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Abstract: Spinal cord injury (SCI) is a devastating condition and major burden on society and 

individuals. Currently, neurorestorative strategies, including stem cell therapy products or mature/

functionally differentiated cell-derived cell therapy products, can restore patients with chronic 

complete SCI to some degree of neurological functions. The stem cells for neurorestoration 

include neural stem cells, mesenchymal stem cells, embryonic stem cells, induced pluripotent 

stem cells, etc. A better understanding of the merits, demerits and precise function of different 

stem cells in the treatment of SCI may aid in the development of neurorestorative strategies. 

However, the efficacy, safety and ethical concerns of stem cell-based therapy continue to be 

challenged. Nonetheless, stem cell-based therapies hold promise of widespread applications, 

particularly in areas of SCI, and have the potential to be novel therapeutics, which contributes to 

the repair of SCI. This review mainly focused on recent advances regarding the stem cell-based 

therapies in the treatment of SCI and discussed future perspectives in this field.

Keywords: spinal cord injury, neural stem cells, bone marrow-derived mesenchymal stem cells, 

adipose-derived stem cells, embryonic stem cells, induced pluripotent stem cells

Introduction
Spinal cord injury (SCI) is a devastating condition resulting from traumatic accidents 

with a high morbidity and mortality, and there are no effective treatments available 

by conventional treatments.1–3 Currently, neurorestorative strategies, including cell 

therapy (stem cell products or mature/functionally differentiated cell-derived cell 

therapy products according to classification of US Food and Drug Administration,85  

neurostimulation/neuromodulation, neuroprosthesis, neurotization or nerve bridg-

ing, neurorehabilitation and combined therapies, can restore patients with chronic 

complete SCI to some degree of neurological functions.4 From the inception of the 

Orphan Drug Act in 1983 through March 31, 2010, the Office of Orphan Products 

Development received 27 applications for orphan designation of stem cell-based 

products (SCBPs); the sources of orphan-designated SCBPs include human embry-

onic stem cells (hESCs), fetal porcine cells, peripheral blood, umbilical cord blood, 

mesenchymal tissue, olfactory tissue and bone marrow.5 The weight-bearing nature 

and flexible nature of vertebrae make it particularly susceptible to general SCI.6 

SCI is characteristically composed of primary injury and secondary injury.7 The 

primary phase is a direct consequence of physical trauma to the spinal cord, and it 

can cause the discontinuation of axonal projections to release neurotoxic compounds 

and inflammatory mediators that contribute to neuronal and oligodendroglial cell 
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death.8 The secondary pathological injury is a complex 

damage in the cellular level and occurs over the hours, days 

and even weeks following the initial injury, including loss 

of myelin, degeneration of axons and formation of a glial 

scar that inhibits spontaneous regeneration, and these pro-

cesses can cause a significant degeneration and consequent 

functional loss.8,9 Furthermore, some factors can contribute 

to the events after primary SCI, including unbalance of 

ion, glutamate release and lipid peroxidation.10 Until now, 

a considerable amount of research has been carried out to 

find a more effective way to restore SCI functions. However, 

there is still no neuroprotective and regenerative therapies 

for the injured spinal cord.

Stem cell transplantation was first applied to the patients 

with cancers of the blood and bone marrow in the 1950s.11 

Stem cells are defined as cells with the ability to renew 

themselves continuously and possess pluripotent ability to 

differentiate into many cell types under particular physi-

ological conditions.12 Stem cells are classified into embryonic 

stem cells (ESCs), fetal stem cells (FSCs) or adult stem cells 

(ASCs) based on their origin.13 Stem cell-based therapies 

hold promise of widespread applications particularly in SCI 

areas.14 The main advantage of stem cells for treating SCI is 

their self-renewal capacity. Cell transplantation is considered 

to be a feasible means to compensate for injury-induced cell 

and tissue loss following SCI.15

The goal of this brief review was to review the recent 

studies about stem cell-based therapies and advances in the 

SCI treatment. Further understanding of the potential of 

stem cell-based therapies may lead to additional therapeutic 

alternatives in SCI.

Neural stem cells (NSCs)
NSCs are multipotent populations with the ability to dif-

ferentiate into neurons, oligodendrocytes and astrocytes.16 

NSCs are derived from the central nervous system (CNS), 

including the subventricular zone, the dentate gyrus of the 

hippocampus and the central canal of the spinal cord.17,18 

Many studies have explored the possibility of trying to pro-

mote functional recovery by transplanting NSCs after SCI. 

The grafted NSCs can differentiate into appropriate mature 

neurons.19 However, the transplanted NSCs maintain in the 

state of undifferentiation or are differentiated along the glial 

lineage after transplantion,20 and the past research showed 

inconsistent results for functional recovery after transplan-

tation. Several studies have overcome the environment 

unfavorable to neuronal differentiation and achieved good 

neuronal differentiation of grafted NSCs.21,22 Therefore, how 

to promote the neuronal differentiation tends to be the most 

concerned thing for transplantation of NSCs.

NSCs-based therapies can not only fill lesion cavities but 

also provide a supportive substrate for axon regrowth.23 Axon 

regeneration is considered as the one way to restore function 

after severe SCI.24 A previous study confirmed that trans-

plantation of NSCs can cause the long-distance outgrowth of 

axons from the graft.25 However, this study showed that the 

axons could not regenerate beyond a limited distance within 

the transplant and enter the host spinal cord. Furthermore, 

demyelination is one major reason to contribute to functional 

deficits after SCI.26,27 After severe contusive SCI, surviving 

axons can exhibit demyelination because of the oligoden-

droglial cell death and limited oligodendrocyte renewal.28,29 

Oligodendrocyte differentiation of endogenous neural stem 

cells is inadequate to promote remyelination after SCI. The 

implanted NSCs are capable of replacing lost oligodendro-

cytes and remyelinating spared axons and might be helpful 

to the restoration of function after SCI.30,31 Another study 

have also shown that transplantation of NSCs is effective to 

replace oligodendrocytes and promote the remyelination of 

surviving axons after SCI.32 Therefore, implantation of NSCs 

has been considered as a potential remyelination strategy for 

the treatment of SCI.

Mesenchymal stem cells (MSCs)
MSCs are multipotent prototype or stromal cells having 

multilineage potential that can differentiate into adipocytes, 

myocytes, osteocytes and chondrocytes, and the MSCs can 

be isolated from bone marrow, adipose tissue, placenta, 

amniotic fluid and umbilical cord.18 In the current review, 

we present our recent understandings on the applications 

of bone marrow-derived mesenchymal stem cells (BMSCs) 

and adipose-derived stem cells (ADSCs) in the treatment 

of SCI.

BMSCs are one of the most studied cell types for SCI.33,34 

BMSCs can be isolated from bone marrow because of their 

property of tendency to adhere to tissue culture plastic.35 

BMSCs have the following advantages: easy to isolate and 

culture, low immunogenicity, pluripotency and capability 

to form different phenotypes.36 Although previous studies 

have shown that the transplantation of BMSCs can increase 

sensory function after SCI, the effects on SCI-induced 

chronic neuropathic pain are unclear.37–39 BMSCs have been 

reported to overcome germ layer commitment and differen-

tiate into neuron-like cells expressing neuronal markers.40 

The transplantation of BMSCs can promote the secretion of 

various immunoregulatory macromolecules that contribute to 
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create regenerative microenvironments in the injured spinal 

cord.41 The immunoregulatory phenomenon was consid-

ered to be a multifactorial process that requires both direct 

intercellular contacts and contact-independent paracrine 

signaling governed through various molecules, including 

prostaglandin E2 (PGE2), interleukin 6 (IL-6), interleukin 10 

(IL-10), inducible nitric oxide synthase (iNOS), indoleamine 

2,3-dioxygenase (IDO), tumor necrosis factor-inducible gene 

6 protein (TSG-6) and so on.42 These molecules participate 

in the processes of proliferation, differentiation, migration or 

apoptosis in different immune cells.43 Furthermore, a previ-

ous study showed that infusion of BMSCs could lead to a 

more reducing cysteine (Cys) and glutathione (GSH) redox 

state and had antioxidant effects in vivo.44 A previous study 

suggested that treatment with BMSCs had a positive effect 

on behavioral outcome and histopathological assessment 

after SCI.45 In other studies, the authors injected BMSCs 

intravenously, and this could facilitate remyelination after 

SCI and locomotor recovery.46,47 Compared with intraspi-

nal injection, intravenous injection has the advantage of 

minimally invasive and minimal hemorrhage incidence.48 A 

recent study showed that using magnets could increase the 

targeting efficiency and enhance the efficiency of stem cell 

delivery in SCI.48,49 However, the underlying mechanisms of 

BMSCs’ protective effects in SCI are still unclear and need 

to be further investigated.

ADSCs are isolated from the stromal vascular fraction 

(SVF) of adipose tissue, and they have a strong resemblance 

to BMSCs due to their common cell surface markers, similar 

gene expression profiles and similar differentiation poten-

tials.50–52 ADSCs have recently been identified as alternative 

stem cells, and previous studies have shown that the cells 

could survive and integrate into the spinal cord.53,54 ADSCs 

have been an ideal choice for cell replacement therapy, and 

ADSCs have the following advantages: easy to isolate and 

culture, reliable biosafety and free of immunogenicity.55,56 A 

previous study that used rat models of spinal cord contusion 

injury showed that injection of ADSC-transdifferentiated 

motor neurons into the impact site and transplantation of glial 

cell line-derived neurotrophic factor–gelfoam complex into 

the myelin sheath after 7 days exhibited beneficial effects 

on recovery of motor function.57 Transplanted ADSCs can 

significantly decrease astrocytic network and stimulate axonal 

sprouting.58 Moreover, transplantation of three-dimensional 

(3D) cell mass of adipose-derived stem cells (3DCM-ADSCs) 

significantly improved functional recovery compared with 

transplantation of ASCs, and this finding may be effective 

for the treatment of SCI and neural ischemia.59 Neurogenin-2 

(Ngn2) is a gene that promotes neuronal differentiation, 

and a previous study showed that transplantation of Ngn2- 

overexpressed ADSCs can improve the local microenvi-

ronment and promote the functional recovery after SCI.60 

Therefore, this study suggested that ADSCs might provide 

an ideal source for further stem cell research with potential 

therapeutic application for SCI.

Embryonic stem cells (ESCs) and 
induced pluripotent stem cells 
(iPSCs)
ESCs are pluripotent cells derived from the inner cell mass 

of a 1-week blastocyst.61 The chief difficulty with the use of 

ESCs is the immunogenicity, and then, ESCs can stimulate 

the immune response.62 Transplantation of ESCs may be a 

practical approach to treat SCI because they can be repeatedly 

passaged in culture and differentiated into neuronal or glial 

cells for transplantation.63 ESCs can directly differentiate to 

oligodendrocytes and secrete trophic factors, such as hepa-

tocyte growth factor and brain-derived neurotropic factor 

(BDNF), which may be beneficial for promoting axonal 

regeneration and neurite outgrowth after SCI.64 In another 

study, the implanted ESCs could not only restore lost myelin 

in the injured spinal cord but also differentiate into mature 

oligodendrocytes that were capable of myelinating axons.65 

Thus, at present, transplantation of hESC-derived neural 

cells, including neuron and oligodendrocytes, is a promising 

therapy for SCI.66

iPSCs are a type of pluripotent stem cells that can be 

created from adult somatic cells by “reprogramming” via the 

transduction of pluripotency genes.6 iPSCs are envisaged as 

advanced source for cell replacement therapy in regenera-

tive medicine.67 The key advantage of iPSCs for human cell 

therapy is avoiding immune rejection, ethical constraints 

and tissue donation.68 However, iPSCs have the potential for 

uncontrolled proliferation and even tumor formation after 

transplantation in SCI models.69 Therefore, a careful screen-

ing of oncogenic capacity is essential prior to transplantation. 

Some previous studies have developed useful and attractive 

methods to solve the problem of tumorigenicity. Itakura et al70 

found that immunoregulation could ablate tumors that are 

formed after transplantation, and this probably has to do with 

the infiltration of inflammatory cells, such as lymphocytes 

and microglia. Another study showed that inhibition of Notch 

signaling could induce the NPCs to more mature cells with 

limited proliferation.71 Furthermore, a recent study showed 

that neuroepithelial-like stem cells from human iPSCs (hiPS-

lt-NES cells) could differentiate into neural lineages in the 
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mouse model of SCI and promote functional recovery of hind 

limb motor function after transplantation.72 Romanyuk et al73 

used a rat model of thoracic contusion in SCI, and the result 

showed that transplantation of neural precursors derived from 

human iPSCs (iPSC-NPs) 1 week after SCI promoted tissue 

sparing and improvement in motor function. The transplanta-

tion field of iPSCs is rapidly progressing, and transplanta-

tion of iPSCs’ products can produce functional recovery by 

replacing lost cells and/or modulating the microenvironment; 

yet iPSCs should be transplanted with caution because of the 

safety of the cell lines and the risk of tumor formation, which 

can be harmful to patients.

Problems to overcome in the 
application of stem cells for SCI
In this review, we focus on the stem cell therapies that have 

the potential to repair the injured spinal cord, and the com-

parison between different types of stem cells is summarized 

in Table 1. Although recently stem cell therapies have made 

great progress and are widely accepted in the treatment of 

SCI for promoting morphological recovery and functional 

recovery via various mechanisms (Figure 1), but they still 

face great challenges. First, the insufficient sources and ethi-

cal constraints concerning stem cells greatly hindered their 

clinical application.15 Although iPSCs are envisaged as an 

advanced source for cell replacement therapy without these 

problems, yet studies with animals are urgently required to 

demonstrate the efficacy and safety of replacement therapy of 

iPSCs. Moreover, the issue of stem cell tumorigenicity needs 

to be considered. Second, the transplanted stem cells often 

maintain in the state of undifferentiation, and the neuronal 

induction efficiencies are lower than desirable. The inhibi-

tory microenvironment of injured spinal cord is mainly due 

to local expression of inhibitory factors and glial scar, and 

the microenvironment can limit the regenerative capacity 

of endogenous or transplanted cells.74,75 Therefore, how to 

improve the microenvironment after SCI is related to the 

survival and differentiation of transplanted stem cells.

Furthermore, another problem is that the transplanted 

stem cells must be able to make right connections with 

the host neural network. During recent decades, with the 

development of tissue engineering, engineered biomateri-

als have been explored for their ability to support axonal 

regrowth and neuronal differentiation, and more and more 

biomaterials are applied to stem cell-based replacement 

Table 1 Comparison between different types of stem cells

Types of stem cells Therapeutic mechanisms and advantages Disadvantages

NSCs Neuronal replacement therapy
Remyelinate the demyelinated axons
Secrete neurotrophic factors
Ameliorate T-cell receptor-mediated T-cell activation and inhibit signaling 
of inflammatory cytokines in immune cells

Undifferentiation or differentiation along 
the glial lineage after transplantation
Ethical constraints

MSCs Immunomodulation
Anti-apoptotic effects
Secrete neurotropic factors and cytokines
Permissive cellular substrate for promotion of host axonal growth
Easily extracted and cultivated in large numbers
No ethical constraints

Tumorigenicity

ESCs Can be repeatedly passaged in culture
Differentiate into neuronal or glial cells
Secrete trophic factors

Immunogenicity
Ethical constraints

iPSCs Avoid immune rejection
No ethical constraints and tissue donation

Tumorigenicity
Genetic and epigenetic abnormalities

Abbreviations: NSCs, neural stem cells; MSCs, mesenchymal stem cells; ESCs, embryonic stem cells; iPSCs, induced pluripotent stem cells.

Figure 1 Major stem cell sources and the therapeutic focus of transplantation of 
stem cells in SCI.
Abbreviations: SCI, spinal cord injury; BMSCs, bone marrow-derived mesenchymal 
stem cells; ADSCs, adipose-derived stem cells; ESCs, embryonic stem cells; iPSCs, 
induced pluripotent stem cells.
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therapy of SCI. The biocompatible scaffold can provide 

3D space; appropriate chemical, physical and mechanical 

properties for cell proliferation and differentiation and tissue 

formation and has the potential to transform the inhibitory 

microenvironment into a permissive transplant microenviron-

ment, which further promotes axonal regrowth.76,77 Several 

types of biomaterials have been suggested for achieving 

improved functional recovery in the patients with SCI. In a 

recent study, implanting cetuximab-modified linear-ordered 

collagen scaffolds (LOCS) into SCI lesion sites in dogs 

could decrease chondroitin sulfate proteoglycan (CSPG) at 

the lesion site and results in neuronal regeneration and sig-

nificant locomotion recovery.78 Furthermore, new 3D culture 

systems have emerged recently that have demonstrated not 

only the feasibility of creating complex, organized spinal 

tissue but also how bioengineered 3D scaffolds can be used 

to control the transplant microenvironment.79 A previous 

study demonstrated that a collagen/heparin sulfate scaffold 

fabricated by a 3D bioprinter could enhance the mechani-

cal properties of collagen and provide continuous guidance 

channels for axons, which would improve the neurological 

function in the patients with SCI.80 Moreover, nanoparticles 

can deliver the therapeutic molecules to the target tissue of 

interest and reduce the side effects of untargeted therapies in 

unwanted areas; hence, nanobiomedical systems are believed 

to be potential to provide new therapeutic availability for the 

treatment of SCI.81 Thus, combining neural tissue-engineered 

scaffolds with stem cell-based therapies can improve trans-

plant efficacy and foster host tissue regeneration, and this 

combination is the future direction of the stem cell-based 

therapies following SCI.

Moreover, administration of drug or trophic factors is also 

a treatment strategy for promoting regeneration of injured spi-

nal cord, and the combination therapy is expected to provide 

superior clinical effectiveness.82 Karimi-Abdolrezaee et al83 

added growth factors (epidermal growth factor, basic fibroblast 

growth factor, platelet-derived growth factor) to chondroitinase 

ABC (C-ABC) and administrated them in the rats after SCI, 

and this treatment could enhance proliferation of endogenous 

NPCs, increase new vascular formation and suppress inflam-

matory reaction. In another study, semaphorin-3A inhibitor 

was administered to transect spinal cord of rats, and it could 

promote the elongation of neuronal axons and enhance the 

Schwann cell-mediated myelination and angiogenesis.84

Taken together, although stem cell-based therapies had 

some problems at present, but they still have good developing 

prospects, and further investigations will be needed in order 

to improve the transition to the clinic.

Conclusion
The main goals of stem cell-based therapies for SCI are the 

neuron replacement and neurological, structural and func-

tional restoration after SCI. Stem cell-based therapies hold 

great promise to become an effective therapeutic approach 

for SCI. Although there are a few different types of stem 

cells that can serve as a renewable cell source in cell-based 

therapy for patients suffering from SCI, yet which type of 

stem cells is most suitable for cell replacement therapy in 

patients with SCI still needs to be clarified. Furthermore, 

the efficacy, safety and ethical concerns of stem cell-based 

replacement therapy continue to be challenged.
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