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Background: Functional genomics in a processual analysis cover the time-dependent changes 

in transcriptomics and epigenetics before diagnosis of a disease, reflecting the changes in both 

life style and disease processes. The aim of this paper is to explore the dynamic, time-dependent 

mechanisms of the metastatic processes, using blood transcriptomics and including time in a 

continuous manner. For achieving this goal, we have developed new statistical methods based 

on statistics that are local in time.

Methods: The new statistical method, Local in Time Statistics (LITS), is based on calculating 

statistics in moving windows and randomization. The method has been tested for the analysis 

of a dataset that collectively provides information on the blood transcriptome up to 8 years 

before breast cancer diagnosis. The dataset from the Norwegian Women and Cancer (NOWAC) 

Post-genome Cohort consists of 467 case-control pairs matched on birth year and time of blood 

sampling. The data for a pair are the difference in log
2
 gene expression between the case and 

control. The stratified analyses are based on important biological differences like metastatic 

versus non-metastatic cancer, and the mode of cancer detection, ie, screening-detected cancers 

versus clinically detected cancers. The dataset was used for examining whether the gene expres-

sion profile varies between cases and controls, with time, or between cases with and without 

metastases.

Results: The null hypotheses of no differences between cases and controls, no time-dependent 

changes, and no differences between different strata were all rejected. For screening-detected 

cancers, the probability of correct prediction of metastasis status was best in year 1 before diag-

nosis compared to year 3 and 4 before diagnosis for clinically detected cancers. The predictor 

was not very sensitive to the number of genes included.

Conclusion: Using a new statistical method, LITS, we have demonstrated time-dependent 

changes of the blood transcriptome up to 8 years before breast cancer diagnosis.

Keywords: processual analysis, transcriptomics, prediction, breast cancer, blood, Local in 

Time Statistics

Background
Breast cancer is the most common invasive cancer in women worldwide with an esti-

mated 1.7 million new cases in 2012, representing 25% of all cancers in women.1 The 

incidence of breast cancer is expected to increase substantially, especially in developing 

countries due to changing lifestyle.1 Breast cancer has a relatively high survival rate, 

up till the point where a metastasis is present, at which time the survival rate drops 

dramatically. One hundred years ago, the survival rate of women with metastatic cancer 
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was only 5% after 5 years,2 while today it is 85%, depending 

on the stage (stage II 89%, stage III 76%, and stage IV 27%).3 

Still the major challenge in breast cancer treatment is the 

diagnosis and subsequent treatment of metastases. Although 

significantly improved, the majority of cancer deaths are due 

to metastases, not due to the primary tumor.4,5

No unifying theory exists for the human carcinogenesis, 

although many proposals exist.6 To date, most mechanistic 

or pathway-level analyses have been experimental in vitro 

or animal studies. With the increasing knowledge about 

human carcinogenesis in tumor tissues or in blood at time of 

diagnosis, some thought-provoking facts about the validity 

of using animal models to study carcinogenesis in humans 

have been brought up. First, the biology of mice and humans 

is comparatively different,7 and a Nature editorial8 advocated 

the need for human functional studies. Similarly, the transla-

tional value of mouse models in oncology drug development 

was recently questioned.9 While cancer can be developed 

in mice quite easily, these models do not necessarily apply 

to humans.10 An alternative approach is using functional 

transcriptomics, including epigenetic and transcriptomic 

biomarkers to jointly assess both the exposure and outcomes. 

This “meet in the middle approach”11, however, does not 

take into account the time dependency of the carcinogenic 

process. 

The recent focus on the metastatic process12–14 has 

revealed some crucial questions: what is the best biological 

model for the metastatic process and how to develop predic-

tion methods for translation to clinical tests?

Contrary to classical epidemiology focusing on risk 

estimation, the processual approach does not use time for 

estimating relative risk of disease given certain exposures. 

Rather the processual approach within a systems epidemi-

ology framework15 explores human carcinogenesis through 

the analysis of functional genomics. The statistical quantity 

of interest is the distribution of the differences in log
2
 gene 

expression in blood between breast cancer cases and healthy 

controls, and how this quantity is associated with the time 

from blood sampling to cancer diagnosis. Since there is a 

priori no knowledge of the time-dependent distributions of 

gene expression profiles related to the metastatic process, we 

present a new statistical method together with real data as a 

proof of concept. Few prospective studies have been designed 

for longitudinal analyses of functional genomics related to 

the processes of carcinogenesis and metastasis.

We hypothesize that cancer cells spreading through 

the blood or the lymphatic system elicit an immunologi-

cal response that should be measurable as dynamic gene 

 expression profiles in cells of the immune system, long before 

the metastasis is clinically detectable. Preserving the gene 

expression signals in blood requires specific care in sample 

collection and storage, and in the Norwegian Women and 

Cancer (NOWAC) Post-genome Cohort adequately buffered 

blood samples were collected from healthy women.

In a previous methodological study, time was categorized 

in three periods.16 In the approach presented herein, we are 

able to better identify the points in time relative to cancer 

diagnosis where changes in gene expression occur. Also 

previously, the same dataset has been analyzed focusing 

on weak signals from a large number of genes.16 The main 

aim of this paper is to explore the dynamic, time-dependent 

mechanisms of the metastatic processes using blood tran-

scriptomics and including time in a continuous manner. For 

achieving this goal, we will develop new statistical methods 

based on statistics that are local in time, where the objective 

is to be able to identify small changes that vary slowly in time 

and/or between strata, by using a large number of genes in 

each hypothesis test and predictor. This paper presents as an 

example longitudinal analyses of transcriptomic data using 

the processual approach17 within the NOWAC Post-genome 

Cohort.

Methods
We describe a new statistical method, Local in Time Statistics 

(LITS), for a processual analysis of functional genomics in 

blood. More precisely, this is a method for analyzing gene 

expression profiles in blood samples collected before diag-

nosis of some diseases, eg, breast cancer, where the dataset 

consists of case-control pairs and the case is diagnosed with 

the disease, while the control is healthy. The cases should 

belong to one of two strata, eg, cancers with and without 

metastases. The data for a pair that are used by the method are 

the difference in log
2 
gene expression between the case and 

the control. The gene expression profiles that are measured 

represent an aggregate of the transcriptional activity of all 

the blood cells at the time of blood collection.

The method will be used for examining whether the gene 

expression profile varies with time from blood sampling to 

diagnosis, between cases and controls, or between the two 

strata. Lastly, the LITS method will be used for predicting the 

stratum for a case, eg, whether a case has breast cancer with 

or without metastases. Details about the statistical methods 

and the available dataset are given below.

As mentioned in the “Background” section, we catego-

rized time in three periods in a previous methodological 

study,16 and the new method presented in the study is a further 
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 development of this method that is more continuous in time 

and thereby is better able to identify the points in time relative 

to diagnosis where changes in gene expression occur. The 

authors are not aware of other non-parametric, continuous 

in time approaches suitable for analyzing the kind of data 

described above.

statistical methods
As a central part of the statistical methodology is to examine 

how gene expression varies with time to diagnosis, we will 

divide the time before diagnosis into time periods. The time 

periods will be overlapping as we will use a moving window 

in time when defining the periods. The lengths of the time 

periods are chosen such that we obtain as short time periods 

as possible (as the distribution of the gene expressions may 

vary with time from blood sampling to diagnosis), but at the 

same time such that there are as many case-control pairs as 

possible within each time period (to obtain as good estimates 

as possible for each time period). There is a trade-off between 

these two wishes. We use the following procedure when defin-

ing the time periods for datasets that consist of one or two 

strata, eg, two strata consisting of cases with cancers with 

and without metastases: Let T be the number of case-control 

pairs in the stratum with the highest number of such pairs. 

Let t
1
 ≤ t

2
 ≤ … ≤ t

T
 be the time to diagnosis for these T pairs. 

The T – S + 1 time periods are then defined as the intervals 

[t
1
, t

S
] [t

1
, t

S+1
], … ,[t

T–S+1
, t

T
], where S is chosen such that we 

obtain short time periods with many case-control pairs from 

each stratum.

Let X
g,c

 be the difference in log
2 

gene expression for 

case-control pair c, c = 1, …, M, where M is the number of 

case-control pairs, and gene g, g = 1, …, N, where N is the 

number of genes. Let μ
g,s,t

 and s
g,s,t

 be the expectation and 

standard deviation of X
g,c

, respectively, where s is one of two 

strata, eg, strata consisting of cases with cancers with and 

without metastases, and t is the time to diagnosis for X
g,c

. If 

the distribution of X
g,c

 does not vary in time or between strata, 

the expectation and variance of X
g,c

 are independent of time 

and stratum, ie, μ
g,s,t

 = μ
g
 and s

g,s,t 
= s

g
 for all strata s and time 

before diagnosis t. Also, if there is no difference between 

cases and controls, the expectation of X
g,c

 is zero, ie μ
g,s,t

 =0.

Hypothesis tests for finding signal in the 
data
For examining whether there are differences between cases 

and controls, between strata or in time, we will test different 

hypotheses. For each hypothesis, the test statistic will be 

based on either expectation or standard deviation or both. The 

null distribution of the statistic will be estimated by random-

izing the data, and we compute p-values by comparing the 

statistic for the data to the estimated null distribution. This 

will be described in more detail in the next section.

Let m
p,g

 be the sample mean and s
p,g

 be the sample stan-

dard deviations for the differences in log
2
 gene expressions 

for gene g in time period p. Let m
p,g,1 

(m
p,g,0

) be the sample 

mean and s
p,g,1 

(s
p,g,0

) be the sample standard deviations for 

the differences in log
2
 gene expression for gene g in time 

period p for stratum 1 (0).

We define the statistics s
p,(g)

, m
p,(g)

, and w
p,(g)

 from these 

sample means and standard deviations as follows:

•	 s
p,(g)

=s
p,g’

, where s
p,g’

 has rank g when the s
p,g

’s for period  

p are sorted in increasing order. Rank 1 corresponds to 

the smallest of the s
p,g

’s for period p.

•	 m
p,(g)

=|m
p,g′|, where |m

p,g′| has rank g when the |m
p,g

|’s for 

period p are sorted in decreasing order. Rank 1 corre-

sponds to the largest of the |m
p,g

|’s for period p.

•	 Let w
m m

s s
p g

p g p g

p g p g

,

, , , ,

, , , ,

=

−

+

1 0

1
2

0
2

 be the weight for gene g in 

time

 

period p, ie, a measure of the difference between the 

two strata. w
p,(g)

=|w
p,g′| where |w

p,g′| has rank g when the 

|w
p,g

|’s for period p are sorted in decreasing order. Rank 

1 corresponds to the largest of the |w
p,g

|’s for period p.

These three statistics are used for testing the three null 

hypotheses described below. Previously, we proposed and 

tested the variables s
p,(g)

 and w
p,(g)

.18 The strength of the 

hypothesis tests depends on the selected rank. Different ranks 

were examined. We also proposed and tested the statistic m
p,(g) 

on synthetic data.19 If there is a difference in average value of 

X
g,c 

between the strata for some of the genes, but we do not 

know which genes, and the difference is normally distributed, 

then the statistical tests are strongest for a small rank. If the 

distribution has heavier tails than the normal distribution, we 

should focus on the few genes with strongest signal, and if 

the distribution has less heavy tail, for example, a constant 

difference in the average value, then the statistical test is 

strongest for a larger rank, often larger than (closer to) the 

number of genes with a difference in average value between 

the strata.18,19

h0-case-ctrl
The expectation of X

g,c
 is zero. This means that there is no 

difference between the expectations of the log
2 
gene expres-

sion values for the cases and controls. If the null hypothesis 

is false, the expectation will be different from zero for some 
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periods and genes. We test the hypothesis by using the sta-

tistic m
p,(g)

.

h0-time
The distribution of X

g,c
 is not associated with the time to 

diagnosis. This means that the expectation and standard 

deviation of X
g,c

 are the same in all time periods. If the null 

hypothesis is false, the standard deviation for some periods 

will be lower than the standard deviations for the entire 

time period for some genes. Also, the absolute value of the 

expectation for some periods will be higher than the absolute 

value of the expectation for the entire time period for some 

genes. We test the hypothesis first by using the statistic s
p,(g)

, 

and then by using the statistic m
p,(g)

.

h0-node
The expectation of X

g,c
 is not associated with stratum (eg, 

metastases or not metastases). This means that μ
g,1,t

=μ
g,0,t

, ie, 

the expectations for the two strata are equal for all genes g 

and time to diagnosis t. If the null hypothesis is false, the 

difference in expectation will be different from zero for 

some periods and genes. We test the hypothesis by using the 

statistic w
p,(g)

.

We will reject the H0-case-ctrl hypothesis if the hypoth-

esis m
p,(g) 

>0 is rejected for at least one time period p and 

rank g, where g belongs to a subset of the N ranks. In prac-

tice, we have chosen to let the subset of ranks consist of 

ranks between approximately 1% and 25% of the number 

of genes, so that the subset contains both relatively low and 

high ranks. This means that H0-case-ctrl is rejected based 

on a very large number of hypotheses, which are also highly 

positively correlated. We take this into account by using the 

Benjamin-Hochberg procedure for controlling the false dis-

covery rate (FDR).20 The approaches for rejecting the H0-time 

and H0-node hypotheses are similar. Besides rejecting the 

three null hypotheses, the hypothesis tests for the statistics 

for each time period and rank will be used for illustrating 

how the p-values are associated with the time to diagnosis.

randomization for estimating null 
distributions and p-values
We compute p-values by estimating the null distribution for 

the statistic of the hypothesis test by randomizing the data, 

ie, interchanging covariates (time to diagnosis, case/control, 

etc.) between the patients. In the randomization, we preserve 

critical properties of the genes (level of expression, complex 

correlation between genes, etc.) and randomize only what is 

connected to the changes in time, stratum, or case/control 

status. This randomization defines the null distribution for 

the test statistic that is used when finding the p-value. We 

randomize the data either by randomizing the case and con-

trol in each case-control pair (H0-case-ctrl), by randomizing 

the case-control pairs between the periods (H0-time), or by 

randomizing between the two strata within the time period 

(H0-node). We explain each randomization strategy in more 

detail in the following sections:

randomization strategy for h0-case-ctrl
The null distributions of the statistics are estimated by ran-

domizing the case and control in each case-control pair. In 

practice, this is done by keeping the absolute value of all log
2 

gene expression differences, but by simulating their signs.

randomization strategy for h0-time
The null distributions of the statistics are estimated by ran-

domizing the case-control pairs between the periods.

randomization strategy for h0-node
The null distribution of the statistic is estimated by random-

izing between the two strata within the time period. Note that 

we compute w
p,(g)

 only if there are at least three case-control 

pairs in period p for each stratum. If this is not the case, we 

set the p-value to 1 for this period for all genes.

Note that all three randomization strategies maintain the 

correlation structure between the genes for each case-control 

pair. Also note that each randomization of the data leads to 

a different ordering of the genes when the genes are ordered 

according to the statistic of the hypothesis test. The p-value 

of the test was set to K

Ns

, where N
s
 is the total number of ran-

domizations and K is the number of randomizations out of 

N
s 
with a more extreme statistic than the statistic for the real 

data. In the results presented we used N
s
 =1000.

Predicting stratum
The weights w

p,(g)
 can be estimated for each rank g from data 

in period p for a training dataset. The stratum of the case of 

a new case-control pair, ie, a case-control pair that does not 

belong to the training set, can then be predicted based on 

the score 

 

z w x
g

n

p g p g g=

=

( ) ( )∑
1

δ , ,( ) ,

where x
(g)

 is the difference in log
2 
gene expressions of the new 

case-control pair and d
p,(g)

 is 1 if the weight w
p,g′ is positive 

and −1 otherwise, where |w
p,g′|= w

p,(g)
. The n genes with high-

est absolute value of the weights are used for computing the 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Advances in Genomics and Genetics 2017:7 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

15

local in Time statistics for processual research

score, where n is a number less than or equal to the number 

of genes, N. Large values of z indicate that the new case 

belongs to stratum 1. If z > c for some arbitrary threshold c, 

we conclude that the new case belongs to stratum 1, otherwise 

we conclude that the new case belongs to stratum 0. We may 

set c=0 if it is not more important to avoid false classification 

in one stratum relative to the other and if

 g

n

p g p g

p g p gw
m m

=

∑
+

≈

1

1 0

2
0δ ,( ) ,( )

,( ), ,( ), ,

where m
p,(g),1

 and m
p,(g),0

 are the sample means that are used 

when computing w
p,(g)

. Increasing (decreasing) c results in 

fewer false positives (negatives) at the cost of more false 

negatives (positives).

When predicting the stratum of the cases in the same 

dataset as we use for estimating the weights w
p,(g)

, we use 

the leave one out approach, ie, when predicting the stratum 

of the case j we use weights w
p,(g)

 that have been estimated 

using the training dataset after case-control pair j has been 

excluded. The reason why we chose to use the leave one out 

approach is that the dataset is too small to be divided into 

a training and validation set. The strength of the prediction 

rule should be determined from data that are not used for 

estimating the prediction rule.

Example from the NOWAC  
Post-genome Cohort study
The NOWAC study is a nation-wide population-based 

cancer study that was initiated in 1991.21 The biobank of 

the Post-genome Cohort has been described previously in 

detail.22 Briefly, the invited women were randomly drawn 

from the Central Person Register by Statistics Norway, and 

non-respondents received one or two reminders. Women who 

agreed to give a blood sample were divided at random into 

batches of 500, and received a 2-page questionnaire and the 

PAXgene blood RNA collection kit (PreAnalytiX GmbH, 

Hombrechtikon, Switzerland), which contains an mRNA-

stabilizing buffer. Blood sampling was performed at the fam-

ily doctor’s office, and blood samples were returned via mail 

to the study center. One reminder was sent after 4–6 weeks. 

A total of 48,692 blood samples were collected in the years 

2003-2006, corresponding to 72.2% of the invited women.

By linkage to the Cancer Registry of Norway, a total 

of 637 cases of invasive breast cancer in the Post-genome 

Cohort were reported for the years 2003–2010. For each case 

of breast cancer, a control from the same batch was assigned, 

matched by time of blood sampling and year of birth without 

replacement. After removing technical outliers, and ineligible 

cases including women with distant metastases (stage IV) and 

case-control pairs in which controls were diagnosed with can-

cer within 2 years of blood sampling, the study consisted of 

546 in situ and breast cancer case-control pairs. Information 

on lymph node status at breast cancer diagnosis was based 

on the pathological tumor-node-metastasis staging informa-

tion included in the Cancer Registry of Norway. Detection 

categories were also obtained from the screening database 

kept by the National Breast Cancer Screening Program23 

hosted by the Cancer Registry of Norway.

Each woman gave one blood sample, and case-control 

pairs were ranked according to the time interval between 

blood sampling and cancer diagnosis. Collectively, the case-

control pairs provide information on blood gene expression 

up to 8 years before diagnosis.

study design
All statistical analyses were performed separately for the 

screening and clinical group. The screening group consists 

of cases diagnosed with cancer during a screening visit or 

within 2 years of the last screening, ie, interval cancers, 

while the clinical group consists of cases with cancers that 

were diagnosed clinically and that did not attend screening 

or had not attended screening for the last 2 years. Each case 

belongs to one of the two following strata: with metastases 

or without metastases.

ethical issues
The NOWAC study including the Post-genome Cohort was 

approved by the Norwegian Data Inspectorate and recom-

mended by the Regional Ethical Committee (REK). The 

linkages of the NOWAC database to national registries such 

as the Cancer Registry of Norway and registries on death and 

emigration have also been approved, and the women were 

informed about these linkages. Furthermore, the collection 

and storing of human biological material were approved by 

the REK in accordance with the Norwegian Health Research 

Act. The women gave informed consent explicitly for gene 

expression analyses in the blood samples.

laboratory procedures
All laboratory work and microarray services were provided by 

the Genomics Core Facility, Norwegian University of Science 

and Technology, Trondheim, Norway. To control for technical 

variability such as different batches of reagents and kits, day-

to-day variations, microarray production batches, and effects 

related to different laboratory operators, each case-control 
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pair was kept together throughout all extraction, amplifica-

tion, and hybridization procedures. Total RNA was extracted 

using the PAXgene Blood miRNA Isolation kit (PreAnalytiX/

Qiagen, Hilden, Germany) according to the manufacturer’s 

instructions. RNA quality and integrity were assessed using 

the NanoDrop ND 8000 spectrophotometer (ThermoFisher 

Scientific, Wilmington, DE, USA) and Agilent Bioanalyzer 

(Agilent Technologies, Palo Alto, CA, USA), respectively. 

Total RNA (300 ng) was amplified and labeled using the 

Illumina TotalPrep-96 RNA Amplification Kit (Ambion Inc., 

Austin, TX, USA). All case-control pairs were run on either 

the Illumina HumanWG-6 version 3 expression bead chip or 

on the Illumina HumanHT-12 version 4 bead chip. Outliers 

were excluded after visual examination of dendrograms, prin-

cipal component analysis plots, and density plots. Individuals 

who were considered borderline outliers were excluded if 

their laboratory quality measures were below given thresh-

olds: Bioanalyzer RNA integrity number (RIN)<7, NanoDrop 

268/280 ratio<2, and 260/230 ratio<1.7, and NanoDrop RNA 

concentration between 50-500 ng/microliter.

Preprocessing of microarray data
The dataset was preprocessed as previously described.24 

The dataset, which consisted of 546 case-control pairs and 

30,046 probes, was background corrected using negative 

control probes, log
2
 transformed using a variance stabiliz-

ing technique,25 and quantile normalized. Data from the two 

Illumina chips (HumanWG-6 v3 and HumanHT-12 v4) were 

combined on identical nucleotide universal identifiers.26 We 

retained probes present in at least 70% of the individuals. If 

a gene was represented with more than one probe, the aver-

age expression of the probes was used as expression value 

for the gene, resulting in a dataset with 8155 genes. The 

probes were translated to genes using the lumiHumanIDMap-

ping.27 Finally, the differences of the log
2
 gene expression 

levels for each case-control pair were computed and used 

in the statistical analyses. We then excluded data for the 79 

case-control pairs where the case was diagnosed with in situ 

cancer so that the final, preprocessed dataset included 467 

case-control pairs.

The data are from three different runs and there are batch 

effects between runs. The obtained estimates for the batch 

effects were more different than expected by chance. We 

demonstrated this by randomizing data between the batches/

runs. We therefore estimated these batch effects (see Supple-

mentary material) and included the estimates in the methods 

that were used for analyzing the data. Note that some batch 

effects disappeared when we computed differences in log
2 

gene expression between cases and controls, while other 

batch effects did not disappear. See Supplementary material 

for more details.

Results
Details about the dataset used in the analyses, like the number 

of case-control pairs in each stratum and the distribution of 

the case-controls pairs in time, are given in Tables 1 and 2. 

The data used in all analyses are the differences in log
2
 gene 

expression between cases and controls. Figure 1 gives an 

overview of datasets and strata that are included in the dif-

ferent statistical analyses.

Table 3 illustrates the biological differences between 

breast cancer diagnosed as part of participation in the 

screening program or diagnosed outside the screening as 

part of clinical practice. In the screening program, there is a 

significant association between the metastatic status and size 

of the tumor, which is not found for clinical cases.

Dividing into time periods
We divided the time before diagnosis into overlapping time 

periods using a moving window and the approach is described 

in the “Methods” section. Time periods defined for the clini-

cal group contain 25 cases without metastases and 9–17 with 

metastases. The lengths of the time periods are 605–971 days, 

except for the four periods that include the case-control pairs 

in year 6 and 7 before diagnosis. Time periods defined for 

the screening group contain 50 cases without metastases and 

11–32 with metastases. The lengths of the time periods are 

256–796 days, except for the period that includes the case-

Table 1 number of case-control pairs with gene expression data 
Xg,p in each stratum and year before diagnosis in the screening 
group

Number of case-control pairs in the screening group

Year before diagnosis 8 7 6 5 4 3 2 1 Sum

stratum With metastases 0 1 6 15 30 24 20 12 108
Without 
metastases

1 3 10 36 53 59 57 53 272

sum 1 4 16 51 83 83 77 65 380

Table 2 number of case-control pairs with gene expression data  
Xg,p in each stratum and year before diagnosis in the clinical group

Number of case-control pairs in the clinical group

Year before diagnosis 8 7 6 5 4 3 2 1 Sum

stratum With metastases 0 0 1 4 5 2 8 10 30
Without 
metastases

0 1 3 6 14 8 12 13 57

sum 0 1 4 10 19 10 20 23 87
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control pair in year 8 before diagnosis. In analyses that only 

include cases with metastases from the screening group, we 

selected time periods that contain 50 cases with metastases. 

Note that we did not perform analyses for cases with metasta-

ses from the clinical group as this dataset was too small. When 

estimating s
p,(g)

, we used time periods that included at least 35 

cases without metastases as more data are needed to obtain 

reliable estimates of the standard deviation than the mean.

In the next section, we compare the period closest to and 

furthest from time of diagnosis. For the screening group, the 

time period closest to diagnosis is 1–338 days before diag-

nosis (year 1), while the time period furthest from diagnosis 

is 1470–2736 days before diagnosis (five months of year 5, 

year 6, year 7, six months of year 8). For the clinical group, 

the time period closest to diagnosis is 1–612 days before 

diagnosis (year 1, eight months of year 2), while the time 

period furthest from diagnosis is 1090–2274 days before 

diagnosis (year 4, year 5, year 6, three months of year 7).

hypothesis tests and multiple testing
When testing the null hypotheses H0-time, H0-case-ctrl, and 

H0-node, we included statistics for all time periods and genes 

with ranks between 50 and 2000, ie, between approximately 

1% and 25 % of the number of genes, in total approximately 

Figure 1 Overview of hypothesis tests, prediction methods, variables, and strata.
Notes: illustration of the association between the data Xg,p, the different hypothesis tests, the prediction methods, the variables used in these tests and methods, and the 
strata.
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45,000–450,000 tests for each null hypothesis. When testing 

whether s
p,(g)

 was smaller than expected, more than 25% of 

the tests both for the screening and for the clinical group 

were rejected at the 5% FDR level. For the screening group 

and the tests m
p,(g)

 > 0 (H0-time), m
p,(g)

 > 0 (H0-case-ctrl), 

and w
p,(g)

 > 0, we rejected 1%, 2.4%, and 4.5% of the tests 

at the 10%, 12%, and 20% FDR level, respectively. For the 

clinical group, we obtained no significant results for these 

three groups of tests (FDR 20%). The reason for this may be 

that the clinical dataset is too small.

Based on these results, we can reject all the three null 

hypotheses H0-case-ctrl, H0-time, and H0-node, and con-

clude that there are differences between cases and controls, 

that these differences are associated with time to diagnosis, 

and that there are differences between the two strata with 

and without metastases.

comparing the period closest to and 
furthest from time of diagnosis
Figure 2 shows plots of the statistics s

p,(g)
 and m

p,(g)
, while 

Figure 3A shows plots of the statistic w
p,(g)

. In these plots, we 

focus on the difference between data close to and far from 

diagnosis. In Figure 2B, we show results only for data without 

metastases, instead of both with and without metastases as 

in Figure 2A, since there are so few case-control pairs with 

metastases in the clinical group.

We show results for the statistic s
p,(g)

 for two variants of 

the dataset, one where we have standardized the data, ie, 

X
p,c

, to expectation zero and standard deviation one for each 

gene, and one without standardizing the data. We observe that 

the shapes of the curves for the two variants of the datasets 

are quite different. In the plot with not standardized data, 

there are many small and few large standard deviations, 

while the standard deviations, as expected, are around 1 for 

the standardized data. Note that for both the screening and 

the clinical groups, we also observe that s
p,(g)

 is larger far 

from diagnosis (H0-time). For the screening group, s
p,(g)

 is 

smaller with metastases close to diagnosis (H0-time). The 

difference between the two types of cases (with and without 

 metastases) also implies a difference between cases and con-

trols (H0-case-ctrl). As results for other statistics than s
p,(g)

 are 

not much influenced by standardizing the data, all results for 

these statistics are shown for data that are not standardized. 

For the same reason, results including the statistics s
p,(g)

, m
p,(g)

, 

and w
p,(g)

 presented later in this paper will also be based on 

data that are not standardized.

From the plots in Figure 2 that are based on the sample 

mean m
p,(g)

, we observe that for the screening group, the sta-

tistic is largest for the case with metastases and close to diag-

nosis (H0-time). For the clinical group, the statistic is quite 

similar for the two periods close to and far from diagnosis.

Figure 3A shows results for the statistic w
p,(g)

 that mea-

sures the difference between the log
2
 gene expression of the 

cases with and without metastases relative to their standard 

deviations. For the screening group, the statistic w
p,(g)

 is 

largest close to diagnosis, while for the clinical group the 

difference is smaller and in the opposite direction, ie, largest 

far from diagnosis (H0-node). The difference in the screening 

group between without and with metastases may be due to 

the difference in expectation, as shown in Figure 2.

Development in time before diagnosis
Previously, we concluded that we can reject all the null 

hypotheses, H0-case-ctrl, H0-time, and H0-node. For each 

of these null hypotheses, we tested different hypotheses for 

the different time periods using a moving window. Figure 3B 

and Figure 4 show how the p-values of these tests vary with 

time. Note that Figure 4 includes results for the stratum 

without metastases.

In the upper panel of Figure 4, we observe that there are 

significantly high values for the sample mean m
p,(g)

 (H0-case-

ctrl, randomizing between the case and control) around 2 

years before diagnosis for the screening group without metas-

tases, and almost significant around year 3 before diagnosis 

for the clinical group without metastases. No significant 

results were obtained for the screening group with metastases 

Table 3 Association between tumor size and metastases

Group Metastases Tumor size (cm) p-value

0.05 0.3 0.75 1 1.5 3.5 5 Mean Independent two 
sample t-test

Mann-Whitney  
U-test

screening Yes 1 12 56 25 1 3 0 0.86 7.5e-05 7.0e-07
no 18 79 120 35 1 1 0 0.60

clinical Yes 0 2 12 11 0 0 0 0.83 0.32 0.16
no 1 10 27 11 0 2 2 0.87

Notes: p-values are obtained using an independent two sample t-test (testing if averages are equal) and a Mann-Whitney U-test (testing if it is equally likely that the tumor 
size of a case with metastases is less than or greater than the tumor size of a case without metastases).
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Figure 2 The statistics sp,(g) and mp,(g).
Notes: Plots are shown for not standardized data for sp,(g) and mp,(g), and also for standardized data for sp,(g). curves are shown for the data in the period closest to and furthest 
from diagnosis. (A) Data from the screening group. (B) Data from the clinical group.
Abbreviations: st.dev., standard deviation; w.r.t, with respect to.
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for m
p,(g)

, neither for H0-case-ctrl nor for H0-time.24 As the 

group without metastases is larger and more homogeneous, 

it is not surprising that we obtained more significant results 

for this group as a larger, more homogenous dataset implies 

higher power of the hypothesis tests.

We also observe that there are significantly high values 

for the sample mean m
p,(g)

 (H0-time, randomizing between 

periods, middle panel of Figure 4) around 2 years before 

diagnosis for the screening group without metastases, and 

around 2–3 years for the clinical group without metastases. 

There are significantly low s
p,(g)

 values the last 2 years before 

diagnosis, compared to the standard deviation for all periods 

(Figure 4, lower panel). This corresponds to what we observed 

in Figure 2. Results for the screening group with metastases 

for s
p,(g)

 are very similar to the corresponding results for 

screening group without metastases.24

For the weights w
p,(g)

 (H0-node, randomizing between 

metastases and not metastases, Figure 3B) there are sig-

nificantly low p-values the last year before diagnosis in the 

screening group and around 2–3 years before diagnosis for the 

clinical group. This statistic is used for comparing the expecta-

tions of the two strata in the dataset, and is closely connected 

to the possibility of differentiating between cases with and 

without metastases based on gene expression values and time 

to diagnosis. This corresponds to the result in  Figure 3A and 

the difference in expectation shown in Figure 2.

Predicting metastasis status of the cases
For predicting the metastasis status of the case in case-

control pair j, we used the prediction method described in 

the “Methods” section with n=1000, ie, 1000 genes with 

highest absolute value of the weights are used for comput-

ing the score that is used for prediction. The period selected 

for predicting the status of the case in case-control pair j is 

chosen among the periods that contain 50 (25) case-control 

pairs from the screening (clinical) group where the case is 

without metastases, and it is chosen such that case-control 

pair j is as close to the middle of the time period as possible.

Figure 3 The statistic wp,(g) and hypothesis h0-node.
Notes: Plot of statistic (A) and plot of p-values against time (B) for the statistic wp,(g) for the screening (left panel) and clinical group (right panel). (A) Plot of the statistic wp,(g) 

where the two periods contain 50 (screening) or 25 (clinical) case-control pairs where the case is without metastases. (B) Plot of p-values against time for the statistic wp,(g) 
(h0-node). in each plot, there is one curve for genes with order 50 (black), 200 (red), 500 (green), 1000 (blue), and 2000 (light blue), respectively. p-value for time point t is 
equal to the p-value for the time period with middle point closest to t (after the p-values have been smoothed using a median filter with window size 99). The resulting curve 
is then smoothed using a mean filter with a window size of 1 month. The dotted horizontal line indicates a 0.05 level of significance, while the long vertical lines indicate the 
years before diagnosis.
Abbreviation: w.r.t, with respect to.
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Figure 4 hypotheses h0-case-ctrl and h0-time.
Notes: Plots of p-values against time for the hypotheses h0-case-ctrl and h0-time where the datasets with cases without metastases are used. (A) results for data from the 
screening group. (B) results for data from the clinical group. in each plot, there is one curve for genes with order 50 (black), 200 (red), 500 (green), 1000 (blue), and 2000 
(light blue), respectively. p-value for time point t is equal to the p-value for the time period with middle point closest to t (after the p-values have been smoothed using a 
median filter with window size 99). The resulting curve is then smoothed using a mean filter with a window size of 1 month. The dotted horizontal line indicates a 0.05 level 
of significance, while the long vertical lines indicate the years before diagnosis.
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The results of the predictions are shown in Table 4. For 

the screening (clinical) group, we observe that 44% (67%) 

of the cases with metastases are correctly classified (sensitiv-

ity), while 56% (54%) of the cases without metastases are 

correctly classified (specificity). For the screening group, the 

numbers of correctly classified cases are not significantly 

higher than what is expected by chance (p-value 0.56, Fisher’s 

test, all years), while for the clinical group the number of 

correctly classified cases is significantly higher than expected 

(p-value 0.049, Fisher’s test, all years).

To examine whether the probability of correctly clas-

sifying the status of the cases varies with time, we plotted 

the prediction results against time in Figure 5. For the 

screening group, we observe that the probability of correct 

classification is much higher in year 1 before diagnosis. For 

this period, the p-value obtained using Fisher’s test is equal 

to 0.030 (Table 4). This is in accordance with the results 

shown in Figure 3 for the statistic w
p,(g)

, where we observe 

that the cases with and without metastases are differentially 

expressed for some genes in some periods that are close to 

the time of diagnosis (H0-node). For the clinical group, we 

observe that the probability of correct classification is much 

higher in year 3 before diagnosis. For year 3 and 4, the p-value 

obtained using Fisher’s test is equal to 0.051 (Table 4), while 

for year 3 it is 0.00 (year 3 contains only 10 case-control 

pairs where two are with metastases – all 10 cases were cor-

rectly classified). Also for the clinical group, the results are 

in accordance with Figure 3 as the cases with and without 

metastases are differentially expressed close to year 3 before 

time of diagnosis (H0-node).

Table 5 shows the top 10 differentially expressed genes, 

in both the screening and the clinical groups, when compar-

ing cases with and without metastases. In these analyses, the 

cases were selected from the time period centered around 0.5 

years (screening group) and around 2.5 years (clinical group) 

before diagnosis. We observe that all genes were upregulated 

in cases with metastases.

Table 4 Number of correctly and wrongly classified cases in the screening group and the clinical group

Group Years 
before 
diagnosis

Number of correctly and  
wrongly classified cases

p-value 
(Fisher’s  
test)

Sensitivity Specificity AUC

With metastases Without metastases

FN TP FP TN

screening 
group

All years 61 47 119 153 0.561 0.44 0.56 0.53
Year 1 2 10 26 27 0.030* 0.83 0.51 0.71

clinical  
group

All years 10 20 26 31 0.049* 0.67 0.54 0.57
Year 3–4 2 5 6 16 0.051 0.71 0.73 0.69

Note: *p-value<0.05.
Abbreviation: AUc, area under the curve.

We also performed a receiver operating characteristic 

(ROC) curve analysis (Table 4; Figure 6) by varying the 

threshold c used when predicting the metastasis status of 

the cases. In the rightmost column of Table 4, we observe 

that the area under the curve (AUC) is too close to 0.5 when 

all years are included. However, for the best period for each 

group (year 1 for screening, year 3–4 for clinical), fair AUC 

values around 0.7 were obtained. Figure 6 shows the cor-

responding ROC curves.

We have examined how the score is influenced by n, ie, 

the number of genes included in the score, for the period 

with best prediction results using a leave-one-out approach. 

We observed (Figure S1) that there is a distinct difference 

in the score between cases with and without metastases, 

and that the score stabilizes when the number of genes 

increases. Note that correct predictions are obtained when 

the scores for the cases with metastases are positive, and 

the scores for the cases without metastases are negative. 

It is difficult to conclude how many genes to include in 

the score to optimize the power of the predictor, but at 

least 20–50 genes seem to be needed. To find out more 

about how sensitive the predictor is to the choice of n, we 

repeated the analyses in Table 4 and Figure 5 with n=50.24 

We observed that we obtain results that are similar to the 

results obtained with n=1000, indicating that the predictor 

is not very sensitive to the number of genes included in the 

score when n is at least 50.

Note that the dataset includes seven case-control pairs 

where the control later was diagnosed with breast cancer. 

Very similar results were obtained when excluding these 

seven pairs from the analyses (data not shown).

Discussion
For the first time, using a new statistical method, LITS, we 

have shown that gene expression profiles in blood dem-

onstrate time-dependent changes related to the phenotype 

(metastases or not) of the cancer disease and the method of 
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Figure 5 Prediction results.
Notes: (A) Correctly (green) or wrongly (red) classified cases plotted against time to diagnosis for the screening (upper panel) and the clinical group (lower panel). A circle 
is plotted above every fifth case. Long vertical lines are plotted to indicate the years. Cases with metastases are plotted on the line labeled “With”, while cases without 
metastases are plotted on the line labeled “Without”. (B) Fraction of correctly classified cases with (red) and without (black) metastases over time for the screening (upper 
panel) and the clinical group (lower panel). The fraction for each point in time is computed using a moving window of 1 year (clinical) or 100 days (screening). The resulting 
curve is then smoothed using a median filter with a window size of 1 year (clinical) or 100 days (screening).
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diagnosis (screening versus clinical). Further, the prediction 

of metastases indicates important time-related changes in the 

immune system that reflect the final steps of carcinogenesis. 

These findings could be important building blocks for a 

human model of carcinogenesis.28 Furthermore, if confirmed 

in future studies, these signals could serve as biomarkers for 

advanced stages of cancer, even at the time of diagnosis of 

the primary tumor. Blood samples that allow measurements 

of disease biomarkers are also known as liquid biopsies, a 

term that highlights their use as relatively cheap and non-
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invasive alternatives to other diagnostic methods such as 

tissue biopsies and CT or MRI scanning.

The use of moving windows has made this statistical 

approach more flexible than the curve group analyses 

that was based on hypotheses of defined time-dependent 

changes in gene expression or defined curve trajectories.16 

Since this method is not based on the agnostic approach29 

that has been used for analyses of single genes or single 

nucleotide polymorphisms in genome-wide association 

Table 5 Top 10 differentially expressed genes in clinically and screening-detected cases when comparing cases with metastases to 
cases without metastases

Screening-detected cases in the time period centered around 0.5 years before diagnosis

Gene symbol p-value Fold change Breast cancer Function

rPlP2 1.49e-06 1.19 Overexpressed ribosomal phosphoprotein
FKRP 2.18e-05 1.14 no Protein for posttranslational modification of dystroglycan
ERBB2 4.95e-05 1.18 Overexpressed Tyrosine-protein kinase receptor
CIB2 4.95e-05 1.13 no calcium-binding regulatory protein
DDX23 5.16e-05 1.13 no Member of the DeAD box protein family
RPS19 5.58e-05 1.16 Overexpressed ribosomal protein
LOC401019 5.86e-05 1.19 no Unknown
PDSS2 6.13e-05 1.23 no enzyme involved in coenzyme Q metabolism
DUS3L 8.10e-05 1.12 no Protein involved in trnA synthesis
ZNF417 8.58e-05 1.11 no Protein involved in transcriptional regulation

Clinically detected cases in the time period centered around 2.5 years before diagnosis

CCDC5 1.71e-04 1.16 no Protein vital to mitotic spindle assembly
MRPL14 2.23e-04 1.23 no Protein component of the mitochondrial ribosome
NOD1 2.90e-04 1.17 Tumor suppressor intracellular pattern-recognition receptor
UTP14A 3.53e-04 1.1 no Protein involved in ribosome biogenesis 
NSMCE1 3.77e-04 1.21 no Protein involved in repairing of DnA double-strand breaks
SNTA1 1.05e-03 1.1 Overexpressed Protein involved in organization of the neuromuscular synapse
BAZ1B 1.16e-03 1.16 no Protein involved in regulation of transcription
IL21R 1.43e-03 1.14 Tumor promoter cytokine receptor for interleukin 21
POP5 1.45e-03 1.15 no Protein involved in maturation of trnA
RARRES3 1.66e-03 1.36 Metastasis suppressor Protein that inhibits cell growth and proliferation

Note: Genes were sorted by p-value.

studies, it evades the conservative procedure of computing 

p-values with the use of FDRs.20,30 The approach can be 

viewed as an effective method for dimension reduction in 

studies of functional genomics. The analyses of the gene 

expression profiles are not dependent on the individual test-

ing of the curves for the more than 8000 expressed genes; 

thus, it mostly eliminates the FDR of multiple testing. 

The prediction of metastases also indicates that the use of 

proportional hazard models or linear models will not fit 

Figure 6 rOc curves.
Notes: rOc curves obtained when predicting the metastasis status of the cases. (A) rOc curve for the screening group in year 1 before diagnosis. (B) rOc curve for the 
clinical group in year 3–4 before diagnosis.
Abbreviation: rOc, receiver operating characteristic.
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the data and could override the time-dependent changes 

in gene expression.

When we stratified the data based on the detection cat-

egory and lymph node status, we found a significant predic-

tion of metastases 3–4 years before diagnosis of a clinical 

cancer, but only 1 year for a screening-detected cancer. This 

is compatible with earlier estimations of sojourn time in the 

screening program. It has been estimated that the introduction 

of population-based breast cancer screening in Norway gave a 

mean sojourn time for invasive cancer of 4.0 years in women 

aged 50–59 years and 6.6 years for those 60–69 years.31 

Analyses of breast carcinogenesis as a time- dependent 

process should therefore take into consideration that cases 

diagnosed within the screening program are diagnosed at 

an earlier phase of carcinogenesis and thus are not directly 

comparable to clinically detected cases.

The prospective analyses of gene expression levels in 

the years preceding breast cancer diagnosis as assessed 

by the log-fold change between cases and controls showed 

significant differences after stratification by lymph node 

status and detection category. Interestingly, all the top 10 

differentially expressed genes associated with either clini-

cally or screening-detected metastatic breast cancer were 

upregulated. This could indicate a higher state of alertness 

in the cells of the immune system circulating in the blood 

stream during the years before diagnosis, when comparing 

those cases with metastases to those without. Furthermore, 

the analyses showed the ability to discriminate between dif-

ferent stages of the carcinogenic process. A previous analysis 

of a case-control study within NOWAC showed that differ-

ences in blood gene expression profiles reflect both immune 

responses and aspects of the carcinogenesis.32 The analyses 

of trajectories could help to understand the time-dependent 

interaction between the immune response and carcinogenesis. 

Our findings should be further interpreted in relation to the 

biology of both single genes and pathways.

Studies of gene expression levels in peripheral blood 

are challenging and have many difficulties and pitfalls. The 

transcriptomes of samples in a majority of biobanks are 

subject to degradation by RNase, which reduces the quality 

of mRNA for whole-genome analyses. Hence, buffering 

with RNA stabilizers or snap freezing in liquid nitrogen is 

necessary to perform transcriptomics in blood samples. The 

signals related to carcinogenesis in the blood are expected 

to be much weaker than those in tumor tissues, and can be 

disturbed by signals from exposures to carcinogens or other 

lifestyle factors. Furthermore, our approach is challenged 

by the complexity of studying carcinogenesis in humans, 

the need for an adequate epidemiological design including 

exposure information and blood sampling, technical noise 

in the data, and the development of robust statistics. The 

prospective design of our study made it difficult to increase 

the statistical power; so, our results should be interpreted 

with care.

To the best of our knowledge, the NOWAC Post-genome 

Cohort is one of the largest population-based prospective 

cancer studies designed for transcriptomics, owing to the 

availability of blood samples with preserved gene expression 

profiles. In the NOWAC Post-genome Cohort, a single labora-

tory processed all samples using the same technology, thus 

reducing analytical bias and batch effects. The cohort design 

reduced selection bias. A weakness of a prospective study 

could be possible changes in case-control status as controls 

may become cases as time passes, thus reducing the differ-

ences in gene expression levels within a case-control pair. 

A non-prospective study would suffer from the same issues 

and in addition there would be no option for time-dependent 

analyses. We considered as ineligible all case-control pairs 

in which controls were diagnosed with breast cancer or 

any other cancer within 2 years of blood sampling. Lastly, 

there was no repeated sampling of blood, and no additional 

questionnaires were completed. Repeated measurements 

would improve the analyses, making it possible to use intra-

individual comparisons.

Conclusion
The proposed statistical method, LITS, is sensitive for 

describing and testing non-linear associations. Our findings 

could be viewed as a proof of concept of systems epidemiol-

ogy, indicating the potential to include transcriptomics for 

functional analysis in prospective studies of cancer.15 Overall, 

these results contribute to building a more complete model 

of the carcinogenic process in humans.
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Supplementary material

Method
Adjusting for the batch effect
Here, we give a short description of the ComBat method developed by Johnson et al1 for estimating the batch effects and 

how to use these estimates for adjusting for the batch effects when computing sample means and standard deviations.

The log
2
 gene expression value Y

ijg
 for gene g and sample j from batch i is modeled as 

Y Xijg g g ig ig ijg ijg= + + + ( )a b g d e e s and Normal~ , ,0 2

where 

•	 a
g
 is the overall gene expression, 

•	 X is a design matrix for sample conditions,

•	 b
g
 is the vector of regression coefficients corresponding to X,

•	 g
ig
 is the additive batch effect, and 

•	 d
ig
 is the multiplicative batch effect.

The batch-adjusted data Y
ijg

 can then be computed as

Y
Y X

Xijg
ijg g g ig

ig
g g

* ˆ ˆ ˆ
ˆ ˆ ˆ=

− − −
+ +

a b g

d
a b .

The estimates of the parameters a
g
, b

g
, g

ig
, and d

ig
 are computed using an empirical Bayes method.1 Note that in the 

implementation of the method, the batch-adjusted data Y
ijg

 are computed as Y

Y X

Xijg

ijg g g
ig

ig
g g

*

ˆ ˆ

ˆ
ˆ

ˆ ˆ ˆ ˆ
’

,=

− −
−

+ +

a b
s

g

d
s a b  where  

ˆ
ˆ
ˆ

′ =g
g
sig
ig  is the parameter that is estimated instead of γ̂ ig .

Both the expectation and the variance of a gene for the cases can vary both with time and stratum. We therefore cannot 

use the ComBat method for batch adjusting the dataset that consists of differences in log
2 
gene expression between cases 

and controls. Instead we will use ComBat to estimate the batch effects γ̂ ig  and δ̂ ig from a dataset that includes only the log
2
 

gene expressions for the controls.

Log
2
 gene expression data that are adjusted for the additive batch effect g

ig
, but not for the multiplicative batch effect 

d
ig
, can then be computed as

′ = − = + ( )Y Yijg ijg ig Gg ig ijg ijg Gˆ ˆ ~ ,g m d e e s where Normal fo0 2 rr group G.

For case-control pair c from batch i with sample j
1
 as control (from group G1) and sample j

2
 as case (from group G2), 

we have the log
2
-expression difference of X

g,c
.

We observe that X
g,c

 is adjusted for the additive batch effect g
ig
, but not for the multiplicative batch effect d

ig
.

We compute the estimate of m
g
, m̂

g
, as the weighted average of X

g,c
, where the weights are 

1

δ̂ ig

, and we compute the estimate 

of s2, ˆ ,
ˆ

ˆ
,s

m

d
2

1

2
1
1

as
n

X

c

n
g c g

ig
−

−









=
∑ . We will compare estimated sample means and standard deviations between genes. For each  

gene, we therefore multiply the estimates of d
ig
 by a constant so that for this gene 

1
1

1B i

B

ig
=

∑ =δ̂ , where B is the number of 

batches/runs.

ˆ
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Figure S1 Boxplots illustrating how the score used in the predictor depends on the number of genes included in the score.
Notes: The score has been normalized by dividing with the number of genes included in the score. The score for the cases with metastases should be positive (lower panel), 
while the scores for the cases without metastases should be negative (upper panel). (A) scores for case-control pairs around 6 months from the screening group. (B) scores 
for case-control pairs around 2 years and 6 months from the clinical group.
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