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Background: The At-rich interactive domain 1A (ARID1A) is frequently mutated in gastric 

cancers (GCs) with a poor prognosis. Growing evidence indicates that loss of ARID1A 

expression leads to activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway by 

AKT phosphorylation. We aim to investigate the different sensitivity for the AKT inhibitor in 

ARID1A-deficient GC cells.

Methods: After transfection using siRNA or shRNA, the effect of ARID1A knockdown on the 

PI3K/AKT signaling pathway was evaluated by Western blot analysis. ARID1A-knockdown 

cells were treated with AKT inhibitor (GSK690693), 5-fluorouracil, or cisplatin, alone or in 

combination. Viability and apoptosis were analyzed using EZ-CYTOX cell viability assay and 

flow cytometry, respectively.

Results: ARID1A depletion accelerated the phosphorylation of AKT and S6 in a dose-dependent 

manner and led to an increased proliferation of MKN-1, MKN-28, and KATO-III GC cells 

(P,0.001). ARID1A-deficient cells were more vulnerable to GSK690693 in comparison to the 

controls (P,0.001), even at very low doses. Flow cytometry confirmed the increased apoptosis 

in ARID1A-deficient cells treated with GSK690693 (0.01 μmol/L; P,0.001). In contrast to our 

expectations, ARID1A depletion did not cause resistance to 5-fluorouracil or cisplatin. Addi-

tion of GSK690693 to the conventional chemotherapy induced more decreased cell viability 

in ARID1A-knockdown cells (P,0.01).

Conclusion: Loss of ARID1A expression is a surrogate marker for the activation of the AKT 

signaling pathway and is also a reliable biomarker to predict the response for the AKT inhibitor. 

We anticipate that appropriate patient selection based on ARID1A expression in the tumor tissue 

will increase the drug sensitivity for the AKT inhibition and improve the clinical outcome.
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Introduction
Despite recent improvements in surgical and chemotherapeutic approaches, about half 

of the patients diagnosed with advanced gastric cancer (GC) still die from recurrent dis-

ease after curative surgery or distant metastasis.1,2 Fluoropyrimidine- or platinum-based 

conventional cytotoxic chemotherapy is still widely used as the first-line treatment of 

GC.3 However, nearly all patients develop resistance to these drugs with adverse effects, 

limiting the efficacy of this approach.4,5 The only targeted therapeutic agent, trastuzumab 

(Roche, Basel, Switzerland), increases survival by only a few months, even in a selected 

biomarker-positive population.1 Thus, identification of efficacious therapeutic interven-

tions that sensitize GC cells is required to improve the management of GC patients.

The AT-rich interactive domain 1A (ARID1A) is an ARID family member that 

encodes a subunit of the Switch/Sucrose nonfermentable chromatin remodeling family.6 

ARID1A is involved in regulating diverse cellular processes, including development, 
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differentiation, proliferation, and DNA repair.7 Recent 

genome-wide sequencing studies demonstrated that ARID1A 

is frequently mutated in ovarian and endometrial cancers, and 

also in GCs, ranging from 8% to 33%.8–12 Genetic alterations 

in ARID1A in GCs are mostly insertion/deletion mutations, 

which lead to truncation of ARID1A protein.10 Loss of 

ARID1A protein is considered a poor prognostic factor in a 

variety of cancers, including GC.13

Growing evidence indicates that loss of ARID1A expres-

sion leads to the activation of the phosphatidylinositol 

3-kinase (PI3K)/AKT pathway, mainly due to AKT 

phosphorylation.14–16 This appears to be true in GCs, as we 

previously demonstrated in the human GC tissues by immu-

nohistochemistry.17 If ARID1A-deficient tumor cells depend 

on constitutive activation of the AKT pathway, it is assumed 

that tumor cells lacking ARID1A expression may be more 

vulnerable to the selective AKT pathway inhibitors.18 In sup-

port of this notion, MCF7 breast cancer cells and primary 

MRC5 cells exhibit significantly increased sensitivity to the 

AKT inhibitors, MK-2206 and perifosine, as well as the PI3K 

inhibitor, buparlisib, after ARID1A knockdown.19

In this study, we demonstrate that loss of ARID1A pro-

motes proliferation of cancer cells by activating the AKT 

signaling pathway in GC cell lines. The promising preclinical 

activity of selective AKT pathway inhibitors was demon-

strated in ARID1A-deficient GC cells.

Materials and methods
cell lines and cell culture
MKN-1, MKN-28, MKN-45, KATO-III, AGS, MKN-74, 

and NCI-N87 human GC cell lines were purchased from the 

Korean Cell Line Bank and were maintained in RPMI 1640 

(Hyclone, South Lagan, UT, USA) supplemented with 10% 

fetal bovine serum, 1% penicillin, and streptomycin at 37°C 

in a humidified atmosphere containing 5% CO
2
.

reagents and antibodies
The following reagents and antibodies were used: GSK690693 

(Cell Signalling Technology, Danvers, MA, USA), 

5-fluorouracil (5-FU) and cisplatin (both from Sigma-

Aldrich, St Louis, MO, USA), ARID1A, p-AKT, AKT, 

p-S6, poly-ADP ribose polymerase (1:1,000; Cell Signalling 

Technology), and β-actin (1:5,000; Santa Cruz Biotechnol-

ogy, Santa Cruz, CA, USA).

Western blot analysis
After treatment with the specified drugs, cells were washed 

with PBS and lysed in the lysis buffer. Lysates were 

centrifuged at 13,000 rpm for 20 min at 4°C and then 

incubated on ice for 20 min. Protein concentration was 

determined by the Bradford assay (Bio-Rad, Hercules, CA, 

USA). Equal amounts of protein from each sample were 

resolved by sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis and transferred onto polyvinylidene difluo-

ride membrane (EMD Millipore, Billerica, MA, USA). The 

immunoblots were blocked by incubation in 5% skim milk, 

25 mM Tris-HCl (pH 8.0), 150 mM NaCl, and 0.1% Tween 

20 for 1 hour at room temperature. The membrane was then 

incubated with primary antibodies on a shaker overnight 

at 4°C. Protein detection was performed using the ECL kit 

(Abclon, Seoul, Korea).

rna interference
ARID1A depletion was done by transfection of MKN-1, 

MKN-28, and KATO-III cells with SMARTpool: ON-

TARGETplus ARID1A siRNA (L-017263-00-0005; 

GE Dharmacon, Lafayette, CO, USA). siRNAs were trans-

fected using DharmaFECT1 (GE Dharmacon). In addition, 

MKN-1, MKN-28, and KATO-III cells were infected with 

a lentivirus encoding a nonspecific (NS) scramble shRNA 

(#1864; Addgene, Cambridge, MA, USA), Mission ARID1A 

shRNA#2 (NM00615.3-TRCN0000059089; Sigma-

Aldrich), or Mission ARID1A shRNA#3 (NM00615.3-

TRCN0000059090; Sigma-Aldrich) using polybrene 

(EMD Millipore). After infection, cells were selected with 

puromycin (Sigma-Aldrich) and ARID1A expression levels 

were checked by Western blot.

cell viability assay
After 48-hour exposure of specified drugs, cells were ana-

lyzed using EZ-CYTOX cell viability assay kit (Daeillab 

Services, Seoul, Korea). Cells were plated in 96-well plates. 

EZ-CYTOX solution was added to each well of the plates 

and incubated at 37°C for 1.5–2 hours. The absorbance was 

measured at 450 nm.

cell apoptosis
To detect synergistic effects of the chemotherapeutic 

drugs on cell apoptosis, treated cells were analyzed using 

the fluorescein isothiocyanate-Annexin V apoptosis kit 

(BD Biosciences, San Jose, CA, USA). The results were 

analyzed by flow cytometry using an FACSAria III device 

(BD Biosciences). All the experiments were repeated inde-

pendently in triplicate.
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statistical analysis
Statistical analysis was performed using GraphPad Prism 

version 5.0 (GraphPad Software Inc., La Jolla, CA, USA). 

The half inhibitory concentration (IC
50

) values were calcu-

lated with an F-test. For two-group comparisons, a two-tailed 

unpaired t-test was used. For multiple group comparisons, 

one-way analysis of variance was used. Two-sided P,0.05 

was considered statistically significant.

Results
ariD1a knockdown activates aKT 
pathway and promotes growth of 
gc cells
ARID1A protein levels in different GC cell lines were evalu-

ated using Western blotting. Most of the GC cells showed 

intact ARID1A expression, while MKN-45 was ARID1A 

deficient (Figure 1A). Then, we selected MKN-1, MKN-28, 

and KATO-III and silenced endogenous ARID1A using 

siRNAs in these cells. The siRNA remained as effective till 

48 hours after transfection. ARID1A depletion increased 

cell proliferation compared to the controls (P,0.001), and it 

accelerated the phosphorylation of AKT and its downstream 

S6 proteins in a dose-dependent manner (Figure 1B–D).

ARID1A-deficient GC cells are 
vulnerable to select aKT inhibitors
After transfection with control-siRNA and siARID1A, 

GC cells were incubated with increasing concentrations 

(0.01–10 μmol/L) of the AKT inhibitor, GSK690693, for 

48 hours, followed by cell viability detection (Figure 2). 

ARID1A-deficient cells were more vulnerable to the AKT 

inhibitor compared to the controls (P,0.001), even at very 

low doses. Consistent with this, ARID1A-deficient MKN-45 

cells were most sensitive to GSK690693. The IC
50

 value of 

the wild-type (ARID1A-loss) MKN-45 was 0.043, while 

the IC
50

 values of the wild-type (ARID1A-intact) MKN-1, 

MKN-28, and KATO-III cells were 0.132, 0.084, and 4.521, 

respectively (P,0.001; Figure 3).

aKT inhibition leads to increased 
apoptosis in ARID1A-deficient cells
Treatment with the GSK690693 (10 μmol/L) completely 

abrogated p-Akt induced by ARID1A knockdown in 

ARID1A-deficient MKN-28 cells and led to reduced p-S6, 

in contrast to the controls (Figure 4A). Poly-ADP ribose 

polymerase cleavage was increased in ARID1A-knockdown 

cells treated with GSK690693. Flow cytometry confirmed the 

β

β

β β

Figure 1 cellular proliferation by aKT phosphorylation is induced by ariD1a knockdown.
Notes: (A) Western blotting for the screening of ariD1a in gastric cancer cell lines. (B–D) After transfection of ARID1A siRNA, cell viabilities were significantly increased 
(**P,0.001; paired t-test). Knockdown of ariD1a increased the phosphorylation of aKT and the downstream s6.
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increased apoptosis in ARID1A-deficient cells treated with 

even low dose (0.01 μmol/L) of GSK690693, compared to 

the controls (P,0.001; Figure 4B).

addition of aKT inhibitors to 
conventional chemotherapy exerts 
increased antitumor activity in ariD1a-
deficient cancer cells
Since ARID1A knockdown increased the proliferation of can-

cer cells by activating AKT signaling, we hypothesized that 

ARID1A-depleted cells might be resistant to conventional 

chemotherapy. The antiproliferative effect of conventional 

chemotherapy was examined in ARID1A-depleted GC 

cells. 5-FU or cisplatin was applied at different concentra-

tions (10–60 μmol/L) for 48 hours to MKN-1, MKN-28, 

and KATO-III cells transfected with control-shRNA and 

shARID1A. In contrast to our expectations, ARID1A deple-

tion did not cause resistance to these drugs (Figure 5). Next, 

to further explore the synergistic effect of GSK690693 with 

conventional chemotherapy, the cells were treated with 5-FU 

(10 μmol/L) or cisplatin (10 μmol/L) in the presence of a 

minimal drug concentration of GSK690693 (0.01 μmol/L). 

Compared with single agent alone, addition of GSK690693 to 

the conventional chemotherapy induced more decreased cell 

viability in ARID1A-knockdown MKN-28 and KATO-III 

cells, compared to wild-type cells (P,0.01; Figure 6A). 

Consistent with this observation, GSK690693 in combina-

tion with 5-FU or cisplatin induced a significant increase in 

apoptosis compared with 5-FU or cisplatin alone in ARID1A-

knockdown cells (P,0.01; Figure 6B)

Discussion
We demonstrate that loss of ARID1A induces cellular pro-

liferation by activating the PI3K/AKT signaling pathway. 

ARID1A-deficient cancer cells were much more vulnerable 

to the AKT inhibitor, possibly due to the more significant 

abrogation of p-AKT and its downstream node p-S6 in 

ARID1A-depleted cancer cells treated with GSK690693. 

ARID1A knockdown sensitizes MCF7 breast cancer cells and 

HGC-27/SGC-7901 GC cells to PI3K and AKT inhibition.19,20 

We confirmed this using different GC cell lines, suggesting 

that this phenomenon is ubiquitous regardless of cancer 

types. In addition, combination treatment of AKT inhibitor 

with conventional chemotherapy had an additive effect in 

Figure 2 ariD1a depletion leads to increased sensitivity toward aKT pathway inhibitors.
Notes: increased sensitivity of ariD1a-depleted MKn-1, MKn-28, and KaTO-iii cells toward gsK690693 (aKT inhibitor) was observed than that of controls. *P,0.001; 
paired t-test.
Abbreviation: nc, normal control.
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of the ariD1a-intact MKn-1, MKn-28, and KaTO-iii cells were 0.132, 0.084, and 
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Abbreviation: ic50, half inhibitory concentration.
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ARID1A-knockdown GC cells, which might have clinical 

utility in the future.

The PI3K/AKT pathway is frequently altered in cancers, 

promoting growth, proliferation, and survival.21,22 Targeting 

its major nodes, such as PI3K or AKT, may represent a key 

therapeutic opportunity.21 Since the PI3K/AKT pathway 

has also been implicated in carcinogenesis and progression 

of GC, clinical investigations have targeted the PI3K/AKT 

pathway in patients with GC.23 However, the clinical efficacy 

of these inhibitors as monotherapy in particular has, so far, 

been limited, showing very low response rate.24 These failures 

possibly stem from the lack of appropriate patient selection 

based on a reliable biomarker.

Here, we present ARID1A as a surrogate marker for the acti-

vation of AKT pathway and may also anticipate more improved 

clinical response when patients with ARID1A-negative GC are 

β

Figure 4 AKT inhibition leads to increased apoptosis in ARID1A-deficient cells.
Notes: (A) Treatment with the aKT inhibitor gsK690693 (at a concentration of 10 μmol/L) completely abrogated p-Akt induced by ARID1A knockdown in ARID1A-deficient 
MKn-28 cells and led to reduced p-s6, in contrast to the controls. ParP cleavage was more increased in ariD1a-knockdown cells treated with gsK690693. (B) Flow 
cytometry confirmed the increased apoptosis in ARID1A-deficient cells treated with GSK690693 (0.01 μmol/l) in contrast to the controls (**P,0.001; paired t-test).
Abbreviations: FITC, fluorescein isothiocyanate; PARP, poly-ADP ribose polymerase.

Figure 5 loss of ariD1a expression did not induce resistance to the conventional chemotherapy.
Notes: To investigate the antiproliferative effect of conventional chemotherapy in ariD1a-depleted gc cells, 5-FU or cisplatin was applied at different drug concentrations 
(10–60 μmol/l) for 48 hours to MKn-1, MKn-28, and KaTO-iii cells transfected with control-shrna and shariD1a. Drug sensitivities did not differ between 
these groups.
Abbreviations: 5-FU, 5-fluorouracil; GC, gastric cancer.
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treated with AKT inhibitors. Moreover, unlike other protein 

biomarkers, the expression status of ARID1A in tumor tissue 

can be clearly distinguished and leaves no concern for inter-

observer variability in most cases.17

PI3K/AKT has been implicated for chemotherapy 

resistance, including resistance for trastuzumab treatment.25 

A clinical investigation revealed that the loss of ARID1A 

expression was related to shorter progression-free survival 

and chemoresistance in ovarian clear cell carcinoma.26 

ARID1A gene silencing reduced the sensitivity of ovarian 

clear cell carcinoma to cisplatin.27 However, in contrast to 

our expectation, ARID1A-deficient GC cells did not show 

resistance when treated with conventional chemotherapy, 

such as 5-FU and cisplatin. Viability of ARID1A-knockdown 

MKN-28 cells treated with paclitaxel was also similar to that 

of wild-type cells (data not shown). The exact relationship 

between ARID1A loss and chemoresistance needs to be 

investigated further.

The limitations of our study are that only one AKT inhibi-

tor was used and the lack of in vivo experiments. Further 

assessment of the mechanism of action could shed light on 

the importance and clinical utility of using AKT inhibitors 

for treating patients having ARID1A-deficient GC, either 

singly or in combination.

Conclusion
Loss of ARID1A expression is a surrogate marker for the 

activation of AKT signaling pathway and also a reliable 

biomarker to predict the response for the AKT inhibitor. 

We anticipate that appropriate patient selection based on 
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ARID1A expression in the tumor tissue will increase the 

drug sensitivity for AKT inhibition and improve the clinical 

outcome. Future mechanistic and in vivo studies should be 

performed prior to exploring this pathway in clinical trials.
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