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Study objectives: Primary insomnia (PI) may increase diabetes risk. We tested the hypothesis 

that the effects of PI on glucose metabolism could be improved by 2 months of pharmacologi-

cal treatment.

Methods: Adult men and women meeting clinical criteria for PI were studied (n=20, body mass 

index 25.1±2.7 kg/m2, age 39.7±7.9) in a randomized, double-blind, placebo-controlled clinical 

trial. The study consisted of two 1-day inpatient admissions to a General Clinical Research Center 

separated by 2 months of at-home treatment with 3 mg eszopiclone or placebo. During inpatient 

admissions, each subject underwent two intravenous glucose tolerance tests (IVGTTs) pre- and 

post-treatment. Diet was controlled for micro- and macro-nutrient content and calories on the day 

prior to pre- and post-treatment IVGTTs. Subjects were randomized following completion of the 

initial IVGTT to take either placebo or eszopiclone 30 min prior to bedtime at home for 2 months.

Results: Two-month eszopiclone treatment did not change insulin sensitivity, glucose toler-

ance, or any of the sleep measures significantly, compared with placebo. Changes in glycated 

hemoglobin (HbA1c, clinical measure of glycemic control) were correlated with changes in 

diary-reported total sleep time in the eszopiclone group (r=0.66, p=0.0360), and in the combined 

groups’ data (r=0.55, p=0.0125). Changes in polysomnography-measured wake after sleep 

onset, a hallmark of PI, were positively related to changes in IVGTT-derived glucose effective-

ness, or non-insulin-mediated glucose uptake.

Conclusion: Treatment with 3 mg eszopiclone for 2 months, compared with placebo, did not 

significantly influence either sleep or measures of diabetes risk in this preliminary study.

Keywords: primary insomnia, sleep duration, metabolism, IVGTT, insulin sensitivity, diabetes, 

eszopiclone, wake after sleep onset

Introduction
Reduced sleep time independent of insomnia diagnosis has been associated with a 

variety of deleterious long-term effects, including an increased risk of higher weight1 

and symptomatic diabetes.2 In meta-analysis of sleep and diabetes risk, insomnia 

symptoms were even more strongly related to diabetes than short sleep duration; dif-

ficulty initiating or maintaining sleep was associated with an elevated relative risk of 

1.57 and 1.84, respectively.3 A more recent meta-analysis systematically evaluating a 

variety of sleep disturbances identified poor sleep quality as an independent predictor 

of type 2 diabetes, and recommended including sleep disturbances in screening for 

type 2 diabetes.4 Despite many consequences of insomnia for health and productivity, 

sleep disorders are not commonly evaluated in primary care.5
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Current understanding of the pathophysiology of insom-

nia includes the “hyperarousal” hypothesis, positing that the 

difficulties with sleep initiation and/or maintenance arise 

from a combination of biological and psychological traits and 

cognitive attitudes toward sleep. The classical “3 P” model7 

postulates that chronic insomnia develops in individuals with 

a predisposition (due to inborn or other factors), that may 

be activated from a precipitating factor (medical illness or 

psychological stress) and be self-reinforced by perpetuating 

factors (maladaptive behaviors, anxiety related to sleep and 

dysfunctional belief about sleep). The end result is a state 

of heightened arousal throughout the day that continues into 

the sleep hours. The state of hyperarousal from molecular 

to higher system levels is accepted as a model of insomnia.7 

A heightened state of arousal, often expressed as rumina-

tion, inability to stop thinking about day’s events at night, 

or a general sense of continuous alertness (“I simply cannot 

switch off, doctor”) is often subjectively reported by insom-

nia patients,7,8 and may vary with gender.9 This condition 

has been reported to affect objectively-assessed sensory 

processing11 and correlate with various spectral electroen-

cephalographic measures.11

During non-rapid eye movement sleep, patients with 

insomnia have persistent activity of wake-promoting struc-

tures,12 and a reduction in central gamma-aminobutyric 

acid neurotransmission.1 Thus, it could be expected that the 

effects of this heightened state of arousal could also trigger 

an activation of the hypothalamic–pituitary–adrenal axis in 

a way similar to severe physiologic or psychological stress,13 

with a consequent increase of serum glucose and a potential 

for impaired glucose tolerance.

The reversibility of insomnia-associated impairments of 

glucose metabolism is unknown. In this study, we assessed 

primary insomnia (PI) patients for their baseline HbA1c 

levels and responses to an intravenous glucose tolerance test 

(IVGTT) to yield measures of glucose tolerance relevant for 

clinical diagnoses of diabetes type 2 (DM2)14 and research 

evaluations of impaired glucose tolerance,15 pancreatic beta 

cell secretion of insulin in response to a glucose load, and 

insulin sensitivity (S
I
), the response of peripheral tissues 

to insulin in storing glucose. We then tested the hypothesis 

that chronic PI is associated with impairments of glucose 

metabolism that can be reversed by 2 months of treatment 

with eszopiclone for the PI. Finally, we test the hypothesis 

that, in patients with PI, changes in actigraphic or poly-

somnographic or polysomnography (PSG)-measured sleep 

are related to changes in glucose metabolism related to the 

anticipated improvements in sleep with an anti-insomnia 

medication.

Methods
Institution where the study was performed: Brigham and 

Women’s Hospital, Boston, MA, USA.

Study design
A schematic of this double-blind, placebo-controlled, ran-

domized clinical study is presented in Figure 1. The proce-

dures were approved by the Human Research Committee of 

the Brigham and Women’s Hospital and conducted according 

to the principles expressed in the Declaration of Helsinki. All 

subjects provided written informed consent.

Subject recruitment and screening
Young and middle-aged (25–55 years) individuals with PI were 

recruited through advertisements for a study of glucose metabo-

lism and neuroimaging1 in Diagnostic and Statistical Manual of 

Mental Disorders, 4th Edition (DSM-IV) defined PI (307.42) at 

Brigham and Women’s Hospital from May 2006 to May 2008. 

Subjects were required to have >6 months of difficulty initiating 

or maintaining sleep, with resulting daytime distress or dysfunc-

tion. Specifically, subjects reported at screening a total sleep 

time (TST) ≤6.5 h, and a) sleep onset latency (SOL) >45 min, 

or b) wake after sleep onset (WASO) >45 min, or c) total wake 

time during the sleep period (sleep latency + WASO) >60 min.

A structured clinical assessment was performed by a 

single investigator (JWW), providing history of medical ill-

nesses, other comorbid sleep disorders, as well as interview 

for current and lifetime history of psychiatric disorders with 

the Structured Clinical Interview for DSM-IV (SCID). Upon 

starting the study, all subjects underwent physical examina-

tion by a licensed physician, and provided blood and urine 

samples to ensure that hematology and serum chemistry, 

including metabolic and thyroid panels, were within normal 

limits. All subjects passed a urine toxicology screen.

Additional evaluations in all subjects included assessment 

with an unstructured clinical interview for history of medi-

cal and sleep disorders, and interview for lifetime history 

of psychiatric disorders with the SCID. A full in-laboratory 

(PSG) was performed to screen for comorbid primary sleep 

disorders other than PI. The Pittsburgh Sleep Quality Inven-

tory (PSQI), the Beck Depression Inventory, and Insomnia 

Severity Index (ISI) were self-administered by all subjects. 

Laboratory assessment included electrolytes, complete blood 

count, liver and thyroid functions, pregnancy testing, and a 

toxicology screen for illicit substances.

Pre-study conditions
Sleep diaries were completed by all subjects, supplemented 

by daily call-ins at bedtime and wake time, to assess the 
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timing of sleep and wake onset, TST and awakenings within 

the sleep episode in all subjects. Inclusion criteria described 

above for SOL, WASO and TST had to be met during the 

screening period, prior to the clinical assessment.

Exclusion criteria included recent (within the preced-

ing year) or current diagnosis of a DSM-IV Axis I disorder 

(including drug or alcohol abuse) besides PI; symptoms, diag-

nosis, or history of any sleep disorder other than PI; history of 

significant head trauma (e.g., loss of consciousness >30 min); 

body mass index (BMI) >32 or <19.8 kg/m2; regular treatment 

(more than once per week) with CNS-active medications 

within 3 months of the first visit; current smoking of >10 

cigarettes/day, consumption of >2 caffeinated beverages per 

day; >2 alcoholic drinks per day (for >1 month) within the 

preceding year; and work history of swing shift, night shift, 

or rotating shift within the preceding year.

Actigraphy
Each subject was made to wear an actigraphy monitor 

(Actiwatch AW-64; Minimitter Inc., Bend, OR, USA) on 

the non-dominant wrist for the duration of the study. During 

the screening phase of this study, these data were primarily 

used to verify sleep–wake diary information and not for 

independent assessment of inclusion and exclusion criteria. 

Actiware software version 3.400.10 was used to program 

the Actiwatch to record activity and to download data from 

the device. Analysis was performed on the data collected in 

the 3 weeks prior to each inpatient visit using the manufac-

turer’s algorithm in Actiware software version 5.57.0006 as 

validated versus PSG.16 The variables assessed for this study 

included time in bed (TIB), TST, SOL, WASO and sleep 

efficiency (SE). Analysis intervals were determined using 

bedtimes and wake times reported in daily diaries. Daily call-

ins to a time-stamped voice mailbox were also used to assist 

with determination of bed times and wake times when diary 

information was absent. The threshold to detect wakefulness 

within the sleep period was set to low sensitivity. Sleep onset 

was determined to be the first epoch of the first sequence of 

ten consecutive epochs scored as sleep within the designated 

analysis interval. Sleep end was marked as the final epoch of 

the last sequence of five consecutive epochs scored as sleep 

within that same interval.

Polysomnography
Subjects who met initial screening criteria for insomnia under-

went one night of attended in-laboratory screening PSG to rule 

12
Post-treatment

Baseline
(pre-treatment)

18 24

Insomnia
+ placebo

Insomnia
+ eszopiclone

06

3-week, at-home wrist actigraphy

3-week, at-home wrist actigraphy

Randomization to
2-month

double-blind

12 12 18 24 06 12

Saliva sampling
q 30

PSG monitored
sleep period IVGTT

12 18 24 06 12

Saliva sampling
q 30

PSG monitored
sleep period IVGTT

Saliva sampling
q 30

PSG monitored
sleep period IVGTT

Clock time (hour)

Clock time (hour)

Clock time (hour)

Figure 1 Protocol schema.
Abbreviation: IVGTT, intravenous glucose tolerance test; PSG, polysomnography; q 30, every 30 minutes.
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out primary sleep disorders (sleep screen) and two additional 

nights for assessment of sleep architecture (inpatient PSG 1 

and PSG 2). Inpatient PSG 1 and PSG 2 were performed 62.7 

days (range 54–84) apart on an average. Sleep screen PSGs 

were conducted using either Vitaport-3 (TEMEC Instruments 

B.V., Kerkrade, the Netherlands) or Alice IV (Respironics, 

Murrysville, PA, USA) digital sleep recorders. Inpatient PSGs 

used Vitaport-3 digital sleep recorders only. Surface electrodes 

(Beckman Instrument Company, Schiller Park, IL, USA) were 

applied for recording central (C3 and C4) and occipital (O1 

and O2) electroencephalogram, electrooculogram, anterior 

tibialis and submentalis electromyogram, and electrocardio-

gram. Respiratory measures were conducted via oximetry 

and respiratory effort (abdominal and thorax), flow and nasal 

pressure. Anterior tibialis and respiratory recordings were 

only performed during the sleep screen. Lights out occurred 

at the subjects’ usual time and all subjects were studied for 

8 h. In the following paragraphs, it is explained that we used 

the midpoint of the subjects’ sleep periods to determine tim-

ing. All sleep recordings were scored according to current 

American Academy of Sleep Medicine criteria by the same, 

experienced registered polysomnographic technologist. More 

than 15 apnea + hypopneas or 20 periodic limb movements 

per hour of sleep led to exclusion from the study. Similarly, 

SE >90% on the sleep screening PSG combined with a report 

of sleep similar to that at home was exclusionary, as potential 

evidence of paradoxical insomnia. Other than these exclu-

sionary criteria, the results of PSG were not used to confirm 

a diagnosis of PI.

Inpatient study conditions
Subjects were admitted to the General Clinical Research 

Center (GCRC) at Brigham and Women’s Hospital for a 1-day 

pre-treatment inpatient visit. Sleep periods were scheduled for 

8 h, centered at the midpoint of each subject’s habitual sleep 

period. Light levels during sleep periods were essentially 

complete darkness (<1 lux) and <90 lux during wakefulness, 

which simulations suggest would lead to a <9 min mean differ-

ence of circadian phase between sleep conditions.17 Metabolic 

assessments were performed, and subjects were discharged 

in the afternoon of day 2 (Figure 1). Metabolic assessments 

are described below and consisted of an intravenous glucose 

tolerance test (IVGTT; insulin-modified), and collection of 

saliva and urine for hormone measurements.

Treatment and randomization
Following successful completion of the baseline procedures, 

subjects were randomized by the Investigational Drug Service 

of the Brigham and Women’s Hospital to eszopiclone (3 mg) 

tablets or placebo tablets, with ten subjects being random-

ized to eszopiclone. Each subject was instructed to maintain 

habitual sleeping habits but to take the tablets at home 30 

min prior to bedtime for 2 months between visits without 

gaps. Because of scheduling logistics, visits ranged from 54 

to 79 days apart (mean ± standard deviation [SD] of 61.3±6.7 

days). Pill counts were performed at the end of treatment to 

confirm treatment adherence in all subjects. Subjects then 

returned to the GCRC for the post-treatment visit, repeating 

the same procedures as baseline.

Diet
Throughout the inpatient portions of the study, subjects received 

an isocaloric, controlled-nutrient diet containing 58%–60% car-

bohydrates, 15%–17% protein, 25%–27% fat (±1%), 800–1000 

mg calcium, 100 mEq (±2 mEq) potassium, and 200 mEq (±2 

mEq) sodium. Subjects were required to consume all the food 

provided. On the mornings of the inpatient visits, subjects were 

asked to consume breakfast at home from a menu that was 

included in the admission day’s calculated diet. An identical 

menu was provided for both inpatient visits. Diet was not strictly 

controlled during at-home treatment; however, subjects were 

instructed not to significantly alter their typical diet.

Intravenous glucose tolerance test (insulin-modified)
IVGTT studies were performed after an overnight fast imme-

diately following the sleep period during each inpatient visit, 

as previously described.18 Blood samples were drawn via an 

intravenous catheter every 5 min for 20 min starting at T =−20 

min. At time 0, 0.3 g/kg glucose was administered over 1 min 

as a bolus via an intravenous catheter in the non-sampling 

arm. Blood samples were then taken at 2, 3, 4, 5, 6, 8, 10, 

12, 14, 16, 19, 21, 22, 24, 26, 28, 30, 35, 40, 45, 50, 55, 60, 

70, 80, 90, 100, 120, 140, 160, and 180 min. At time 20 min, 

Novolin R insulin (0.02U/kg) was administered intravenously 

over 1 min. Minimal Model analyses (Minmod Millennium 

2000, R. Bergman, University of Southern California, Los 

Angeles, CA) were performed to determine the acute insulin 

response to glucose (AIRg; first phase area under the insulin 

curve from 0 min to 10 min) glucose effectiveness (SG), and 

S
I
. Glucose tolerance (Kg) was calculated as the slope of the 

natural log of glucose values from min 5 through 19 and this 

rate expressed as %/min.

Saliva and urine sampling
Saliva samples for determination of afternoon and evening 

free cortisol levels were collected every 30 min for 8 h, start-

ing 10 h prior to the subject’s scheduled bedtime. Identical 

(mixed composition) dinners were served just after a saliva 
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sample and finished within 40 min, and thus one sample was 

skipped. Twenty-four hour urine collections were obtained 

during each visit as well.

Assays
Serum glucose during the IVGTT was measured using the 

COBAS Integra 400 (Roche Diagnostics, Indianapolis, IN, 

USA) with sensitivity of 0.59 mg/dL (0.033 mmol/L) and preci-

sion <4.3%.19 Serum insulin was measured by chemilumines-

cence immunoassay (Access Immunoassay System; Beckman 

Coulter, Chaska, MN, USA) with sensitivity 0.03 IU/mL (0.21 

pmol/L), precision <5.6%. Salivary cortisol was measured using 

a solid- phase radioimmunoassay (Coat-A-Count; DPC, Los 

Angeles, CA, USA), with sensitivity <0.02 µg/dL, and precision 

4%–5%. The following formula was used to convert to S
I
 units: 

µg/dL×27.59=nmol/L. Urinary norepinephrine was assayed 

using the 2 CAT RIA kit (Immuno Biological Laboratories, 

Inc, Minneapolis, MN, USA). The sensitivity of this method 

is 24 pg/mL for norepinephrine and the precision is 8%–15%.

Statistical analysis
The primary outcome is response to randomized treatment 

with eszopiclone (3mg) or placebo for 2 months at home, 

on glucose tolerance, with mechanistic outcomes including 

IVGTT measures of S
I
, first phase of insulin secretion, and 

disposition index. Secondary outcomes, irrespective of treat-

ment, include the relationship of TST and WASO (by PSG, 

diary, and actigraphy) with glucose metabolism measures.

Two sample t-test or Wilcoxon rank sum test (depending 

on the distribution) was used to compare the change between 

pre- and post-treatment measures between two treatment 

groups. Mixed effects models were used to test whether there 

were significant effects of treatment group and timing (pre 

vs post). Spearman correlations were calculated to examine 

the relationships between outcome measures.

Results
A total of 3121 subjects with a complaint of insomnia were 

initially screened by telephone; 107 were potentially eligible 

and were invited for additional screening at Brigham and 

Women’s Hospital. Of these, 53 participants were excluded, 

as they did not meet the study’s inclusion and exclusion 

criteria after further evaluation (e.g., from sleep diary and 

actigraphy, laboratory or PSG abnormalities, or diagnosis of 

comorbid insomnia), and 32 withdrew consent. One subject 

completed an initial screening visit but did not respond to 

additional follow-up contacts and another subject withdrew 

from the study due to the initiation of medical treatment with 

a non-approved medication.

The study group (n=20) was comprised of nine women 

and eleven men. The mean age was 39.7±7.9 years (range 

25–55) and mean BMI was 25.1±2.7 (range 20.4–30.1). 

All subjects had a continuous history of insomnia for at 

least 6 months, all but one for >1 year, and 12/20 for at 

least 5 years. Their PSQI and ISI scores as well as results 

of their two overnight sleep studies confirmed their insom-

nia (Table 1).20 Most had no history of a mood or anxiety 

disorder; however, one subject had a distant history of 

probable alcohol abuse and another reported a history of 

depression lasting about 1 year, resolving ~10 years prior 

to the study. A third subject reported having a panic attack 

in the months prior to the study but was asymptomatic at 

the time of enrollment.

Medications
Eight of our 20 subjects with PI had taken at least one dose 

of a benzodiazepine receptor agonist in their lifetime. None 

had used any of these medications continuously for longer 

than 1 month at any time. One subject also had a 2–3 year his-

tory of regular treatment with a selective serotonin reuptake 

inhibitor ending >5 years prior to enrollment in the study. 

All subjects had discontinued these medications for at least 

3 months prior to randomization. All female subjects were 

asked to take and document an approved form of birth control 

(i.e., condom, oral contraceptive) to prevent the possibility 

of teratogenic effects of eszopiclone on the fetus.

Table 1 Demographic and questionnaire data in chronic primary 
insomnia subjects (n=20)

Insomnia patient (n=20)
characteristics

Mean (SD) p-value

Placebo Eszopiclone
Gender, female % 70% 20% 0.07
Age, (years) 39.5 (6.7) 39.9 (9.3) 0.91
BMI, kg/m2 25.5 (2.7) 24.7 (2.8) 0.53
Non-Hispanic white, % 80% 90% 1.0
PSQI global 13.6 (2.4) 11.1 (3.1) 0.07
PSQI sleep latency 54.0 (31.7) 44.7 (26.9) 0.50
PSQI total sleep time, hours 4.7 (0.6) 4.7 (1.5) 1.0
Beck Depression Inventory 6.4 (5.2) 6.0 (5.1) 0.88
ISI 16.7 (2.6) 16.9 (4.5) 0.91
RDI 2.55 (2.54) 4.75 (4.74) 0.32
PSG TST 6.89 (0.96) 6.28 (0.53) 0.11
PSG WASO 0.69 (0.29) 0.91 (0.32) 0.12
Actigraphy TST 6.59 (0.78) 6.59 (0.93) 0.99
Actigraphy WASO 1.18 (0.32) 1.18 (0.21) 0.99

Notes: 19 participants had evaluable data for the PSQI sleep latency item. All other 
variables were available in all 20 participants. Participants did not differ significantly 
(Wilcoxon) on any parameters.
Abbreviations: BMI, body mass index; ISI, Insomnia Severity Index; PI, primary 
insomnia; PSG, polysomnography; PSQI, Pittsburgh Sleep Quality Inventory; RDI, 
respiratory disturbance index; SD, standard deviation; TST, total sleep time; WASO, 
wake after sleep onset.
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Adverse events
There were no serious adverse events in this study. Of the 

group who received eszopiclone (n=10), side effects reported 

were consistent with those listed on the label information 

for 3 mg eszopiclone. These included unpleasant aftertaste, 

headaches, dry mouth, somnolence and dizziness.

Polysomnography
After randomization, the ten subjects who were random-

ized to 2-months treatment of 3 mg eszopiclone did not 

demonstrate significant changes in polysomnographic sleep 

measures when compared with those randomized to placebo 

(Table 2).

Diary measures of sleep pre- and 
post-treatment
Daily diary measures of self-reported TIB, WASO, number 

of awakenings, and self-reported TST were calculated for the 

3-week period prior to each inpatient visit 2 months apart so 

as to be calculated over the same time period as actigraphic 

assessments. Consistent with the PSG data, there was no 

difference in sleep parameters by treatment group (Table 3).

Actigraphic measures of sleep in 3 weeks 
prior to each visit
The group randomized to 2-months treatment with 3 mg 

eszopiclone (n=10) did not demonstrate significant changes 

Table 2 Baseline and change in PSG and actigraphy in insomniacs treated with 3 mg eszopiclone versus placebo

Variable Unit Eszopiclone Placebo p-value

Pre-Tx (n=10) 
mean/SD

Post-Tx (n=9) 
mean/SD

Change (n=9) 
mean/SD

Pre-Tx 
(n=10) 
mean/SD

Post-Tx 
(n=10) 
mean/SD

Change  
(n=10) 
mean/SD

Time in bed (min) 479.9/3.0 477.7/3.2 −2.8/3.5 480.2/0.7 478.5/2.6 −1.7/2.3 0.42
Undefined/artifact (min) 11.5/36.2 0/0 −12.7/38.2 0.0/0.0 0.0/0.0 0.0/0.0 0.36*
Wake (min) 84.9/72.9 61.4/29.1 −4.0/24.0 84.4/38.1 89.1/28.0 4.7/29.2 0.41
NREM 1 (min) 28.1/14.9 32.6/8.7 2.1/11.2 30.4/10.1 33.1/10.5 2.8/7.3 0.97*
NREM 2 (min) 199.9/52.7 228.1/44.1 16.1/38.0 214.0/38.1 205.1/33.9 −8.9/44.8 0.21
NREM 3 (min) 65.0/38.0 61.2/34.3 −1.3/29.5 69.5/25.2 67.4/33.0 −1.0/37.2 0.97
REM (min) 90.4/37.8 94.4/26.2 −2.3/27.5 82.0/22.8 83.9/25.3 1.9/29.3 0.75
PSG total sleep (min) 393.5/73.6 416.3/29.7 2.9/25.5 395.8/37.9 389.4/27.9 −6.4/30.2 0.65
PSG sleep efficiency (%) 81.9/15.2 87.1/6.1 1.1/5.1 82.4/7.9 81.4/5.8 −1.0/6.1 0.42
PSG stage 1 (%) 7.1/3.4 7.8/2.5 0.4/2.6 7.8/3.0 8.6/2.9 0.8/2.3 0.72
PSG stage 2 (%) 51.9/8.7 54.9/10.2 1.9/5.2 53.6/7.6 52.8/9.4 −0.9/10.1 0.47
PSG stage 3 (%) 18.0/11.6 14.5/8.2 −1.1/6.4 17.6/6.0 17.3/8.8 −0.3/7.7 0.81
PSG stage REM (%) 23.0/6.9 22.7/6.0 −12/5.4 21.0/6.7 21.4/5.7 0.4/8.0 0.63
PSG sleep latency (min) 22.2/38.2 9.1/12.6 −1.2/12.8 15.3/15.0 19.6/18.2 4.4/8.2 0.27
PSG WASO (min) 64.0/45.4 52.3/33.6 −4.3/21.8 69.1/38.3 69.5/31.6 0.4/25.3 0.68
Actigraphy total sleep (min) 354.9/60.5 336.0/35.2 −18.9/52.4 338.5/35.2 318.3/35.5 −20.2/26.6 0.95
Actigraphy WASO (min) 78.4/21.2 80.2/18.3 1.8/25.3 98.2/38.4 103.8/28.1 5.6/26.9 0.75
Valid days (#) 11.1/6.2 19.3/2.5 8.2/7.2 15.1/6.1 19.9/1.7 4.8/5.7 0.26

Notes: PSG and actigraphy recordings were collected pre- and post-treatment in subjects randomized to ~2 months of treatment with 3 mg eszopiclone or placebo. PSG 
recordings were performed during two inpatient visits occurring immediately pre- and post-treatment. Actigraphy was collected in the 3 weeks prior to and during each visit. 
p-values derived from two-sample t-tests or Wilcoxon (*) test for the differences between change in eszopiclone group and change in placebo group.
Abbreviations: NREM, non-REM; PSG, polysomnographic; REM, rapid eye movement; SD, standard deviation; Tx, treatment; WASO, wake after sleep onset.

Table 3 Daily diary of sleep (self-reports)

Self-reported 
sleep (diary)

Eszopiclone Placebo p-value

N Pre-Tx  
(mean/SD)

Post-Tx 
(mean/SD)

Difference 
(mean/SD)

N Pre-Tx  
(mean/SD)

Post-Tx 
(mean/SD)

Difference 
(mean/SD)

TIB (h) 10 7.39/0.94 7.42/0.51 0.04/0.67 10 7.55/0.83 7.68/0.89 0.13/0.65 0.54
WASO (min) 9 54.6/19.2 39.6/25.8 −11.4/21.6 10 41.4/17.4 48.0/34.2 6.6/23.4 0.86
Awakenings (#) 9 2.12/0.91 1.55/1.07 −0.54/0.78 10 2.46/1.74 2.34/1.53 −0.12/2.01 0.28
TST (h) 9 6.28/0.53 6.64/0.66 0.36/0.41 10 6.89/0.96 6.23/0.80 0.09/0.55 0.19
Estimated TST (h) 10 6.00/0.98 6.45/0.77 0.45/0.73 10 6.23/0.80 6.31/0.90 0.08/0.45 0.90
Daily SD of TST (h) 9 1.07/0.52 1.04/0.47 −0.03/0.50 10 0.92/0.40 0.93/0.36 0.01/0.50 0.43

Notes: Daily diary measures of self-reported TIB, WASO, number of awakenings, and estimated sleep duration were calculated for the 3-week period prior to each inpatient 
visit 2 months apart so as to be over the same time period as actigraphic assessments. One subject in the treatment group had missing diary data. p-values were based on 
the mixed effects models with group and time as fixed effects and subjects as random effects.
Abbreviations: SD, standard deviation; TIB, time in bed; TST, total sleep time; Tx, treatment; WASO, wake after sleep onset.
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in sleep, as assessed by 3-weeks of wrist actigraphy com-

pared with those randomized to placebo. There were no 

significant changes over 2 months in TIB (eszopiclone= 

−5.2±48.4 min; placebo=3.1±41.5 min), TST (eszopi-

clone=−18.9±52.4 min; placebo=−20.2±26.6 min), SE 

(eszopiclone=−3.8±7.2%; placebo=−4.7±2.4%), SOL 

(eszopiclone=13.0±17.4 min;  placebo=17.8±16.8 min) or 

WASO (eszopiclone=1.8±25.3 min; placebo=3.1±41.5 min).

Primary outcomes: insulin secretion and 
glucose tolerance (IVGTT)
IVGTT data are presented in Figure 2 Kg, the rate of glucose 

disposal from min 5 to 19 following intravenous glucose 

injection, at baseline was 2.30%±0.34%/min in the eszopi-

clone group versus 1.94%±0.06%/min in the placebo group. 

Both mean and pre–post difference data were not normally 

distributed. Following 2 months of treatment, mean Kg was 

2.63%±0.38%/min with eszopiclone and 1.84%±0.10%/min 

with placebo (p=0.38, Wilcoxon two-sample test for group 

differences and p=0.31, Wilcoxon two-sample test for percent 

change between the two treatment groups). Although the 

mean difference or percent change is larger in the eszopiclone 

group, it also has a larger standard deviation. Baseline AIRg 

was tested as a covariate in the mixed model for sleep diary-

reported TIB, WASO, and estimated TST (time slept), but was 

not significant in any of these models (p>0.05).

Mean changes  in  S
I
 were  −1.19±2.57±0.94 

(mU/L)−1*min−1with eszopiclone, and 0.05±3.43 

(mU/L)−1*min−1 with placebo treatment (p=0.38). Mean 

changes in AIRg were 94.0±269.0 mU*L−1*min with eszopi-

clone, and 25.1±74.7 mU*L−1*min with placebo treatment 

(p=0.40). Mean changes in SG were 0.001±0.004 min−1 with 

eszopiclone, and 0.001±0.009 min−1 with placebo (p=0.92).

Body weight did not change significantly over the course 

of the 2-month treatment period, or differ between groups. 

The only significant correlation at baseline was limited to 

HbA1c levels and sleep diary-reported estimated TST (time 

slept), in the placebo group (r=−0.66, p=0.0376).

Predictors of changes in SI over 2 months
The baseline to post-treatment difference in HbA1c levels 

was significantly related to the difference in diary-reported 

estimated TST (time slept) in the eszopiclone-treated group 

(r=0.66, p=0.036), and in the combined groups’ data (r=0.55, 

p=0.0125). Changes in IVGTT-derived SG were significantly 

related to the changes in PSG-measured WASO (r=−0.48, 

p=0.0391) (Figure 3). Other PSG- and actigraphy-derived 

sleep measures were not correlated with HbA1c or IVGTT-

derived measures of glucose metabolism.

Salivary cortisol and 24-h urinary 
epinephrine and norepinephrine levels
There were no significant effects on salivary cortisol levels of 

drug versus placebo (p=0.12), baseline versus post-treatment 

(p=0.47), or drug by time interaction (p=0.51).

There were no significant effects on 24-h urinary epineph-

rine levels of drug versus placebo (p=0.53), baseline versus 

post-treatment (p=0.49), or drug by time interaction (p=0.31).

There were no significant effects on 24-h urinary norepi-

nephrine levels of drug versus placebo (p=0.33). However, 

24-h urinary norepinephrine levels varied with baseline 

versus post-treatment (p<0.04), and there was a significant 

drug by time interaction (p<0.04).

Discussion
In this randomized, double-blind, placebo-controlled and 

parallel group study of chronic PI patients, nightly admin-

istration of 3 mg eszopiclone before bedtime for 2 months 

did not significantly change indices of glucose metabolism 

measured using the IVGTT. This may be related to the fact 

that, in this preliminary study with a small sample size, PSG- 

and diary-derived measures of sleep duration and quality did 

not differ between eszopiclone and placebo groups. Of note, 

despite the presence of some mild sleep-disordered breath-

ing in this sample at baseline, this did not differ between 

groups or alter metabolic responses; eszopiclone has been 

shown in preliminary work to not alter sleep-disordered 

breathing severity.20 PSG-measured WASO, a hallmark of 

PI,1 was related to IVGTT-derived glucose effectiveness, or 

non-insulin-mediated glucose uptake, typically by the brain. 

Other PSG and actigraphic measures of sleep were unrelated 

to other changes in glucose metabolism. Changes in diary-

reported TST were associated with changes in HbA1c levels, 

a measure of glycemic control, but were not associated with 

IVGTT-derived metabolic measures.

Multiple studies have reported an association between 

sleep restriction in individuals without insomnia, and impaired 

glucose metabolism, specifically by reductions in S
I
 without 

adequate compensatory increases in insulin secretion.18,21–23  

It is unclear whether the same mechanisms apply to insomnia. 

Population-based studies identify a higher risk of diabetes 

among patients with insomnia,3,24–27 though there have been 

contrary reports from long-term studies.28 The direct effects 

of insomnia on measures of glucose metabolism that might 
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lead to that elevated diabetes risk are less clear. The com-

bination of short sleep duration (<6 h PSG-measured sleep 

duration during an 8 h TIB opportunity in the laboratory) 

and insomnia has been specifically associated with increased 

diabetes risk.29 The results of a recent laboratory study of 

insomniacs with short sleep and glucose metabolism assessed 
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Figure 2 Glucose metabolism in chronic primary insomnia patients (n=20).
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with an oral glucose tolerance test suggest that insomnia with 

short sleep duration alters glucose metabolism by reducing 

pancreatic beta cell secretion of insulin, with increased S
I
.30 

This mechanism is inconsistent with the reduction of S
I
 in 

studies of sleep restriction alone. Interestingly, the reductions 

in insulin response to a metabolic challenge without changes 

in S
I
 have also been observed following exposure to circa-

dian disruption,31 an exposure that leads to increased sleep 

fragmentation and shorter sleep duration when sleep occurs 

at adverse circadian phases. Thus, while sleep restriction and 

insomnia both elevate diabetes risk, sleep restriction appears 

to do so via reduced S
I
, whereas sleep disruption may elevate 

diabetes risk by reducing insulin secretion.

Our secondary hypothesis was that improved sleep with 

eszopiclone would be reflected in improved glucose measures. 

However, we found no measured effect of eszopiclone on any 

of the metabolic or sleep measures. Studies that have aimed 

to assess the clinical efficacy of eszopiclone have included 

a substantially higher number of patients. For example, a 

classically cited study on a sustained efficacy of eszopiclone 

over 6 months had 593 participants taking eszopiclone and 

195 taking placebo.32 Another study testing efficacy in older 

individuals randomized 388 participants.33 It is also notable 

that in large population studies, effects have been modest.24,34,35 

We found that change in measures of sleep quality were a 

predictor of changes in glycemic control (HbA1c levels) 

and pancreatic beta cell responses to glucose in our patients 

with insomnia. Chronic partial sleep loss or insomnia impair 

glucose metabolism in the short term and are associated with 

the development of diabetes in the long term. Cross-sectional 

evidence of the role of short sleep in the development of 

impaired glucose tolerance and diabetes mellitus type 2 has 

been demonstrated in the Sleep Heart Health Study. Recently 

presented oral glucose tolerance test data from this cohort 

used diagnostic criteria (glucose levels 2-h post-ingestion) 

for categorizing normal, impaired glucose tolerance, and type 

2 diabetes. A self-reported short sleep duration (<6 h night, 

with or without an insomnia-like symptom), relative to a 7–8 

h sleep duration, was associated with a significant increase in 

the odds ratio for a worsening of glucose tolerance to impaired 

glucose tolerance or type 2 diabetes.26

Longitudinal evidence of the role of short sleep in the 

development of type 2 diabetes has been shown in the Nurses 

Health Study,26 as well as a very recent study from Sweden.27 

In this report, non-diabetic healthy men were followed for a 

mean period of nearly 15 years. The presence of diabetes was 

quantified by questionnaire and/or fasting blood glucose lev-

els. Men who reported difficulties falling asleep or regularly 

used a hypnotic, which was suggestive of sleep problems, 

were more likely to develop subsequent diabetes even in a 

model fully adjusted for age, biological risk factors, lifestyle, 

family history of diabetes, and socioeconomic status.27 DM2 

is an epidemic in the US and much of the developed world.36,37

It is naturally assumed that patients with chronic insomnia 

have a shorter overall sleep time. Indeed, they exhibit many 

of the features that would be expected with a high “sleep 

debt”, including increased alpha power38 and relative hyper-

cortisolemia during the afternoon and evening, similar to that 

seen with acute sleep deprivation39 or sleep restriction.18,21 The 

pathophysiological pathway of the changes in glucose control 

remains to be elucidated. Potential mechanisms include direct 

effects on the “stress” system, proposed by Basta et al.40 We did 
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not find any significant differences in stress hormones: cortisol 

and norepinephrine remained similar across sleep measures, 

suggesting that the poorer glycemic control and pancreatic 

response of insulin secretion is not an effect of HPA activation.

Sleep quality influences the restorative capacity of sleep.41 

A direct link between sleep quality and diabetes has been 

shown separately for both difficulty with sleep initiation 

and difficulty with sleep maintenance.3,25,42–44For example, in 

an 8-year follow-up of 2265 healthy men, Kawakami et al42 

found a more than twice increased risk of type 2 diabetes 

among individuals who reported difficulty with sleep main-

tenance and a nearly threefold increased risk among those 

reporting frequent difficulty with sleep initiation. In the 

MONICA/KORA Augsburg Cohort Study of a total of 8,269 

adults, incident diabetes in multivariable-adjusted models 

exhibited a hazard ratio of 1.6 (confidence interval [CI]: 

1.05–2.45) for men and 1.98 (CI: 1.20–23.29) for women.3 In 

a meta-analysis of sleep-associated diabetes risk, sleep dura-

tion exhibited a significant relative risk of 1.28, but insomnia 

symptoms exhibited a greater degree of diabetes risk. Dif-

ficulty initiating sleep showed a relative risk of 1.57, and 

difficulty maintaining sleep showed a relative risk of 1.84.3

Study limitations include incomplete generalizability, as 

well as the fact that insomnia was defined categorically, and 

questions the effects of chronicity of insomnia could not be 

answered. We found no effect of eszopiclone on any of the 

metabolic or sleep measures that could possibly be attributed 

to a relatively small number of subjects in each group; that is, 

our study was underpowered to detect such effects. With ten 

patients in each group, we have 18% power to detect the dif-

ference in TST of 363.8 min (SD=63.5) in placebo group and 

411.8 min (SD=124.0) versus eszopiclone 3 mg group45 with 

a two-sided two-sample t-test at 0.05 level. Similarly, with 

ten patients in each group, we have 7% power to detect the 

difference in WASO of 49.1 min (SD=36.1) in placebo group 

versus 41.2 min (SD=39.0) in the eszopiclone 3 mg group45 

with a two-sided two-sample t-test at 0.05 level. Actigraphy 

was used to detect at-home WASO in the weeks before each 

inpatient visit, yet this measure, while recently validated,16 

is weakest for detecting quiet wakefulness during the sleep 

period and has greater bias (assessed by Bland– Altman plots) 

with greater amounts of WASO (over 30 min per night), as 

seen in insomniacs compared with normal sleepers. The 

strengths of the study include strict and consistent inclusion 

criteria, sufficiently long treatment and controlled laboratory 

conditions for comprehensive metabolic testing.

Since poor glucose control can be seen among insomnia 

patients with shorter sleep times, patients with insomnia who 

are refractory to treatment should be screened and adequately 

evaluated for early signs of diabetes; for example, with 

HbA1c testing for pre-diabetic levels.

Summary
Current knowledge/study rationale
Insomnia appears to increase diabetes risk. This study tested 

the hypothesis that the effects of PI on glucose metabolism 

could be improved by 2 months of pharmacological treat-

ment, and that changes in WASO, a hallmark of insomnia, 

are related to changes in glucose metabolism.

Study impact
Preliminary evidence in a relatively small sample presented 

here suggests that anti-insomnia treatment (3 mg eszopiclone 

every night for 2 months) does not improve glucose metabolism.
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