

ESCC patients into high-risk and low-risk groups (log 

rank test, P-value =1.28E-2) (Figure 4A). Among them, 

42 patients were identified as belonging to the “high-risk” 

group, in which less than 24% living people were observed 

and the median of overall survival time was 22.92 months. 

By contrast, 77 patients were grouped as belonging to the 

“low-risk” group, in which 47% living people were observed 

and the median of overall survival time was 48.77 months. 

Next, we verified the prediction power of the two lncRNAs 

in an independent dataset of 60 patients. The patients were 

classified into the high-risk (19) and low-risk groups (41) 

with significantly different survival time (log rank test, 

P-value =2.56E-2) (Figure 4B). With a similar result, there 

were 26% living patients in the high-risk group and the median 

survival time was 16 months, and 54% living patients in the 

low-risk group and the median survival time was 48 months. 

CYFRA21-1 and CEA, two traditional tumor markers, 

have been used for diagnosis of ESCC.48 High CYFRA21-1 

level in patients is associated with poor prognosis. CEA 

is significantly associated with overall 5-year survival in 

ESCC.49–51 Then, we compared our lncRNA biomarkers with 

the traditional tumor markers CYFRA21-1 and CEA. The 

result showed that our lncRNA markers had a higher power 

to predict the survival of human ESCC patients (Figure 5).

mrnas differentially co-expressed with 
the two-lncrna biomarker
ADAMTS9-AS1 and AP000696.2 were two novel lncR-

NAs without any functional annotations, except another 

ADAMTS9 antisense transcript. ADAMTS9-AS2 could 

regulate the expression level of tumor suppressor ADAMTS9, 

and its overexpression resulted in significant inhibition of 

glioma cell migration.52 Furthermore, the starBase53 showed 

that ADAMTS9-AS1 interacted with two RNA-binding 

protein genes, DCGR8 and FUS. lncRNAs exert regulatory 

function in cancer biology mainly through their relationships 

with RNA-binding proteins. H19, HOTAIR, MALAT1 and 

HOTTIP are essential in many biological events for cell 

proliferation and differentiation, apoptosis and tumorigenesis 

via their impact on RNA-binding protein in HCC.54 There-

fore, we proposed that ADAMTS9-AS1 might be functional 

in the development of cancer. To investigate the potential 

function of ADAMTS9-AS1 and AP000696.2 in ESCC, GO 

enrichment was performed to analyze the mRNAs that were 

differentially co-expressed with them. We got 1,139 mRNAs 

that were differentially co-expressed with ADAMTS9-AS1 

or AP000696.2, in which 1,056 mRNAs lost associations and 

86 mRNAs gained associations with the two lncRNAs. First, 

Figure 4 The combination of two novel lncRNAs predicts the clinical outcomes of ESCC patients. The expression profiles of the lncRNAs are shown in the top panel. Kaplan–
Meier survival curves shown by the combination of ADAMTS9-AS1 and AP000696.2 were able to distinguish patients with different clinical outcomes in (A) the training 
dataset (119 patients) and (B) the testing dataset (60 patients). The survival months are shown along the x-axis, and overall survival rates are shown along the y-axis.
Abbreviations: escc, esophageal squamous cell carcinoma; lncrnas, long non-coding rnas.
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Figure 5 CYFRA21-1 and CEA predict the clinical outcomes of ESCC patients. The expression profiles of the CYFRA21-1 and CEA are shown in the top panel. CYFRA21-1 
or CEA could not distinguish ESCC patients with different clinical outcomes in (A, C) the training dataset (119 patients) and (B, D) the testing dataset (60 patients). The 
survival months are shown along the x-axis and overall survival rates are shown along the y-axis.
Abbreviation: escc, esophageal squamous cell carcinoma.

we performed the GO enrichment analysis for these mRNAs. 

The result indicated that they were significantly enriched in 

the biological process of ectoderm development and epidermis 

development (adjust P-value ,0.01). The epidermis, which 

is formed by ectoderm, is the outermost layer of the skin, and 

protects the body from environmental insults.55 The develop-

ment of the ectoderm and epidermis are two crucial functions 

in the progression of ESCC and hence the two novel lncRNAs 

might be very important in the development of the ESCC.

Second, we constructed the regulatory network for the 

high-risk and low-risk groups, which were classified by our 

two identified novel prognostic lncRNAs, respectively, and 

then compared with the normal regulatory network one by 

one. The results revealed that the changes of TF-target pairs 

between the normal and the low-risk group were smaller than 

those between the normal and the high-risk group (Wilcoxon 

test, P-value =2.15E-2) (Supplementary materials, Figure S3). 

This large number of dysregulation might contribute to the 

poor prognosis of the high-risk group.

Third, we wondered that if the mRNAs differentially 

co-expressed with the two prognostic lncRNAs also had the 

capacity of predicting the survival outcome of ESCC patients. 
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To test this, we used the HR and survival analysis to screen 

the DCmRNAs from the 1,139 mRNAs (see “Materials 

and methods” section). Finally we identified four mRNAs, 

ERBB3, ENSA, KCNK7 and MFSD5, that could significantly 

divide the patients into high-risk and low-risk groups both 

in the training and testing datasets (Supplementary materials, 

Figure S4 and Supplementary materials, Table S4). These 

four mRNAs were all signal transduction-related genes.

Discussion
In this study, differential co-expression analysis of ESCC 

expression profiles was applied to analyze the mechanism 

of transcriptome alteration and identify the novel prog-

nostic lncRNAs. We firstly proposed three different types 

of DCLs among the DCGs, “loss-of-association”, “gain-

of-association” and “reverse-of-association”, and found that 

most DCLs belonged to the loss-of-association type. Consid-

ering the importance of DCmRNAs in ESCC, we constructed 

the normal and ESCC regulatory networks for the DCmRNAs 

to explore the alteration of gene co-expression caused by dys-

functional regulation of TFs. By comparison of two networks, 

we found that 37 TFs contributed to the all DRLs, in which 

the predominant type was the “loss-of-regulation”.

Nearly half of the DRLs were concerned by seven TFs 

in the top 10 DRGs, in which TCF3 and TP53 were very 

meaningful and worthy to notice as they contributed to more 

than a quarter of loss-of-regulation DRLs. TCF3 was the 

TF that had the highest DR value and the most DRLs in all 

DCmRNAs, and most of the DRLs regulated by TCF3 were 

loss-of-regulation type. It has been reported that TCF3 is a 

transcriptional repressor and plays the key role in cell fate, and 

its overexpression could block epithelial differentiation.56,57 

TP53 was ranked the third one among the DRGs. In all, 

76.92% of TP53-DRLs belonged to the loss-of-regulation, and 

none of the other TFs showed such obvious preference. The 

multifunctional TF TP53 was involved in the carcinogenesis 

of various malignancies, and is frequently mutated in .50% of 

human cancers.58–60 A lot of TP53 mutants can lead to the loss 

of its DNA-binding activity and affect its role as a TF.58–61

lncRNAs can be dysregulated in tumor progression62,63 

and involved in tumorigenesis, invasion and metastasis.12,14 

However, their potential as diagnostic and prognostic markers 

is less explored. In our study, we found and validated that a 

two-lncRNA combination (ADAMTS9-AS1 or AP000696.2) 

was the most optimal predictor of survival in ESCC, which 

significantly classified 42 and 77 patients into high-risk and 

low-risk groups with totally different survival times. The vari-

ance of TF-target regulation between the high- and low-risk 

groups indicated that transcriptional regulation might be 

altered with the deterioration of cancer. In addition, we found 

that our two-lncRNA combination had stronger predictive 

power than the known clinical markers, CYFRA21-1 and 

CEA, suggesting that it might be a potential clinical indicator. 

Functional enrichment analysis of the mRNAs differentially 

co-expressed with them suggested that they might be associ-

ated with the biological process of the development of the 

ectoderm and epithelial cells. Moreover, the four mRNAs 

(ERBB3,64,65 ENSA,66 KCNK7,67 MFSD568,69), involved in 

signal transductions and differentially co-expressed with 

ADAMTS9-AS1 or AP000696.2, could be regarded as pre-

dictors of survival outcomes in ESCC. This result provided 

another evidence for the rationality of the two novel lncR-

NAs. The original study of GSE53624 revealed a prognosis-

related three-lncRNA signature, which classified the patients 

into two groups with significantly different overall survival. 

However, the machine learning method they used could not 

fully explain the underlying biological regulation mechanism, 

whereas our differential co-expression analysis method not 

only identified a more economical biomarker (a two-lncRNA 

combination) with similar prognostic capacity, but also pro-

vided an opportunity to investigate the possible functional 

role of the identified lncRNAs through the DCmRNAs.

Limitations
In summary, our study comprehensively analyzed the tran-

scriptomes of ESCC. By using the differential co-expression 

method, we investigated the mechanism of abnormal regu-

lation of mRNAs and lncRNAs, and identified a novel 

combination of two lncRNAs for predicting the survival of 

ESCC patients. There are limitations in our study. First, the 

functions of the two lncRNAs in tumorigenesis were still 

unknown, even though the potential biological processes 

had been inferred. Second, although the predictive ability of 

the two-lncRNAs signature was verified in the independent 

dataset, the sample size was limited. And it still needs experi-

mental studies like RT-PCR, clinical trials and functional 

verification in the future. But computational investigation of 

functional lncRNAs is helpful to guide further experimental 

studies on lncRNAs. Our results may provide important 

resources for the future ESCC researches.
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