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Abstract: Receptor tyrosine kinases mediate the extracellular signals and transmit them 

into the cytoplasm by activating intracellular proteins through tyrosine phosphorylation. Both 

Ephs and platelet-derived growth factor (PDGF) receptors (PDGFRs) have been implicated in 

neurogenesis, but the functional interaction between these two pathways is poorly understood. 

Here, we demonstrated that EphA4 directly interacts with PDGFRβ and mutually activates 

each other when expressed in HEK293T cells. H9-derived neural stem cells express Ephs 

and PDGFRs, and their proliferation is stimulated by ephrin-A1 and PDGF-BB with further 

augmentation by their combined application. As both EphA4 and PDGFRβ play important 

roles in preventing neurodegeneration and promoting neuroprotection, their interaction and 

transactivation might transduce the signal through the EphA4/PDGFRβ complex and augment 

the proliferation of neural stem cells.
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Introduction
Receptor tyrosine kinases (RTKs) constitute a distinct family of transmembrane proteins 

present only in multicellular animals. These proteins transduce extracellular signals 

into the cytoplasm and are implicated in regulating cell growth, proliferation, migra-

tion, differentiation, and apoptosis.1–4 As the largest RTK subfamily, Eph receptors 

have type A and B subclasses according to their specificity to bind with their ligands, 

ephrins.5 In general, EphAs are bound with ephrin-As and EphBs are bound with 

ephrin-Bs; however, cross-specificity is also present. The ephrin-A class of ligands 

has a glycosyl phosphatidylinositol linkage to contact the cell membrane, whereas the 

ephrin-B class of ligands has a different structure containing a short cytoplasmic and 

transmembrane domain. Cell–cell contact-dependent signaling pathway from ephrins 

to Ephs (forward signaling) or from Ephs to ephrins (reverse signaling) regulates many 

physiological and developmental processes. Bidirectional signaling possesses many 

functions, including neural stem cell maintenance and plasticity regulation in the 

proliferation zone of adult brain,6,7 neuron migration,8 axon guidance,9 angiogenesis,10 

bone homeostasis,11 embryonic patterning,12 tumorgenesis,13–18 insulin secretion,19 and 

so on. EphA4 expression is very high in the brain, and recently, EphA4 has been pro-

posed to be implicated in Alzheimer’s disease (AD),20,21 Parkinson’s disease (PD),22,23 

amyotrophic lateral sclerosis (ALS),24 and other neurodegenerative diseases. Hence, 

EphA4 may have functions for protecting neuron loss and reversing the aging cells. To 

further explore the EphA4-mediated signaling pathways and their biological functions 
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in the brain, one important thing is to detect the signaling 

molecules interacting with EphA4.

Platelet-derived growth factor (PDGF) family of RTKs 

represents another signaling pathway. PDGF growth factors 

include four distinct subclasses (A–D) that bind to their 

receptors, PDGFRα and PDGFRβ, after dimerization.25–27 

PDGF, as a novel factor for neuron protection and neuron 

growth, plays a key role in regulating neurogenesis and hence 

is the mutation target of neurodegenerative diseases.28–31 

Bush et al reported that PDGF-BB is implicated in playing 

key roles in neural stem/progenitor cell (NPC) proliferation 

and neurogenesis under the condition of HIV-associated 

neurological disorders. They observed that PDGF-BB could 

restore the hippocampal NPC proliferation through cognate 

receptors of HIV Tat-cocaine. PDGF-BB also regulates NPC 

proliferation and neurogenesis through miR-9/MCPIP1 

axis.29,32 Zachrisson et al33 found that PDGF-BB is effective 

in counteracting histological, behavioral, and biochemical 

changes in the experimental rat model of PD. Treatment with 

PDGF-BB normalized the rotational behavior, and the effect 

lasted for 10 weeks. Paul et al34 found that intracerebroven-

tricular (ICV) injection in PD individuals was tolerated well at 

all doses tested, supporting PDGF-BB as a proper candidate 

for further treatment of PD patients.

We have previously reported that ephrin-A1 injection 

reverses neuronal regeneration and alleviates the symptoms 

in a 6-OHDA-lesioned PD rat model,23 and that the inter-

action of EphA4 and FGFRs promotes mouse embryonic 

NPC proliferation and neurogenesis via FRS2α and ERK1/2 

downstream of the FGF/FGFR signaling.35,36 Here, we found 

that EphA4 and PDGFRβ have a direct interaction and can 

transactivate each other when coexpressed in cells. PDGF-

BB and ephrin-A1 appear to enhance proliferation of neural 

stem cells, suggesting that these ligands might be good 

candidates for curing neurological diseases such as AD and 

related disorders in human.

Materials and methods
Reagents
Recombinant human PDGF-BB (Cat. #220-BB), recombi-

nant human ephrin-A1-Fc (Cat. #6417-A1), and recombinant 

human IgG(Fc) were purchased from R&D Systems, Inc. 

(Minneapolis, MN, USA). In this study, we used clustered 

ephrin-A1-Fc in which 1 mg ephrin-A1 was oligomerized via 

incubation with 2.4 mg of recombinant human IgG(Fc) for 

>1 h according to the manufacturer’s instructions. PDGFR 

inhibitor STI571 was purchased from Selleck (Munich, 

Germany). The following primary antibodies were used in 

this study: mouse anti-HA, rat anti-HA (Hoffmann-La Roche 

Ltd., Basel, Switzerland; 1:4,000); mouse anti-FLAG M2 

(Sigma-Aldrich, St Louis, MO, USA; 1:4,000); rabbit anti-

EphA4, rabbit anti-PDGFRβ, and mouse anti-GFP (Santa 

Cruz Biotechnology Inc., Dallas, TX, USA; 1:2,000); and 

mouse anti-phosphotyrosine (EMD Millipore, Billerica, 

MA, USA; 1:4,000).

Cell culture
Mammalian HEK293T cells (Clontech, Mountain View, 

CA, USA) were cultured as previously reported.37 Neural 

stem cells derived from H9 human embryonic stem cells 

(H9-NSCs) were obtained from Thermo Fisher Scientific 

(Waltham, MA, USA) and cultured following the manufac-

turer’s protocols.38 Cells were passaged to generation 3 for 

RNA extraction, cell proliferation assay, or immunoprecipita-

tion and immunoblotting.

Reverse transcription (RT)-polymerase 
chain reaction (PCR)
H9-NSCs were rinsed with PBS after 3-day culture. The cells 

were homogenized using TRI Reagent (Sigma-Aldrich; Cat. 

#T9424), and total RNA was then extracted using standard 

methods. RT and subsequent PCR were performed using the 

conditions as previously reported.36 The product sizes and the 

forward and reverse primer sequences are presented in Table 1.

Plasmid transfection
EphA4 and PDGFRβ eukaryotic expression vectors were 

constructed as previously reported.37,39 Mutants of EphA4 

and PDGFRβ plasmids were constructed using QuikChange 

Lightning Site-Directed Mutagenesis Kit (Stratagene, Santa 

Clara, CA, USA)  following standard instructions. Plasmid 

transient transfection was performed using PerFectin (Gen-

lantis, San Diego, CA, USA) into HEK293T cells. Before 

ligand stimulation, HEK293T cells or H9-NSCs were starved 

in serum-free medium containing 0.5% (m/v) bovine serum 

albumin (Sigma) for 5 h.

Immunoprecipitation and immunoblotting
Cells were harvested in lysis A buffer with 50 mM 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buf-

fer, 1% Triton X-100, 5 mM ethylene diamine tetraacetic 

acid, 50 mM sodium chloride, protease inhibitors (1 µM 

pepstatin A, 1 mM phenylmethylsulfonyl fluoride, 1 µM 

leupeptin, and 1 µM aprotinin), and phosphatase inhibitors 

(50 mM sodium fluoride, 10 mM sodium pyrophosphate, 

and 1 mM sodium orthovanadate). Immunoprecipitation was 
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Table 1 Primers used in this research

Primer Sequence (5¢–3¢) Length (bp) NCBI code

hEpha1-F ATGCACTGCAGCCCTGATGG 644 NM_005232
hEpha1-R CTCGGTTCTTTCTTCACCAG
hEpha2-F GTTCACCAAGATTGACACCA 791 NM_004431
hEpha2-R TAGTTCATGTGGGGCTCCAG
hEpha3-F CAGCCAGCGATGTATGGAGT 463 NM_005233
hEpha3-R GTGACACCAACCTTTTTCAT
hEpha4-F TCGAGGCTCCTGTGTCAACAACTC 642 NM_004438
hEpha4-R GATGATGGTGCTGCTTGGTTG
hEpha5-F CATGTGCAAGGCAGGATATG 623 NM_004439
hEpha5-R CATTGGGACGATCTGGTTCT
hEpha6-F TTCTGACATGGCAGCAGAAC 483 NM_001080448
hEpha6-R ACAACCCCTTCTAGGCGAAT
hEpha7-F GGAAAAATTCCAGTAAGGTG 518 NM_004440
hEpha7-R ATCCCTAAACTCATCACATC
hEpha8-F GCCAGTTCCTCAAAATCGAC 608 NM_020526
hEpha8-R TGTCCCATTCACACTGGAGA
hEpha10-F ATGCCCATGATGAAGAGGAG 556 NM_001099439
hEpha10-R ATCTTGCAGACAAGGTCGCT
hEphb1-F TCAGTGGCAAGATGTGCTTC 365 NM_004441
hEphb1-R CAAACGCCCCTTGTACACTT
hEphb2-F TGAGTCAAGCCAGAACAACT 542 NM_017449
hEphb2-R GCCGTCCCCGTTACAGTAGA
hEphb3-F ACCCCAATATAATCCGGCTC 463 NM_004443
hEphb3-R TGGTTGCTCATGTCCCAGTA
hEphb4-F AAGCAGAGCAATGGGAGAGA 575 NM_004444
hEphb4-R ACTTTGCAGACGAGGTTGCT
hEphb6-F GGGCAGCCCCAGAGGTCATT 473 NM_004445
hEphb6-R GCTGAGCTGAGCCACATCAC
hGapdh-F GAGTCAACGGATTTGGTCGT 512 NM_002046
hGapdh-R TGTGGTCATGAGTCCTTCCA
hEfna1-F CCATGACAATCCACAGGAGA 592 NM_004428
hEfna1-R GGCTTCCAAGCAAGAAACTG
hEfna2-F TGGAGGTGAGCATCAATGAC 384 NM_001405
hEfna2-R TATTGCTGGTGAAGATGGGC
hEfna3-F TCTGGATATTTACTGCCCGC 414 NM_004952
hEfna3-R TCCAGCACGTTGATCTTCAC
hEfna4-F TGGGCCTCAACGATTACCTA 584 NM_005227
hEfna4-R AATGCTCCATCTTGTCGGTC
hEfna5-F TACCTGGATGTTTTCTGCCC 546 NM_001962
hEfna5-R TGTGACAAGTGATGGGAGGA
hEphexin1-F ACCAAGAAGCTCTTCCACGA 524 NM_019850
hEphexin1-R CATTCCTTGAGGTTCTGGGA
hFrs2a-F ATGAACGAAGAGATGCACCC 502 NM_006654
hFrs2a-R AGGGGAGTTGTAGGCGTTTT
hFgfr1-F ATGGTTGACCGTTCTGGAAG 481 NM_001174066
hFgfr1-R CTTCACAGCCACTTTGGTCA
hFgfr2-F GTCCCATCTGACAAGGGAAA 522 NM_000141
hFgfr2-R TGTTACCACCATACAGGCGA
hFgfr3-F CTGAAAGACGATGCCACTGA 435 NM_000142
hFgfr3-R GCCGTTGGTTGTCTTCTTGT
hFgfr4-F CAAAGACAACGCCTCTGACA 516 NM_002011
hFgfr4-R ATCCCAAAAGACCACACGTC
hPdgfra-F AATCTGGACACTGGGAGATTCG 381 NM_006206
hPdgfra-R TGGCAGAGGATTAGGCTCAG
hPdgfrb-F AGGATCGCTCTGTGAGCAAC 346 NM_002609
hPdgfrb-R TCCTCCTTACTGCCCTCTCC
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performed with indicated antibodies overnight at 4°C; after 

a wash for three times in washing buffer, immunoblotting 

was performed with diluted primary antibodies following the 

manufacturer’s instructions using the standard procedure.37 

To confirm reproducibility, experiments were performed 

more than once.

Cell proliferation assay
Cell proliferation was measured using a CellTiter96 Aqueous 

One Solution Cell Proliferation Assay (MTS) kit (Promega, 

Madison, WI, USA) according to the manufacturer’s protocol. 

In brief, cells (1 × 103) were starved overnight and then seeded 

on 96-well plastic plates in a normal medium with growth fac-

tors. The indicated ligands (PDGF-BB, 20 ng/mL; ephrin-A1, 

0.5 µg/mL) were added into the culture wells in a medium free 

of growth factors. After cultured for 3 days in the new media at 

37°C, the cells were further incubated with CellTiter96 Aqueous 

One Solution Reagent for 1 h. The absorbance was recorded 

at 490 nm wavelength using a 96-well plate reader (iMarkTM; 

Bio-Rad Laboratories Inc., Hercules, CA, USA).

Statistical analysis
Data are analyzed using Graphpad Prism 6 by two-way 

ANOVA followed by Dunnett’s multiple comparison tests. A 

value of p<0.0001 was considered as statistically significant 

difference. All the values were expressed as mean±SD.

Results
Interaction between EphA4 and PDGFRβ
To evaluate the interaction between PDGFRβ and EphA4, 

both molecules were overexpressed in HEK293T cells, and 

their binding was examined using the immunoprecipitation 

and immunoblotting method. pcDNA3.1 plasmid was used 

to equalize the total amount of DNA in each transfection. As 

shown in Figure 1, the endogenous PDGFRβ was detected 

difficultly by immunoblotting with a specific antibody, 

while PDGFRβ expression level increases strongly under 

the elevated amount of exogenous PDGFRβ, and a com-

plex formation of EphA4 and PDGFRβ was detected by 

immunoblotting followed by immunoprecipitation using the 

antibodies shown. The result also demonstrated that their 

direct interaction is in their protein dose-dependent fashion.

Transphosporylation between EphA4 and 
PDGFRβ
To investigate the functional consequences of ectopically 

expressing PDGFRβ and EphA4 and their subsequent  complex 

formation, we next analyzed the  transphosphorylation of 

EphA4 and PDGFRβ when transiently coexpressed in 

mammalian cells. We overexpressed EphA4 expression 

vector in HEK293T cells together with expression vector 

for PDGFRβ(KD), a kinase-inactive mutant of PDGFRβ 

in which an Ala residue was substituted for Tyr-634 

( Figure 2A).40 Immunoblotting with an antiphosphotyrosine 

antibody followed by immunoprecipitation with a specific 

antibody of the kinase-inactive mutant of PDGFRβ in cells 

coexpressing EphA4(WT) has verified that EphA4 self-

phosphorylated by overexpression in HEK293T cells causes 

the activation of kinase-inactive PDGFRβ mutant through 

tyrosine phosphorylation. Meanwhile, expression vector 

for PDGFRβ(WT) was ectopically transfected in HEK293T 

cells together with the expression vector for EphA4(KD), 

a kinase-inactive mutant of EphA4 in which a Met residue 

was substituted for Val-653. The experiment also shows that 

PDGFRβ in HEK293T cells activated by exogenous trans-

fection induces the kinase-inactive EphA4 mutant tyrosine 

phosphorylation (Figure 2B).

Inhibition of the interaction between 
EphA4 and PDGFRβ by an EphA4 
dominant-negative mutant, EphA4 
(ΔJM,KD)
EphA4(ΔJM,KD), in which 591–602 amino acids were 

deleted and a Met residue was substituted for Val-653, was 

Figure 1 Complex formation of EphA4 and PDGFRβ in transfected HEK293T cells.
Notes: HEK293T cells were cotransfected with pcDNA/EphA4-HA (0.6, 0.7, 1.3, and 
1.6 μg per 6 cm plate, respectively) and increasing concentrations (0, 1.0, 3.0, and 
5.0 μg per 6 cm plate) of pcDNA/PDGFRb-3Flag. Direct interaction was detected by 
SDS-PAGE and IB using anti-Flag antibody following IP using anti-HA antibody.
Abbreviations: IB, immunoblotting; IP, immunoprecipitation; PDGFRβ, platelet-
derived growth factor receptor β; SDS-PAGE, sodium dodecyl sulfate polyacrylamide 
gel electrophoresis.

EphA4-HA 0.6 0.7 1.3 1.6

PDGFRβ
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0
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used to inhibit the interaction between EphA4 and FGFR to 

prove that EphA4 transphosphorylates FGFR.36,41 Here, we 

examined whether EphA4(ΔJM,KD) could also inhibit bind-

ing of EphA4 to PDGFRβ. Fixed amounts of PDGFRβ (2 µg 

per 6 cm plate) and EphA4(WT) (1 µg per 6 cm plate) were 

coexpressed with increasing amounts of EphA4(ΔJM,KD) in 

HEK293T cells, and the binding of EphA4 to PDGFRβ was 

analyzed. We found that EphA4(ΔJM,KD) inhibited the inter-

action between EphA4 and PDGFRβ in a dose-dependent 

fashion (Figure 3A). Results show that EphA4(ΔJM,KD) is 

also a molecule that inhibits the signaling pathway through 

the Eph–PDGFRβ complex.

The next step was to analyze whether there is a dominant- 

negative effect; the expression vector for EphA4(ΔJM,KD) 

was transfected into HEK293T cells together with the 

expression vectors for EphA4 and PDGFRβ. Time course 

study shows that the peak of PDGFRβ tyrosine phos-

phorylation was at 15 min under PDGF-BB (100 ng/mL) 

stimulation ( Figure 3B). When cotransfected fixed amounts 

of EphA4(WT) and PDGFRβ(WT) in HEK293T cells, as 

shown in Figure 3C, EphA4(ΔJM,KD) significantly sup-

pressed PDGF-BB-mediated tyrosine phosphorylation of 

PDGFRβ(WT) at either 0 or 15 min (the peak of ligand 

stimulation). Results show that the binding of EphA4 to 

PDGFRβ is important for both EphA4 and PDGFRβ signal-

ing pathways.

Interaction of EphA4 and PDGFRβ in 
the proliferation of embryonic stem cells 
deriving neural stem cells
We investigated the expression patterns of EphAs and PDGFRs 

in the proliferative regulation of H9-NSCs. Almost all EphAs 

(EphA2, EphA4, EphA6, EphA7, EphA8, and EphA10) and 

all PDGFR family members (PDGFRα and PDGFRβ) were 

detected in the NSCs by RT-PCR (Figure 4A and B).

Figure 2 Tyrosine phosphorylation of EphA4 and PDGFRβ in transfected HEK293T cells.
Notes: Further direct interaction and tyrosine phosphorylation of kinase-inactive PDGFRβ(PDGFRβ(KD)) by EphA4 (A) and the kinase-inactive EphA4(EphA4(KD)) by 
PDGFRβ (B). HEK293T cells were cotransfected with pcDNA/PDGFRβ(KD) (2 μg per 6 cm plate) and increasing concentrations (0, 1, and 3 μg per 6 cm plate) of pcDNA/
EphA4(WT) or with pcDNA/EphA4(KD)-Flag (1.3, 1.2, and 1.0 μg per 6 cm plate, respectively) and increasing concentrations (0, 1, and 3 μg per 6 cm plate) of pcDNA/
PDGFRβ(WT). Direct interaction was further detected by IB with anti-Flag following IP with anti-PDGFRβ or anti-HA, respectively. Tyrosine phosphorylation and expression 
levels of PDGFRβ(KD) or EphA4(KD) were detected by immunoblotting with anti-pY, and anti-PDGFRβ, anti-Flag, or anti-Flag, anti-HA antibodies, respectively.
Abbreviations: IB, immunoblotting; IP, immunoprecipitation; PDGFRβ, platelet-derived growth factor receptor β.
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H9-NSCs show an increase in their cell number under 

PDGF-BB (20 ng/mL) and/or ephrin-A1 (0.5 µg/mL) 

stimulation after a 3-day culture when seeded on a matrigel-

coated plate (Figure 4C). We also evaluated the role of these 

ligands on cell proliferation of H9-NSCs using MTS assay 

(Figure 4D). Dunnett’s multiple comparison test followed by 

two-way ANOVA depicted that the optical density increased 

significantly under the stimulation with ephrin-A1-Fc 

(p<0.05) and PDGF-BB (p<0.0001), respectively, compared 

with nonstimulation. These results suggest that activation 

of the cells with endogenous Ephs or PDGFRs promotes 

proliferation of H9-NSCs. Furthermore, the optical density 

showed further increase (p<0.0001) under the stimulation 

with both ephrin-A1-Fc and PDGF-BB, suggesting enhanced 

proliferation of H9-NSCs by simultaneous stimulation with 

two ligands. Expression of the dominant-negative EphA4 or 

administration of STI571 (inhibitor of PDGFRs) strongly 

inhibited the proliferation of H9-NSCs under both ligands.

Discussion
In this report, we found that EphA4 and PDGFRβ bind to each 

other in a dose-dependent manner, and EphA4 and PDGFRβ 

transphosphorylate each other when transiently coexpressed in 

the same cells. A dominant-negative molecule of EphA4 can 

inhibit the interaction of EphA4 with PDGFRβ. Stimulation 

with PDGF-BB and ephrin-A1-Fc enhanced neural stem cell 

proliferation, and the receptor complex involving EphA4 and 

PDGFRβ might mediate the signaling pathway.

As reported previously, we found that the cytoplasmic 

domains of EphA4 and FGFRs interact with each other, and 

the protein complex can transphosphorylate each other when 

overexpressed or stimulated with their ligands, which rein-

forces downstream signaling through activation of FRS2α 

and ERK1/2. The receptor complex promotes NSC prolifera-

tion in response to combined simulation with ephrin-A1 and 

FGF2.35–37 In this study, we have demonstrated that PDGFRβ 

also binds to and phosphorylates EphA4. The signal through 

the PDGFRβ/EphA4 complex augments NSC proliferation 

under the stimulation by PDGF-BB and ephrin-A1.

PDGF-BB is a member of the PDGF family comprising 

other four ligands (PDGF-AA, -CC, -DD, and -AB) that 

interact with two RTKs, PDGFRα and PDGFRβ.25–27 When 

PDGFRs are activated with ligands, they interact with and 

 phosphorylate many downstream proteins, including the dock-

Figure 3 Inhibition of PDGFRβ-EphA4 binding by a dominant-negative EphA4.
Notes: (A) Inhibition of EphA4-PDGFRβ binding by EphA4(ΔJM,KD)-green fluorescent protein (GFP). EphA4-Flag and PDGFRβ were coexpressed with increasing doses 
of EphA4(ΔJM,KD)-EGFP in HEK293T cells, and the binding of EphA4-Flag and PDGFRβ was examined by IB with or without immunoprecipitation (IP) using the antibodies 
shown following SDS-PAGE. Binding of PDGFRβ with EphA4-Flag was examined with IP followed by SDS-PAGE and IB using the antibodies shown. (B and C) Inhibition of the 
ligand-mediated receptor phosphorylation by EphA4(ΔJM,KD), tagged with GFP. Time course of PDGF-BB mediated PDGFRβ phosphorylation (B). By using a pcDNA3.1-
based transient transfection, EphA4-Flag and PDGFRβ were coexpressed in HEK293T cells with or without EphA4(ΔJM,KD)-GFP, the PDGFRβ phosphorylation was 
examined with IP by anti-PDGFRβ followed by IB by anti-pY upon 0 and 15 min stimulation with 100 ng/mL PDGF-BB (C).
Abbreviations:  IB, immunoblotting; IP, immunoprecipitation; PDGFRβ, platelet-derived growth factor receptor β; SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel 
electrophoresis.
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ing proteins, FRS2α, which coordinately activates multiple 

signaling pathways through the protein complex formation.42 

PDGF-BB plays key roles in the in vitro proliferation30 and 

neuronal differentiation of neural stem cells derived from 

the embryonic hippocampus.32 Furthermore, PDGF signal-

ing prevents the cerebral hemisphere from cryogenic injury 

in adulthood mice.43 Conditional disruption of PDGFRβ 

shows deficits in fear conditioning, prepulse inhibition, 

spatial memory, social interaction, and forced swimming.44 

EphA4 signaling mediates axon guidance, neuronal bound-

ary formation, cell growth, angiogenesis, and cell migra-

tion.45 Deletion of EphA4 in mice shows deficiency such as 

hindlimb locomotion, neuron differentiation, and migration 

during corticogenesis, midline axon guidance, and small body 

size.35,46–48 Among the abnormalities during the development, 

resembling defects in dendritic spine density, impairment in 

hippocampus-dependent memory formation, and long-term 

potentiation are caused by deletion of either PDGFRβ or 

EphA4, suggesting neuron development and maturation 

require the presence of both PDGFRβ and EphA4.21,49,50 These 

findings suggest that the PDGFRβ/EphA4 receptor complex 

mediates a variety of signals.

Miao et al51 reported that ephrin-A1 attenuated ERK acti-

vation through PDGF signaling and exerted the antimitogenic 

functions in a cell-type-specific manner. This is in contrast 

to our findings. The reason for this difference might be 1) 

we used clustered ephrin-A1 by pretreating soluble ephrin-

A1-Fc with anti-IgG(Fc), and 2) we used neural stem cells 

in our study, while Miao et al used prostatic epithelial cells 

and endothelial cells.

Recent reports in animal studies showed that ICV 

injection of either PDGF-BB for 2 weeks or clustered 

Figure 4 Interaction of Ephs and PDGFRs in the proliferation of human NSCs.
Notes: (A and B) Expression of all Eph receptors, ephrin ligands, FGFRs, PDGFRs, and related molecules in H9-NSCs. RT-PCR was performed with equal amounts of total 
RNA isolated from H9-NSCs. Fragment lengths are indicated on the left in base pairs. (C) Proliferation of H9-NSCs on a matrigel-coated plate. Cells were seeded as single 
cells onto a 24-well plate coated with matrigel in a normal medium and incubated overnight. The cells were exposed to the indicated reagents (ephrin-A1, 0.5 μg/mL; PDGF-
BB, 20 ng/mL) in a growth factor-free medium and kept in the same medium for 3 days. The pictures were taken using a phase-contrast microscopy. The bar represents 
100 μm, N=5. (D) Cell proliferation of H9-NSCs was also quantitated by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, 
inner salt assay in the H9-NSCs cultured in normal medium or in medium exposed with ephrin-A1 and/or PDGF-BB. Some H9-NSCs bearing EphA4(ΔJM,KD) using a 
retrovirus vector, while some cells were pretreated with STI571 before stimulation. The absorbance at 490 nm of each well was measured as described in experimental 
procedures. Values were analyzed using two-way ANOVA followed by multiple comparison test; the error bar represents SD. *p<0.0001 compared to the controls. The 
optical density of cells incubated with ephrin-A1 and/or PDGF-BB were significantly higher than that of nonstimulated cells. A1: ephrin-A1-Fc; P: PDGF-BB; N=5.
Abbreviations: NSCs, neural stem cells; PDGFR, platelet-derived growth factor receptor; RT-PCR, reverse transcription-polymerase chain reaction; ANOVA, analysis of 
variance.

FGFR

1,000
1 2 3 4 1 2 3 4 5 6 1 2 3 4 6 1 2 3 4 5 1 2 37 8 10

500

300

1,000
Veichle

EphrinA1-Fc ephrin-A1-Fc+PDGF-BB

PDGF-BB

D

* * * * * *

0.8

0.6

0.4

0.2

0.0

Veh
icl

e

Eph
rin

-A
1-F

c
PDGF-

BB
A1+

P
Veh

icl
e

Eph
rin

-A
1-F

c
PDGF-

BB
A1+

P
Veh

icl
e

Eph
rin

-A
1-F

c
PDGF-

BB
A1+

P

O
pi

tic
al

 d
en

si
ty

 a
t 4

90
 n

m

500

300

A

B C

PD
G

FR
α

PD
G

FR
β

FR
S2

α EphA EphB Ephrin-A Ephrin-B

Control

EphA4 (DN)
STI571

Ep
he

xi
n

G
AP

D
H

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Journal of Neurorestoratology 2017:5submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

140

Chen et al

 ephrin-A1-Fc for 1 week could restore production of dopa-

minergic neurons and achieve functional improvement in 

several PD animal models.23,34 Our current findings might 

provide molecular evidence for curing PD with PDGF-BB 

and ephrin-A1. Coinjection of ephrin-A1 and PDGF-BB 

would be more effective in increasing dopaminergic neurons 

in the substantia nigra for functional recovery of Parkinso-

nian rat models. Stem cells may also offer a powerful new 

approach to model and study PD and AD.52,53 We studied the 

effect of transplantation of the induced pluripotent stem cells 

and the human umbilical blood-derived stem cells to PD or 

AD animal models in our laboratory and found a significant 

symptomatic recovery.54,55 In future, we would also like to 

combine the transplantation of stem cells and coinjection 

of ephrin-A1 and PDGF-BB to cure the neurodegenerative 

disease in PD and AD animal models.

Conclusion 
PDGFRβ and EphA4 can mutually bind to and trans- 

phosphorylate in a dose-dependent manner when cotransfected 

in HEK293T cells. NSCs express PDGFRs and almost all the 

Ephs and ephrins. Direct interaction and transphosphorylation 

of EphA4 and PDGFRβ may play an important role in the pro-

liferation of H9-derived NSCs. These NSCs appear to integrate 

the cell contact-dependent ephrin/Eph receptor signal with the 

humoral signals transduced by PDGF/PDGFRβ.
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