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Abstract: After more than 2 decades of development in mammalian models and the clinical 

focus of a few pioneering laboratories, vitrification of human oocytes and embryos has trans-

formed today’s assisted reproductive technology (ART) industry. Our ability to cryopreserve 

gametes and embryos without fear of the damaging effects of ice formation has instilled great 

confidence in post-warming specimen viability. In turn, clinical treatment options are progres-

sively eliminating fresh embryo transfer (ET; ie, freeze-all cycles), integrating preimplantation 

genetic screening and contemplating the use of cryopreserved oocytes as a viable resource. 

Vitrification’s impact on clinical treatments is akin to the advent of sperm injection technology 

in the 1990s on male factor infertility. An appreciable and quantifiable difference was made, 

with procedural efficacy and global reliability essentially being guaranteed. Yet, there are chal-

lenges in the current trends and perspectives in how this technology is and will be optimized in 

the future. User variation in vitrification products and procedures warrants stricter adherence to 

quality control measures to enhance specimen biosafety and patient satisfaction, while reducing 

potential liability concerns. Furthermore, future progress in our understanding of the chemical 

and cryophysical processes of vitrification will insure the effective cryostorage of reproductive 

tissues and gametes at a level attained for embryo cryopreservation today.
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Insights into the pioneering past of vitrification
The concept and development of kinetic vitrification is credited to Father Basile J Luyet, 

a Professor of Biology at Saint Louis University. Luyet1 reviewed historic research in 

cryobiology and published summaries of experiments which mostly involved freezing 

under natural conditions, without the presence of cryoprotective agents (CPAs).2 Luyet1 

showed that supercooled solutions could become so viscous that they solidified with-

out crystallization, forming a transparent glass state, and that this transparent frozen 

state was equivalent to “vitrification.” Furthermore, he determined that although you 

may vitrify something successfully in the cooling phase, it did not mean you could 

sustain life, because when you warm it back up it may return to the crystalline state 

and cause cellular damage.2 Later in the 1950s, Gonzales and Luyet3 experienced 

limited success vitrifying chick hearts and neural tissue explants.4 Insights into this 

pioneering history of cryobiology and the early efforts of other investigators have been 

reviewed.5 As for Luyet, he went on to become the founding president of the Society 

for Cryobiology in 1964.
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In the late 1970s and early 1980s, renewed interests 

in the underlying concept of cryopreserving living tis-

sue under the metastable solidification of water without 

ice growth (ie, vitrif ication) became a fascination of 

two independent, brilliant-minded postdoctoral fellows 

in the field of cryobiology. Neither Drs Greg Fahy nor 

Bill Rall (pre-1985) could have foreseen the tremendous 

effectiveness that vitrification would have on maintaining 

the cryoviability of oocytes and embryos. Fahy’s applied 

aspirations focused on the challenges of whole tissue/organ 

preservation, believing that if the CPA concentration was 

sufficiently high, the crystallization of water molecules in 

the extracellular medium could be inhibited completely and 

become vitrified.6,7 Meanwhile, Rall et al8 were intrigued 

with innocuous ice formation inside cells during conven-

tional freeze procedures that accommodated cellular sur-

vival. Using cryomicroscopy, it was  observed that CPAs 

substantially increase viscosity of intracellular regions, 

causing water diffusion to cease and the liquid cytoplasm 

to form a metastable glass upon rapid cooling. Rall and 

coworkers10 were confident that conventional embryo cryo-

preservation procedures could be simplified for on-farm 

use, and possible in-field conservation efforts, without 

a need for electronic equipment. After years of mutual 

respect and idea sharing, the scientific union of Fahy and 

Rall was formalized through the support of Harold Mery-

man, Scientific Director at the American Red Cross Blood 

Research Laboratory (Bethesda, MD, USA) in 1983. Under 

cold room experimental conditions, they successfully vitri-

fied mouse embryos in 1985,11 as previously reviewed.12 In 

Rall’s13 efforts to develop an effective procedure working 

under room temperature conditions, it was determined that 

propylene glycol was highly toxic at higher concentrations. 

However, a third-generation vitrification solution (VS3a, a 

6.5 M glycerol solution) produced high survival levels and 

positive pregnancy outcomes in closed one-step 0.25 mL 

straws, being comparable to conventional slow freezing of 

mouse embryos14 and sheep blastocysts.15,16

By 1990, a new focus on vitrification began, one which 

emphasized minimizing the potential toxicity of vitrifica-

tion solutions.17 Our understanding of vitrification solutions 

and their potential toxicity to embryos was enhanced by the 

efforts of a few insightful pioneers in the field of reproduc-

tive cryobiology.18–22 Their efforts led to the combined use of 

mixed permeating CPAs (eg, ethylene glycol [EG], dimethyl 

sulfoxide [DMSO] and glycerol), as well as non-permeating 

solutes (eg, sucrose and ficoll) that factored into reducing 

toxicity potential of individual vitrification solutions.

The integration of vitrification into 
clinical in vitro fertilization (IVF)
Nearly a decade passed before vitrification was proposed as a 

serious technology for improving our ability to cryopreserve 

human oocytes, cleaved embryos and blastocysts.23–26 This 

interest in clinical vitrification was linked to the formation 

of unique cryodevices such as the Open Pulled Straw,27,28 

Cryoloops29–31 Cryotops32,33 and others,23,24 whose thin sur-

rounding film of vitrification solution and direct contact with 

liquid nitrogen (LN
2
) achieved ultrarapid cooling rates. By 

the mid-2000s, it was the commercial industry, developing 

new devices (eg, HSV, Cryotip, Rapid-i and Cryolock) and 

solutions that propelled vitrification’s use into clinical IVF 

laboratories. By 2010, the benefits of vitrified embryos and 

oocytes, having virtually no change from their fresh state, 

were gaining worldwide acceptance.34,35 The diversity of 

issues surrounding the pros and cons of both open and closed 

device systems has been recently discussed by Vajta et al,36 

and is briefly mentioned in the following paragraphs. Histori-

cally, most clinical users of vitrification systems were misled 

that the ultrarapid cooling rates attained by the direct expo-

sure of open devices to LN
2
 were necessary to achieve high 

survival rates with embryos and oocytes. However, time and 

experience have proven that slower cooling closed systems 

vitrify equally well in contrast to other open systems, espe-

cially with regard to embryo cryopreservation.26 Although the 

majority of oocyte cryopreservation experience and clinical 

data support the preferred use of open device systems, there 

is a need for more published reports and experimentation 

with closed devices before definitive conclusions are made, 

as mixed results have been reported.37–43

During this time period, the relative importance of 

warming rates to insuring successful vitrification was 

proven in a murine experimental model system by Seki 

and Mazur (the father of modern cryobiology).44–47 Using a 

nonequilibrium, unstable vitrification solution model, they 

clearly proved that rapid to ultrarapid warming is the key 

determinant overriding conditions created at any cooling 

rate. Vitrification warming is a complex process, in that 

a closed device (eg, standard sealed straw) that achieves 

intermediate cooling rates (100–2000°C/min) performs 

well with an intermediate warming rate of ≥2950°C/

min, whereas an open system utilizing high cooling rates 

(>10,000°C/min) experiences decreased survival at lower 

warming rates. Thus, open system devices achieving excep-

tionally high cooling rates, due to the low thermal mass of 

their microvolumes, are dependent on equally high warm-

ing rates for optimal success.43 Using a nonequilibrium 
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vitrification system, one should keep in mind that the faster 

one cools, the smaller the size of the invisible extracellular 

crystals in solution (ie, heterogeneous nuclei); the smaller 

the nucleated crystals are the greater their driving force to 

increase in size upon recrystallization during warming (ie, 

devitrification). In turn, one must warm more rapidly to 

combat the injurious effect of recrystallization.43 Indeed, 

vitrification is a highly complex process,36 whereby a recip-

rocal interaction exists between the cooling rate required 

to achieve vitrification of a solution and the concentration 

of CPA(s)/solutes.48,49 Overall, these findings have lent 

support to the effective development and use of aseptic, 

closed vitrification device systems (HSV,38,50 Vitrisafe,39,43 

microSecure,40,51 SafeSpeed52), proving that open device 

systems were not a requirement for successful oocyte and 

embryo vitrification outcomes. In contrast, only higher 

volume, closed systems have proven effective to date for 

the vitrification of reproductive tissue.53,54 The key compo-

nent to optimizing post-warming survival, independent of 

device used, is to insure that the warming rate is greater than 

the cooling rate; of which the need for speed is inversely 

correlated with the concentration of the CPA used. The 

thermodynamics of cryophysical and chemical relationships 

has been reviewed55,56 and eloquently discussed by Wowk.57

Although it took more than 20 years of development, 

vitrification has transformed the IVF industry, with regard 

to oocyte cryobanking34,58,59 and the justified adoption of 

freeze-all IVF cycles35 in conjunction with blastocyst culture 

and micromanipulation. As the story continues to unfold, in 

terms of devices and vitrification solutions, today blastocysts 

are vitrified with great confidence that their fresh-state 

viability will be completely sustained. This is particularly 

true in conjunction with blastocyst biopsy/preimplantation 

genetic screening (PGS)–single  ET applications,60,61 where 

over 99% survival can be typically achieved,62 along with 

efficient pregnancy success across all age groups following 

single euploid ET. With embryo and oocyte vitrification 

being the most significant procedure applied to the assisted 

reproductive technology (ART) industry since the devel-

opment of intracytoplasmic sperm injection (ICSI),12 it is 

inconceivable why any IVF program would still be applying 

conventional slow-freeze (SF) procedures.63 In this era of 

ART where many different vitrification devices and commer-

cial solutions exist, as well as programs transitioning their 

cryoinventories from slow frozen to vitrified oocytes and 

embryos, it is important to realize that 1.0 M sucrose is an 

effective “universal” warming solution. It is not financially 

feasible, nor practical, to maintain various thawing solutions 

for slow frozen and vitrified samples. Parmegiani et al’s64 

proposed use of 1.0 M sucrose solution for the step-down 

dilution of SF embryos is equally effective with vitrified 

embryos.65 By simply halving the sucrose concentration 

into a three-step, or possibly four-step (+0.125 M), dilution 

(under ambient temperatures) in decreasing concentrations 

of sucrose at 2–3 min intervals, prior to final equilibration in 

isotonic medium, optimum post-thaw survival and viability 

can be achieved. In fact, in one pilot study in our laboratory, 

the CPAs in vitrified blastocysts were effectively eluted in 

1.0 M sucrose over 5 min before direct isotonic equilibra-

tion.66 Granted such an action creates unnecessary osmotic 

stress on an embryo, it does demonstrate the physiologic 

functionality of the phospholipid bilayer of blastomere 

membranes cryopreserved by vitrification. It is not known, 

however, whether the plasticity of the oolemma would 

be equally forgiving to sustain the viability of the largest 

single cell in the human body. Indeed, post-warming dilu-

tion protocols do vary considerably (ie, time interval and 

steps), dependent on cell permeability and the CPAs used, 

an area that could benefit from more controlled comparative 

experimentation.

Overcoming variables impeding 
clinical progress and legal liability
The commercial development of numerous types of vitri-

fication devices and solutions has facilitated the applica-

tion of clinical vitrification, but has also created technical 

inconsistencies between laboratories. Depending on the 

device and its learning curve, technical variation must be 

accounted for, as recently discussed.67 What can be per-

formed to minimize intra- and inter-laboratory procedural 

variation beyond the essential need for training? Numer-

ous risk factors and safety issues associated with different 

vitrification methods should be considered (eg, LN
2
 device 

handling; device design flaws; shipment concerns and viral 

cross-contamination of semen, embryos or ova),25,36,40,67–69 

but are not reviewed in this article. In essence, there are 

basic quality control (QC) factors warranting implementa-

tion to make vitrification a consistent, efficient, reliable and 

highly effective ART procedure that minimize liability and 

maximize success. The processes in need of QC consid-

erations include the following: pre-vitrification organiza-

tion, labeling, cryodilution, aseptic technique and possible 

aseptic storage, container loading and sealing/protection, 

reliability and repeatability, warming temperatures and CPA 

elution and LN
2
 storage, handling and shipment. An ideal 

vitrification device and method should allow for a repeatable 
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volume of vitrification solution, containing embryo/ova, to 

be loaded simply in a time-sensitive, reliable, controlled 

manner, devoid of air bubbles. The goal is to eliminate 

technical variation, while optimizing 100% recovery and 

high survival rates. Recovery rates should not be minimized, 

as they represent a potential design flaw to a device and 

create a serious liability risk to the group who ultimately 

discovers a problem with this issue.67 Obviously, training 

and experience are critical to reducing technical variation 

and insuring reliable consistent outcomes.

Serious liability issues can arise regarding the reliabil-

ity of given device systems and poor recovery potential 

(ie, >1% loss rate). When an embryo or egg(s) fails to 

be recovered, this situation can present serious problems, 

especially if the sample had been vitrified by another 

laboratory and/or the receiving laboratory is unfamiliar 

with a given device? This is especially so if the lost speci-

men represents the patient’s last option. Was the device 

tapped or jostled pre- or post-vitrification, the specimen 

accidentally aspirated pre-vitrification or simply not iden-

tified post-warming? These are the questions which are 

ultimately asked and typically remain unresolved. In short, 

was it technical incompetence pre- or post-vitrification, or 

was it simply device failure in-between? The latter situa-

tion is not helpful for laboratories facing potential legal 

litigation, and unfortunately case precedence does exist in 

the US court system. In turn, the emphasis on universal 

reliability and repeatability must be seriously regarded. 

The reality is that highly qualified embryologists and 

experienced laboratories warming vitrified specimens are 

vulnerable to the procedural QC habits (good and bad) 

and device choices (open, closed or hybrid systems) used 

by other ART laboratories and their staff.67 Failure to 

identify eggs can be particularly problematic in devices 

that do not allow direct visualization of the eggs on or in 

the device, because they can become highly translucent 

in 1.0 M sucrose solutions (ie, T1) immediately post-

warming/elution. Unfortunately, most published reports 

simply hide their recovery failures in their otherwise good 

overall survival rates. This form of data manipulation, 

however, does not allow the industry to accurately assess 

the potential QC flaws inherent to certain device systems, 

nor anticipate possible liability risks. Conversely, vitrified 

oocyte recovery rates were recently published in a reason-

able and informative manner in a randomized controlled 

trial (RCT) device study, revealing a 2.6% loss rate using 

semi-closed CryoTopSC devices compared to the aseptic 

closed CBS-HSV system (0%).37

Current trends and challenges with 
embryos, gametes and reproductive 
tissue
Blastocyst vitrification
The development and clinical application of blastocyst vit-

rification has experienced the greatest success in terms of 

maintaining the viability of fresh embryos,70 being superior 

to conventional slow freezing.26,71 Post-warming, blastocysts 

tend to appear completely intact, with the occasional appear-

ance of a few necrotic outer trophectodermal cells. In contrast, 

approximately 25% of cleaved embryos may have one or two 

blastomeres degenerate, while the remaining embryo is highly 

viable.72,73 Non-incorporated cells and fragments outside the 

trophectoderm of blastocysts commonly appear degenerate 

post-warming. It is very uncommon to observe a completely 

lysed blastocyst, and care should be taken to culture these 

embryos as they may have experienced an initial granular 

transitional phase, but sometimes appear quite normal after 

a couple hours in culture. Blastocyst reexpansion before 

ET is desired, but should not be used as a key determinant 

for viability as some embryos simply require more time to 

equilibrate. Osmotic responsiveness to sucrose dilutions and 

the maintenance of membrane integrity/cellular clarity are 

reliable indicators of post-warming embryo survival. Today, 

complete blastocyst survival rates routinely exceed 95%, and 

vitrified ET (VFET) live birth outcomes are routinely equal 

to or higher than fresh ET success,74 likely due to impaired 

endometrial receptivity in fresh, hyperstimulation cycles.75

To promote and insure high blastocyst survival, pre-

vitrification blastocoel collapsing (ie, fluid volume reduc-

tion) has been adopted, as reviewed by Liebermann and 

Conaghan.76 The artificial collapsing of blastocysts prior to 

vitrification has been proven to be effective using a variety 

of methods,77,78 with trophectoderm laser ablation being the 

simplest approach, sacrificing a single cell for the greater 

good of the whole embryo. Hatched blastocyst and fully 

expanded, zona intact blastocysts certainly have the greatest 

need for volume reduction before vitrification to enhance 

post-warming viability. However, it appears that this need to 

manually collapse a blastocyst is dependent on the type and 

concentration of the CPAs used. Most commercial vitrifica-

tion solutions contain a mixture of DMSO and EG which 

possess high permeation coefficients, in contrast to glycerol, 

thus achieving osmotic equilibration and possible blastocoel 

reexpansion in a shorter interval. Therefore, it is not surpris-

ing that the use of an alternative glycerol–EG-based solution 

(Innovative Cryo Enterprises (ICE), Linden, NJ, USA) in our 
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laboratory,40,62 and others,79 does not require artificial col-

lapsing to achieve high post-warming survival, as the slower 

permeating glycerol effectively reduces water influx before 

cooling. Using this higher concentrated glycerol-based solu-

tion, devoid of DMSO, in a highly effective noncommercial 

aseptic, closed system,51 has revealed that high pregnancy 

outcomes can routinely occur across all age groups without 

the pre-vitrification application of blastocoel collapsing.40,62

It has become increasingly evident, since first proposed 

by Grifo et al,80 that the transfer of a single euploid vitrified/

warmed blastocyst, independent of age, is the most efficient 

way to achieve a high implantation rate and live birth rate 

(IR/LBR), as clearly confirmed in other recent reports.35,62 

Furthermore, although there is no difference in IR/LBR using 

either day 5 or day 6 euploid blastocysts, the miscarriage 

rate tends to be higher using a day 6 early to full blastocysts 

(grade ≤3) or embryos with B-quality trophectoderm.81 

Whether PGS is applied, or not, it is routinely accepted that 

blastocyst viability is not compromised by vitrification, nor 

micromanipulation, and that delayed ET cycles using the 

warmed blastocyst can be advantageous.62,80,82 To date, the 

possible epigenetic effects of embryonic vitrification solu-

tion exposures have not been elucidated; however, it has been 

shown that aneuploidy rates do not increase in blastocysts 

vitrified as oocytes.83,84 Furthermore, it is doubtful whether 

there is a genetic consequence to vitrifying blastocysts con-

sidering their high post-warming IRs and live birth success. 

Based on the exceptional reliability of embryo vitrification 

and normal neonatal outcomes,85 there is a growing trend in 

the IVF industry replacing fresh ET with freeze-all cycles, 

especially in older patient populations (>37 years old) and 

PGS-tested patients, as the prior fear of the best quality 

embryo may not survive post thaw no longer exists. Today, 

“freeze-all” VFET can efficiently achieve IRs in excess of 

65% (up to 84%), independent of age, after single euploid 

ET (Table 1). While fresh ET success rates have remained 

relatively dormant between 2010 and 2015 (eg, donor egg 

LBR: 55.8–56.8% LBR/ET), frozen ET success has steadily 

increased from 38.4% to 46.6% total LBRs transferring fewer 

embryos/ET.86 In turn, blastocyst vitrification in conjunction 

with PGS has facilitated improved embryo utilization rates 

aimed at more efficiently creating healthy singleton births 

(<31.9–36.5% from 2010 to 2015).

Oocyte vitrification
Breakthrough efforts in early oocyte slow freezing success 

integrated ICSI to reliably achieve fertilization and blastocyst 

development,87 and subsequently healthy live births.88–91 How-

ever, a couple of years later, early success in vitrifying and 

warming human oocytes92–94 transformed this reproductive 

practice into a highly efficient freeze preservation method 

over the past decade.34,58,59 Upon verifying the normal health 

and well-being of over 900 babies produced from embryos 

derived from slow-frozen and vitrified oocytes,95,96 coupled 

with consistently high survival (>85%) and good fertilization 

rates (>70%) attained with vitrification, a Practice Committee 

of the American Society for Reproductive Medicine (ASRM) 

reclassified oocyte cryopreservation technology as “nonex-

Table 1 Select information from the national summary of ART statistics by the CDC reviewing the frozen ET results of non-donor 
egg cycles

Frozen embryos: autologous cycles Age groups (years)

<35 35–37 38–40 41–42 43–44

SCCRM: 2014/2015
No. of cycles 82/93 75/70 72/68 27/29 9/11
Mean #ET 1.1/1.0 1.2/1.1 1.2/1.1 1.1/1.1 1.4/1.0
%IR 77.9/71.3 61.0/69.4 60.0/71.4 84.0/64.3 6/13/6/11
%LBR/ET 73.1/68.8 66.2/65.7 55.0/69.1 69.6/58.6 5/9/6/11
%Healthy single/ET 56.4/61.3* 56.3/55.7 48.3/54.4 69.6*/48.3 4/9/6/11

Mean CDC 2014
No. of cycles 26,182 13,539 10,078 3,792 1,811
Mean #ET 1.6 1.5 1.6 1.7 1.8
%IR 43.7 40.8 35.2 28.4 19.9
%LBR/ET 46.6 44.0 38.3 32.1 23.1
%Healthy single/ET 30.7 30.6 27.1 23.3 16.8

Notes: The data contrast the SCCRM clinic in 2014 and 2015 to the national average in 2014. SCCRM and its affiliated Ovation Fertility Laboratory have strived to optimize 
the quality of patient care by implementing a clinical practice of predominantly PGS/vitrification-all cycles. In turn, the use of single euploid ET maximizes implantation and 
healthy singleton live birth successes. *The SCCRM clinic achieved some of the highest healthy singleton LBR in the USA in 2015 (ie, healthy single: normal birthweight term 
singleton). Data from Centers for Disease Control and Prevention. Assisted Reproductive Technology Surveillance, National Summary Reports 2010–2015.86

Abbreviations: ART, assisted reproductive technology; CDC, Center for Disease Control; ET, embryo transfer; IR, implantation rate; LBR, live birth rate; PGS, 
preimplantation genetic screening; SCCRM, Southern California Center for Reproductive Medicine.
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perimental” in 2013.97 It is important to realize that the intent 

of this decision was to facilitate the application of this freeze 

preservation practice for female cancer patients, without the 

obstacles of informed research consent. A major determinant 

in lifting the “experimental” classification was the consistent 

evidence revealing that genetic anomalies occur at a rate of 

<2% in babies derived from vitrified oocytes, being no dif-

ferent than fresh oocytes.98

There is no doubt that the most important application for 

oocyte cryopreservation is to provide a “fertility preserva-

tion” option for women undergoing potential sterilizing medi-

cal treatments, or medical uncertainty during their remaining 

fertile years. As medical care continues to improve for women 

faced with life-threatening diagnoses, oocyte vitrification is 

indeed the best option to preserve a woman’s future fertility 

if unmarried or unwilling to use donor sperm, knowing that 

blastocyst vitrification is a more well proven and reliable 

cryopreservation option.99 Another important application is 

in emergency IVF cycle situations where upon on the day 

of oocyte retrieval there is no sperm present in a testicular 

biopsy or due to ejaculatory failure. Despite advanced plan-

ning, clinical laboratories worldwide are repetitively faced 

with this latter issue, but now have an effective solution to 

rescue an IVF cycle with vitrification.

The commercial banking and marketing of donor oocytes 

is probably the fastest growing and largest application of 

oocyte cryopreservation technology. Details on this growing 

industry have been reviewed by others.100,101 Suffice it to say, 

the majority of publications boosting oocyte cryopreserva-

tion technologies as being comparable to the use of fresh 

oocytes are typically associated with egg-banking affiliated 

professionals. Granted, there have been RCTs supporting 

the efficacy of vitrified donor and autologous eggs.34,102 Cer-

tainly, oocyte cryopreservation has proven to be a viable and 

effective clinical option.59 For example, in a recent webinar 

presentation, Nagy103 reported his experience at My Egg 

Bank (MEB) in the USA with 21,462 warmed eggs having 

an 88%/78% survival and fertilization rate, respectively, with 

an equally impressive 52% clinical pregnancy rate using vitri-

fied donor eggs. Although fresh donor egg rates in the USA 

typically attain an average 55% live births, many top ART 

programs are able to routinely attain 65–85% LBRs. That 

level of success has yet to be reported using vitrified oocytes. 

In contrast, commercial egg banks repeatedly report sub-50% 

LBRs, as do published IVF programs.34,58,104,105 Excluding 

the occasional outlier publishing an impressive data set,98,106 

the average clinical practice is not publishing their variable 

experience with oocyte cryopreservation that fails to attain 

the levels reported by commercial propaganda. There is, 

however, general agreement that blastocysts derived from 

vitrified oocytes are the same as fresh,99,107,108 or from vitri-

fied blastocysts for that matter. To optimize pregnancy and 

live birth success, it is generally accepted that if >8 oocytes 

are available, it is more favorable to culture and transfer at 

the blastocyst stage.109 Yet, warming more oocytes per cycle 

does not necessarily insure that more blastocysts may be 

produced from a given batch source. Overall, the disparity 

observed in everyday laboratory practice, especially in terms 

of developmental competence, indicates that there is more 

to learn about oocyte cryopreservation, specifically how egg 

quality and development are influenced by factors such as 

hormonal stimulation, cytoplasmic maturation, organelle 

functionality and membrane permeability.110 Furthermore, 

more RCTs are needed to compare open and closed vitrifi-

cation devices, cooling rates and warming rates, as well as 

unstable and metastable non-equilibration solutions, if we are 

to truly optimize the reliability and repeatability of oocyte 

vitrification in the future.37,39

The difficulties associated with improving oocyte cryo-

preservation are related to understanding the special structure 

and sensitivity of this large single cell,111 and considering 

the overall physiology of oocytes.112 We may still need to 

evaluate the varying exposure time and concentration of 

the CPA(s) and the equilibrium/maturation interval pre and 

post-warming, while still inhibiting extra- and intracellular 

ice formation in conjunction with minimizing potential 

cytotoxicity, to optimize the viability and developmental 

capacity of embryos. Several studies evaluating the effect of 

vitrification and slow freezing on the meiotic spindle integ-

rity and chromosome alignment revealed that less damage 

occurred in vitrified oocytes,113,114 and that spindle recovery 

was more rapid following vitrification (1–2 h post-warming) 

compared to slow freezing.115 However, other studies evaluat-

ing vitrified–warmed oocytes suggested that chromosomal 

alignment may be partly compromised.115,116 Furthermore, 

Figure 1 Laser manipulation of human embryos.
Notes: (A) The hatched blastocyst possessing a single nonviable, unincorporated 
trophectodermal cell (*) following pre-vitrification laser-mediated blastocoel collapse 
and post-warming in vitro culture. (B) Routine biopsying of trophectodermal cells 
via laser-assisted, micro-aspiration has confirmed the biosafety of infrared diode 
lasers and further proven the resiliency of embryos to micromanipulation and 
subsequent cryopreservation.
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other biological characteristics of human oocytes that might 

confer susceptibility to damage during the cryopreservation 

procedure include: 1) the low permeability coefficient of the 

oolemma, which makes the penetration of cryoprotectant sub-

stances more difficult, and their intracytoplasmic lipids which 

make them more sensitive to freezing than embryos;117 2) 

precocious oocyte activation induced by exposure to cryopro-

tectants which may disturb future development;112,114 3) loss 

of high mitochondrial polarity associated with a significantly 

reduced capacity to upregulate the levels of intracellular free 

calcium after thawing118 and 4) microvacuolization in the 

ooplasm and ultrastructural alterations in specific oocyte 

microdomains have been linked to a reduced developmental 

potential of mature cryopreserved oocytes.119 Furthermore, 

there remains a need to understand more about the level of 

gene regulation and energetics that could be responsible 

for decreasing the developmental potential of the vitrified 

cytoplasm.

The commercialization of oocyte cryopreservation was 

an unanticipated and somewhat disturbing trend as a direct 

by-product of ASRM’s decision to qualify this technology as 

nonexperimental. This was not so much from the donor egg 

bank marketing perspective, but more in terms of the clinical 

promotion of elective fertility preservation of women (of all 

age groups) through egg banking. Clearly, there are age limits 

that should be considered, which influence the effectiveness 

of future fertility efforts.108,120 Yet, the biggest problem has 

lied in every IVF clinic in the world suddenly considering 

themselves as qualified authorities on oocyte cryopreserva-

tion, capable of applying a textbook recipe without experience 

or any proven pregnancy success of their own, just because 

the technology was deemed “nonexperimental.” More than 

5 years later, oocyte vitrification practices have yet to be 

optimized nor their developmental competence issues fully 

understood. Granted, when it works well and yields good 

quality blastocysts, one can anticipate excellent pregnancy 

outcomes, similar to fresh eggs.59,99,108 More often, however, 

the average laboratory frequently observes slower and lower 

blastocyst development. More importantly, more than 10% of 

the vitrified egg batches will likely fail to yield a transferrable 

embryo. This phenomenon was recently documented in a 137 

and 368 autologous egg banking cycles in Spain and the USA, 

respectively, with 12–21.2% of the fertilized oocyte warming 

cycle failing to yield an embryo for transfer.104,121 It is to be 

kept in mind that survival rates and normal fertilization events 

tend to be consistent (75–95% and 65–85%, respectively), 

with survival failure being a rare event (<2%).105 Perhaps the 

greatest concern then is that naive, innocent female consumers 

(ie, perspective patients) are being misinformed about their 

risks, by financially motivated programs, that the freeze pres-

ervation of their potential fertility based on today’s technol-

ogy does not guarantee that a transferrable embryo will even 

result, let alone potentially create a healthy baby. As there is 

no stopping the elective fertility preservation movement, the 

latter unanticipated result begs us to redirect the question, does 

this technology truly not require continued experimentation 

to improve its overall efficacy, reliability and long-term effec-

tiveness? A recent series of reciprocal nuclear transplantation 

experiments involving fresh and vitrified sheep oocytes has 

clearly confirmed that the vitrified cytoplasm of oocytes is the 

possible source of a zygotes’ developmental incompetence, as 

opposed to chromatin defects in the meiotic spindle.122 Due to 

the high costs, resource availability and ethical considerations 

of generating human oocytes for experimentation, research 

progress will undoubtedly be slow, but necessary.

Human ovarian tissue vitrification
Gosden et al123 were the first to explore the realm of ovarian 

tissue cryopreservation using slow freezing methods with 

sheep ovaries. Similar freeze preservation success has sub-

sequently been achieved in the human beings using both SF 

and vitrification methods.53,124–127 Comparative vitrification 

solution trials have been initiated to identify optimal solu-

tions for ovarian tissue freeze preservation.54,128 Promising 

vitrification results have also been attained in a Macaque 

monkey model using a metastable solution composed of 

25% EG, 25% glycerol and polymers in a closed system 

device.129 Applying a two-step warming process, the latter 

investigators efficiently preserved the follicular morphology 

and stromal tissue of the ovarian cortex. In addition, there 

have been promising developments in the cryopreservation 

of whole organs (eg, kidneys) by perfusion with metastable 

vitrification solutions130 that could have direct application 

with ovaries, as the effective external permeation of CPAs is 

concentration and rate dependent relative to tissue type and 

mass. Perfusion offers a mechanism to uniformly distribute 

CPAs throughout the tissue bed. Sheep ovaries have been 

successfully perfused for 10 min with a 10% DMSO solution 

followed by SF and thawed at 68°C for 20 s and then 37°C 

for 4 min.131 Upon successful transplantation, these slow 

frozen perfused ovaries maintained physiological function-

ality after 6 years in vivo.132 Successful perfusion and slow 

freezing of human ovaries has also been reported.133 Ovarian 

tissue in humans, however, has generally been slowly cryo-

preserved as cortical biopsies or strips with proven in vivo 

transplantation success,134 yet whole ovary perfusion and 
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vitrification are promising technologies for future clinical 

application.135,136 Today, ovarian tissue cryopreservation and 

transplantation are still regarded as experimental.137 Regard-

less, it is a viable option for patients who require immediate 

gonadotoxic medical treatment and is the only option avail-

able for prepubertal girls.124,137,138 Overall, there is agreement 

in the fertility community that this technology should not be 

offered to patients with benign conditions or for the purpose 

of delaying childbearing, as embryo and oocyte vitrification 

are more efficient and effective approaches.

Human sperm vitrification
In lieu of Luyet’s original assertions, it is reasonable to believe 

that small cells with little intracellular water, such as sperm, 

can survive kinetic vitrification in the absence of permeating 

CPAs under rapid cooling conditions. Indeed, that has been 

the experience of Evgenia and Vladimir Isachenko and their 

colleagues in Cologne, Germany, whom first reported the 

successful cryopreservation of human sperm without cryo-

protectants in 2002.139 Using a 0.5 M sucrose vitrification 

solution, these investigators developed an effective kinetic 

vitrification system.140–144 These efforts were particularly well 

suited for the cryopreservation of low numbers of sperm 

isolated in microvolume suspensions contained on or in dif-

ferent devices (eg, Cryoloop, grids/mesh, Cryotops, cut-straw 

microdrops and capillary tubes).140,143,145,146 It was proven that 

sperm functionality, as measured by acrosomal integrity, 

mitochondrial activity, plasma membrane function, DNA 

fragmentation, motility and fertilizability, was similar to or 

better than conventional slow freezing.141,142,144,147–149 Clini-

cal efforts have further shown that vitrification of sperm in 

higher volumes (up to 0.5 mL) can be a practical and effective 

treatment achieving pregnancies and live births by IVF and 

intrauterine insemination (IUI) procedures.141,142,145,147,150–154 

Although kinetic sperm vitrification has been proven effec-

tive for over 15 years,5,147 it has not been met with the same 

large-scale acceptance and industry application afforded to 

eggs and embryos. However, as experimentation continues 

and more users become familiar with this technology, a trend 

away from traditional sperm freezing in the presence of toxic 

CPAs could well occur overtime. It is worth adding that 

although testicular tissue vitrification has been successfully 

applied,155 the current technology of rapid freezing of whole 

biopsy tissue (ie, seminiferous tubular masses) has proven 

to be effective in clinical application.156 In turn, it is unlikely 

that the vitrification of sperm and testicular tissue will ever 

gain the industry-wide acceptance and popularity granted to 

embryos, oocytes and perhaps ovarian tissue in the future.

The future is guaranteed
Today, the advantages of vitrification appear to significantly 

outweigh any potential pitfalls, if one can clearly assess any. 

Under well-controlled vitrification conditions, there should 

be no damaging ice crystal formation to cause osmotic, 

physical or physiological disruption of cellular function. 

Procedures are performed simply, reliably and rapidly with 

relatively brief exposures to concentrated, biosafe CPAs, 

without the cost of electronic equipment and maintenance 

of a programmable freezer.24

Vitrification has made a lasting impact in the IVF industry 

over the past decade, literally changing the way reproductive 

endocrinologists and biologists approach infertility treatment. 

It has been successfully applied to oocytes and embryos by 

laboratories using both open and closed systems, as well as 

unstable or metastable nonequilibrium vitrification solutions. 

The relationship between device type and solution choice is 

complicated. Although some very effective DMSO/glycol 

and non-DMSO solutions have been developed, there is sig-

nificant variation in the efficacy of their application depend-

ing on the vitrification method applied and the experience of 

the operator, commonly referred to as “technical signature.”79

As with all ART procedures, there is always room for 

improvement in their application and outcomes. Steady 

advancements in reproductive tissue and oocyte vitrifica-

tion will likely require continued experimentation to further 

understand membrane functionality, the role of extracel-

lular stabilizing additives (eg, hyaluronate, hydrocellulose 

and butylated hydroxytoluene) and ice blocking agents (eg, 

polyvinyl alcohol polymer), organelle functionality and 

gene expression, cryoprotectant interactions and possible 

toxicities. Furthermore, quality management improvements 

aimed to reduce technical variation will all prove critical to 

optimizing vitrification in the future. Ideally, vitrification 

systems will be mindful of QC considerations to enhance 

procedural consistency and repeatability, with a common goal 

to eliminate technical signature by reducing intra- and inter-

laboratory variation. Indeed, the future of cellular viability is 

infinite in the wondrous world of metastable glass formation 

and the controlled elimination of recrystallization events, 

while maintaining normal physiological processes.
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