
© 2017 Zhao et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php  
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you 

hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission 
for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

OncoTargets and Therapy 2017:10 4423–4433

OncoTargets and Therapy Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
4423

O r i g i n a l  r e s e a r c h

open access to scientific and medical research

Open access Full Text article

http://dx.doi.org/10.2147/OTT.S144015

Prognostic immune-related gene models for 
breast cancer: a pooled analysis

Jianli Zhao1,2,*
Ying Wang1,2,*
Zengding lao3,*
siting liang3

Jingyi hou4

Yunfang Yu1,2

herui Yao1,2

na You3

Kai chen1,2

1Breast Tumor center, sun 
Yat-sen Memorial hospital, sun 
Yat-sen University, guangzhou, 
china; 2guangdong Provincial Key 
laboratory of Malignant Tumor 
epigenetics and gene regulation, 
sun Yat-sen Memorial hospital, sun 
Yat-sen University, guangzhou, 
china; 3school of Mathematics, sun 
Yat-sen University, guangzhou, 
china; 4Department of Orthopedics, 
sun Yat-sen Memorial hospital, sun 
Yat-sen University, guangzhou, china

*These authors contributed equally 
to this work

Abstract: Breast cancer, the most common cancer among women, is a clinically and 

biologically heterogeneous disease. Numerous prognostic tools have been proposed, including 

gene signatures. Unlike proliferation-related prognostic gene signatures, many immune-related 

gene signatures have emerged as principal biology-driven predictors of breast cancer. Diverse 

statistical methods and data sets were used for building these immune-related prognostic models, 

making it difficult to compare or use them in clinically meaningful ways. This study evaluated 

successfully published immune-related prognostic gene signatures through systematic validations 

of publicly available data sets. Eight prognostic models that were built upon immune-related gene 

signatures were evaluated. The performances of these models were compared and ranked in ten 

publicly available data sets, comprising a total of 2,449 breast cancer cases. Predictive accura-

cies were measured as concordance indices (C-indices). All tests of statistical significance were 

two-sided. Immune-related gene models performed better in estrogen receptor-negative (ER−) 

and lymph node-positive (LN+) breast cancer subtypes. The three top-ranked ER− breast cancer 

models achieved overall C-indices of 0.62–0.63. Two models predicted better than chance for 

ER+ breast cancer, with C-indices of 0.53 and 0.59, respectively. For LN+ breast cancer, four 

models showed predictive advantage, with C-indices between 0.56 and 0.61. Predicted prognostic 

values were positively correlated with ER status when evaluated using univariate analyses in 

most of the models under investigation. Multivariate analyses indicated that prognostic values 

of the three models were independent of known clinical prognostic factors. Collectively, these 

analyses provided a comprehensive evaluation of immune-related prognostic gene signatures. 

By synthesizing C-indices in multiple independent data sets, immune-related gene signatures 

were ranked for ER+, ER−, LN+, and LN− breast cancer subtypes. Taken together, these data 

showed that immune-related gene signatures have good prognostic values in breast cancer, 

especially for ER− and LN+ tumors.
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Introduction
Breast cancer is the most common cancer among women. As a clinically and biologically 

heterogeneous disease, accurate prognostic predictions are very important for breast 

cancer treatment planning. In the past, the pathological Tumor-Node-Metastasis Clas-

sification of Malignant Tumors staging system of the American Joint Committee on 

Cancer was the predominant prognostic prediction tool. In recent decades, molecular 

breast cancer subtypes have been identified based on pathological markers includ-

ing estrogen receptor (ER), progesterone receptor, human epidermal growth factor 2 

(HER2), and Ki67. Measured expression levels of these biomarkers are routinely used in 

clinical practices to stratify patients for prognostic predictions and to select treatments.1–4 

In particular, four distinct subtypes of breast cancers have been defined: luminal A-like, 
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luminal B-like, HER2-positive, and triple negative. These 

subtypes were first adopted by the St Gallen International 

Expert Consensus panel in 2013 as a basis for selecting 

adjuvant systemic therapy regimens (ie, endocrine therapy, 

chemotherapy, or anti-HER2 therapy).2 Nevertheless, diagno-

sis and treatment decision-making for breast cancer still relies 

on classical histopathological and immunohistochemical 

techniques. More quantitative diagnostic approaches and indi-

vidualized treatment plans remain unmet needs. To meet these 

needs, multigene prognostic models have emerged, including 

21-gene recurrence score,5–7 PAM50,8–13 Mammaprint®,14–16 

and Breast Cancer Index™.17–20

Historically, prognostic multigene predictors strictly 

consisted of proliferation-associated genes.21,22 The tests 

were highly effective at classifying recurrence risks for 

ER-positive (ER+) and lymph node–negative (LN−) breast 

cancer subtypes; prognoses for these subtypes were well 

predicted by Ki67 indices or levels of DNA synthesis or cell 

cycle regulatory genes. Although most ER-negative (ER−) 

or LN-positive (LN+) breast cancers are highly prolifera-

tive, multigene predictors do not have discriminative power 

for prognoses within either subtype. Therefore, alternative 

prognostic signatures must be proposed for these subtypes 

that are not limited to proliferation-related genes.23,24 Recent 

preclinical studies have underscored inflammation and the 

stromal immune landscape as important drivers of breast 

cancer. There has been growing interest in establishing 

prognostic multigene signatures focused on immune-related 

genes, such as the STAT-1 gene, interferons, and immune 

response genes.25–32

Currently, no immune-related signature has been widely 

accepted in clinical practice; it is unknown whether one test is 

the most robust. In this study, all published immune-related 

prognostic gene models were systematically reviewed to 

evaluate performances across independent data sets. The aims 

of this study were two-fold: first, to investigate the prognostic 

effects of immune-related gene signatures and, second, to 

identify the most robust signature for the prognostication of 

nonmetastatic breast cancer.

Methods
The design of this study had two major sections. First, pub-

lished literature describing prognostic immune-related gene 

signatures and publicly available genomic data sets were 

systematically reviewed. Second, a multistudy evaluation of 

immune-related prognostic models that met specific inclu-

sion criteria was performed. The literature search strategies 

as well as inclusion criteria of prognostic models and data 

sets are detailed in the following subsections.

literature search strategies
Systematic literature searches of articles published between 

July 2006 and March 2017 were performed independently 

by two authors (KC and JZ). In both cases, Internet-based 

searches of the PubMed and Web of Science platforms were 

performed without language or regional restrictions, using 

combinations of the following keywords: “breast cancer,” 

“breast neoplasm,” “breast carcinoma,” “immune-related 

gene,” “immune response gene,” “prognostic model,” and 

“immune-related predictor.” Reference lists of retrieved 

articles were manually screened to identify relevant articles. 

If a single study generated multiple publications, then either 

the highest quality publication or the most recent publication 

was chosen for subsequent analyses.

inclusion criteria of prognostic models
Published prognostic models of immune-related gene sig-

natures were evaluated for inclusion in the current study. 

Eligible studies included the following: 1) a claim of provid-

ing prognostic value for nonmetastatic breast cancer cases; 

2) a model that was based on mRNA expression levels, as 

quantified by microarray technologies; 3) a model that was 

developed using a training data set and then validated with 

a test data set; 4) a training data set of at least 30 subjects; 

5) defined outcome measurements of either overall survival, 

disease-free survival (DFS), or recurrence-free survival 

(RFS); 6) a model that was fully specified or could be 

rederived from the specified data set; and 7) a model for 

which 80% of genes could also be identified in the valida-

tion data set.

inclusion criteria of data sets and samples
Publicly available microarray data sets were selected as 

validation data sets for this study. Eligible data sets included 

the following: 1) gene expression data gathered from 

human nonmetastatic breast cancer sources; 2) continuous 

time-to-event survival data; 3) at least 40 samples with 

15 deaths; 4) measurements of gene expression profiles 

using U133A GeneChip technologies (Affymetrix/Thermo 

Fisher Scientific, Santa Clara, CA, USA); and 5) clinical 

characteristics of the enrolled subjects, including ER levels 

and LN status.

evaluation of published prognostic 
models on independent data
Immune-related gene prognostic models that met the inclu-

sion criteria were evaluated on the included data sets. CEL 

files containing pixel intensity calculations of the validation 

data sets were downloaded from public databases (such as 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


OncoTargets and Therapy 2017:10 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

4425

immune-related gene models for breast cancer

the Gene Expression Omnibus). Gene expression levels 

were normalized based upon background corrections. For 

each prognostic model, the risk was calculated for each 

sample in the validation data set. The risk score calculation 

was defined as follows: score =∑wixi/∑|wi|, where xi was 

the expression level of the involved gene in the model, and 

wi was either +1 or −1, depending on the correlation between 

the gene and the prognosis of the paired subject described in 

the original publication.23,24,33

Concordance indices (C-indices) were calculated as 

previously described.34 For each model tested on each vali-

dation data set, the C-index was defined as the probability 

that a patient was predicted to have a lower risk score when 

compared to another patient who survived longer than the 

first patient. A C-index of 0.5 indicated that the model did not 

predict risk better than random guess. A score of 1 indicated 

perfect prediction of risk. C-indices generated across all of 

the validation data sets were synthesized into a summary 

value using random effects modeling. All computations were 

completed using R (version 3.3.2).

Stratification by ER status and LN status
The discriminative power of each immune-related prognostic 

model for predicting breast cancer prognosis was evaluated 

in patients depending on ER and LN status. Patients were 

stratified into four subgroups (ER+ versus ER− and LN+ 

versus LN−). C-indices were computed in each of these 

four subgroups for every data set and then synthesized into 

a final assessment.

statistical analyses
All outcomes were reported with 95% CIs. Statistical hetero-

geneities between data sets were assessed using χ2 tests, 

with significance levels set to P0.05. Statistical tests were 

two-sided, and P-values 0.05 were considered statistically 

significant. Random effects modeling was used if there was 

significant heterogeneity; otherwise, fixed effects modeling 

was reported.

Results
A systematic review of prognostic immune-related gene 

signatures for breast cancer was performed. After excluding 

redundant literature, a total of 393 papers were investigated. 

From these papers, eight models emerged as candidates that 

passed the study inclusion criteria and were selected for 

further analyses (Figure 1). Table 1 summarizes the features 

of the included models. The performance of each model was 

evaluated in each of ten data sets that were selected based 

on above-stated inclusion criteria (Table 2).

heterogeneity analyses
Heterogeneities across data sets were assessed using each 

immune-related gene model. Based on the results, C-indices 

of summary values were synthesized using either random 

effects or fixed effects models. Both methodologies produced 

similar summary values, resulting in similar ranking patterns 

for the immune-related gene models. Given that significant 

heterogeneity was identified in several models (Table 3), 

the random effects modeling methodology was chosen to 

synthesize C-indices across the prognostic models.

evaluation of prognostic models on 
independent data sets
Prognostic accuracy of each model was evaluated in every 

data set, with the exception of the training data set used by 

the original authors. Evaluations were quantified by C-indices 

(Figure 2A), and the models were ranked by summary values, 

from high to low. The top-ranked model was authored by 

Oh et al,27 with a summary C-index of 0.61. Two other models 

had better than chance predictive values, with summary 

C-indices of 0.54 and 0.53, respectively.25,32

Stratification by known prognostic 
factors
Further analyses were performed within subgroups that 

were stratified by ER status (ER+ versus ER−), or LN 

status (LN+ versus LN−). Only a subset of data sets, those 

in which these factors were recorded, could be assessed. 

Figure 1 Flow chart for model selection process.
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Most immune-related gene models performed better in 

ER− data sets. The top-ranked three models for ER− breast 

cancer were authored by Nagalla et al,29 Teschendorff et al,25 

and Oh et al.27 These models achieved summary C-indices 

between 0.62 and 0.63. The remaining five models26,28,30–32 

also provided predictions that were better than chance, with 

summary C-indices varying from 0.56 to 0.59 (Figure 2B). 

Interestingly, summary C-indices in data from ER+ subjects 

were lower than in data from ER− subjects. The two top-

ranking models for ER+ subjects were those authored by 

Oh et al27 and Cheng et al32 with summary C-indices of 0.59 

and 0.53, respectively. The other six models showed no predic-

tive advantage above chance in ER+ subjects (Figure 2C).

Data were also stratified by the status of invasion to the 

LNs. The prognostic models performed better in LN+ data 

sets. The four top-ranking models for LN+ were designed by 

Oh et al,27 Nagalla et al,29 Ursini-Siegel et al,31 and Cheng 

et al.32 Summary C-indices in these models ranged from 0.56 

to 0.61. In the remaining four models,25,26,28,30 no predictive 

advantages above chance were observed (Figure 2D). Syn-

thesized C-indices for LN− subjects were lower than those 

calculated for LN+ subjects. Only two models, originally 

published by Oh et al27 and Teschendorff et al,25 predicted 

outcomes better than chance (Figure 2E).

Univariate and multivariate analyses
Univariate analyses were used to investigate correlations 

between risk scores and the presence of ERs or LN invasion. 

Table 1 Features of eight published models that prognosticate breast cancer outcomes

First author;  
publication year

Clinical subtype Training  
data (n)

Validation  
data (n)

Gene signature

Teschendorff et al25 2007 er− 713 343 7-gene panel: C1QA, IGIC2, LY9, TNFRSF17, SPP1, XCL2, HLA-F

Teschendorff et al26 2010 all 1,223 830 IL2, IL12, IFNG, IL4, IL13, TGFβ
Oh et al27 2012 ln− 684 616 UBE2C, PRC1, CCNB2, CDC20, CD3D, CD52, CCL19, TRBV20-1

Bianchini et al28 2010 er+, her2−, her2+ 684 233 15-gene panel: LYN, STK17A, CSF1R, PIM2, LCK, STK17B, BTK, 
HCK, PRKCB1, PRKCQ, FYN, ITK, ZAP70, MAP4K1, STK10

nagalla et al29 2013 all 977 977 B/P metagenes, M/D metagenes, T/nK metagenes
Yau et al30 2010 er− 199 75 14-gene panel: RG54, CXCL13, HAPLN1, HRBL, MATN1, PRTN3, 

SSX3, RPS28, EXOC7, ABO, CLIC5, RFXDC2, ZNF3, PRRG3
Ursini-siegel et al31 2010 her2+, basal 179 2,481 43-gene srisa: CD247, CD3E, CD4, CD28, CTLA4, CXCL11, 

CXCL13, CXCL9, CXCR3, HLA-DQA1, IL1B, ITK, LAG3, LCK, 
NFATC2, PPIA, PTPRC, SLAMF6, SLAMF7, SLAMF9, TCRA, RELT, 
CD27, VTCN1, ATRN, CD69, ICOS, IL7R, B2M, CD8B, GZMB, IFNG, 
IL12B, LILRB3, TIA1, CD72, IGHG1, IGHM, IGHG2, IGJ, IL4, C1S, C3

cheng et al32 2013 er− 1,981 184 Lymphocyte-specific immune recruitment panel: PTPRC, CD53, 
LCP2, LAPTM5, DOCK2, IL10RA, CYBB, CD48, ITGB2, EVI2B

Notes: a43 gene shca-regulated immune signature (sris). see supplementary material for additional information.
Abbreviations: er, estrogen receptor; her2, human epidermal growth factor 2; ln, lymph node.

Table 2 Features of ten publicly available microarray data sets 
used to validate published risk scores

Data sets Microarray 
platform

Sample 
size (n)

Information 
about ER

Information 
about LN

eTaBM158 U133a 130 Yes Yes
gse11121 U133a 200 Yes Yes
gse2034 U133a 286 Yes Yes
gse25066 U133a 508 Yes Yes
gse2603 U133a 121 Yes Yes
gse3494-gPl96 U133a 251 Yes Yes
gse45255 U133a 139 Yes Yes
gse4922-gPl96 U133a 289 Yes Yes
gse6532-gPl96 U133a 327 Yes Yes
gse7390 U133a 198 Yes Yes
Total 2,449 10 10

Abbreviations: er, estrogen receptor; ln, lymph node.

Table 3 heterogeneity analyses for eight publicly available models

First author;  
publication year

All data  
(P)

ER−  
(P)

ER+  
(P)

LN+  
(P)

LN− 
(P)

nagalla et al29 2013 0.13 0.01 0.08 0.63 0.25
Teschendorff et al25 2007 0.01 0.05 0.07 0.91 0.14
Oh et al27 2012 0.12 0.02 0.07 0.68 0.01
Ursini-siegel et al31 2010 0.18 0.13 0.30 0.47 0.01
Teschendorff et al26 2010 0.01 0.38 0.03 0.47 0.08
Bianchini et al28 2010 0.07 0.01 0.04 0.02 0.01
cheng et al32 2013 0.01 0.08 0.33 0.67 0.97
Yau et al30 2010 0.15 0.29 0.31 0.99 0.16

Note: P-values of heterogeneity analyses in validation data sets are presented when 
analyzing all the data, er−, er+, ln+, and ln− cohorts, respectively.
Abbreviations: er, estrogen receptor; ln, lymph node.
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Figure 2 (Continued)
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Risk scores from the prognostic models designed by Nagalla 

et al,29 Teschendorff et al,25 Cheng et al,32 Bianchini et al,28 

Yau et al,30 and Ursini-Siegel et al31 significantly correlated 

with ER status (range of odds ratios: 1.01–1.06; P0.05). 

Risk scores from the models of Oh et al27 and Yau et al30 

significantly correlated with LN status (odds ratios: 1.02 and 

1.22, respectively; P0.05). In multivariate analyses that 

controlled for the status of ER, LN, HER2, and age, DFS 

was associated with risk scores in the models of Oh et al27 

(P=0.0443), Cheng et al32 (P=0.0391), and Bianchini et al28 

(P=0.0343). These findings demonstrated that modeling 

immune-related gene signatures may provide unique infor-

mation to prognosticate breast cancer cases.

Discussion
Gene expression profile studies on breast cancer have 

uncovered new insights into the genetic pathways that 

contribute to tumorigenesis. This research has inspired the 

development of gene expression signatures to predict patient 

outcomes. It is generally understood that proliferation-

associated genes account for the majority of predictive power 

of many previously reported prognostic genetic tools, such 

as the 21-gene Oncotype DX test (Genomic Health, Inc., 

Redwood City, CA, USA).5,7 However, these prognostic 

models are only applicable for low proliferation tumors, as 

found in ER+ and LN− breast cancer subtypes. Therefore, 

developing new prognostic signatures, independent of pro-

liferation phenotypes, is a challenging unmet need.23,24

In recent years, research revealed that immune-related 

gene signatures were associated with both clinical out-

comes and pathological complete response rates in breast 

cancer.25,35–37 A whole-transcriptome analysis of the NCCTG-

N9831 adjuvant trastuzumab trial in early-stage HER2+ 

breast cancer revealed that tumors enriched for immune-

functioning genes had increased RFS rates. Conversely, 

trastuzumab did not increase RFS in patients whose tumors 

lacked elevated immune-functioning gene expression scores. 

These data suggested that the increased expression of a subset 

of immune-functioning genes predicted benefit from adju-

vant trastuzumab.38 Additionally, the Finland Herceptin trial 

reported that higher levels of tumor-infiltrating lymphocytes 

at diagnosis had a significant inverse association with distant 

recurrence rates in primary ER−/HER2− breast cancers.39

Previously, investigators pooled genomic data to identify 

predictors of clinical outcomes in breast cancer.25–32 The cur-

rent study is the largest pooled analysis of immune-related 

prognostic gene models for breast cancer; all published 

immune-related prognostic gene models were evaluated. For 

ER− breast cancer, the top-ranking risk score was achieved 

by the model of Nagalla et al.29 This model comprised three 

distinct immunity-related metagenes indicative of tumor–

immune cell interactions. The first metagene, the B/P cluster, 

consisted primarily of immunoglobulin-encoding genes that 

were expressed in B-cell and plasma cell populations. The 

second metagene was the T/NK cluster, which contained 

components of the T-cell receptor–cluster of differentiation 

3 complex and granzymes. This was largely restricted to  

T cells and natural killer cells. The third metagene was the 

M/D cluster, which included the major histocompatibility 

complex class II and myeloid-specific markers. These were 

expressed at the highest levels in monocytes and dendritic 

cells. This prognostic model covered the most comprehensive 

Figure 2 Performance assessment of published immune-related risk scores.
Notes: (A) c-indices are given for predictions of overall survival for each of eight models in each of ten microarray data sets (left panel). Data sets used as training data sets 
during model development are shown in black. Darker shades of orange corresponded to higher prediction levels; 0.5= random risk score, 1.0= perfect prediction. Models 
are ordered from the highest to the lowest summary c-index (top to bottom). summary c-indices are given for each model with training data sets excluded (orange boxes; 
right panel); 95% cis (gray lines) were obtained by resampling cases. c-indices are presented for predictions of overall survival in er−, er+, ln+, and ln− data sets (left 
panels of B–E, respectively). summary c-indices in er−, er+, ln+, and ln− data sets are given for each model with training data sets excluded (orange boxes; right panels 
of B–E, respectively).
Abbreviations: c-indices, concordance indices; er, estrogen receptor; ln, lymph node.
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array of immune-related genes in the cohort studied here. 

This may explain why the model of Nagalla et al had the 

highest prognostic value.

In the current study, seven of ten validation data sets 

were training data sets used to develop the model of Nagalla 

et al.29 This reduced the statistical power for the validation 

of this model. Therefore, the model of Teschendorff et al,25 

the second best prognostic model for ER− breast cancer, 

may have the most clinical value. This model employed a 

methodology called profile analysis using clustering and 

kurtosis (PACK). PACK was a semi-supervised algorithm, 

consisting of two main steps. First, a feature selection 

criterion was performed. Second, a supervised step correlated 

the selected features with specific phenotypes.40 Despite 

being a conservative procedure that removed true positives, 

PACK efficiently removed false positives, providing more 

reliable identifications of prognostic markers. Another 

advantage of PACK was that it tested prognostic genes by 

applying two statistical tools: singular value decomposition41 

and the shrunken centroids classifier.42 Two of the potential 

prognostic genes identified by the model of Teschendorff 

et al25 were associated with breast cancer clinical outcomes. 

Specifically, C1QA, a gene involved in the classical comple-

ment pathway, harbored a single nucleotide polymorphism 

that correlated with distant breast cancer metastases.43 Two 

other studies also found prognostic value for OPN in meta-

static breast cancer.44,45

In the current study, the prognostic model by Oh et al27 

ranked first in ER+ breast cancer and third in ER− breast 

cancer. This was the only model that integrated proliferation- 

and immunity-related genes into a single prognostic model 

for nonmetastatic breast cancer patients. Additionally, 

this model used a large data set, which reduced size-based 

sampling problems. Prognostic genes were selected based 

upon both statistical significance and biological relevance. 

Together, these factors explain the success of the model of 

Oh et al in prognosticating breast cancer outcomes.

The current study also revealed that immune-related 

gene models performed best in ER− and LN+ breast cancer 

subtypes. This finding directly opposed current proliferation-

related gene models. ER− and LN+ breast cancers tend to 

present as high-grade diseases that frequently harbor p53 

mutations, leading to worsen prognoses. These molecular 

and pathological tendencies may explain why differences 

in clinical outcome within the ER− subgroup cannot be 

explained by the differential activation of cell cycle path-

ways. Thus, proliferation-related gene models do not have 

prognostic power in this breast cancer subtype. Unlike 

proliferation-related functional gene signatures, immune-

related gene expression profiles have more individualized 

properties. Immune-related models have achieved statistical 

significance in both high and low proliferation breast 

neoplasms.29 Therefore, immune-related gene signature–

based tools may be advantageous for the prognostication 

of ER− and LN+ breast cancers. Future use of these tools 

may complement more established proliferation-based gene 

expression panels.

It is of high clinical relevance to identify patients who 

will experience poor outcomes prior to the initiation of 

therapy. Patients with lower immune-related gene expression 

scores may require increased follow-up frequency and 

systemic management after traditional adjuvant therapy 

(eg, metronomic chemotherapy for triple-negative breast can-

cer or ovary functional suppression for ER+ breast cancer). 

Alternatively, these patients might be candidates for future 

clinical trials evaluating therapeutic approaches to enhance 

immune activity within breast tumors, such as by targeting 

checkpoint proteins.46

The coverage of immune-related gene signatures 

included many critical and well-studied immunomodula-

tory genes, such as TGFβ, CD28, and CTLA4. Members 

of the immunomodulatory Siglec gene family were not 

included in these models. Most of the Siglec family members 

contain immunoreceptor tyrosine-based inhibitory motifs 

in regions exposed to cytosolic compartments. Siglec 

proteins are inhibitory receptors for both innate and adap-

tive immune cells and may attenuate reductions in tumor 

cell immunity. CD169/Siglec-1 is bound to cell surface–

associated (MUC1) receptors that were expressed on breast 

cancer cells.47 High densities of CD169+ macrophages in 

regional LNs surrounding colorectal tumors, endometrial 

carcinomas, malignant melanomas, and breast neoplasms 

were associated with improved clinical prognoses. These 

findings may be due to increases in cytotoxic immune cell 

infiltrates in these tumors.48–50 Therefore, expression levels 

of Siglec immunomodulatory gene family members could 

affect prognostic breast cancer outcomes. Functions of 

Siglec gene products have been well studied in oncogenic 

model systems. Further investigations should concentrate on 

clinical oncology. Future immune-related prognostic gene 

models for breast cancer should consider assessing Siglec 

gene expression levels.

The study reported here had several limitations. First, the 

selected models included only intracellular immune-related 

genes. Therefore, it remains unknown whether interstitial 

genes in the microenvironment, such as CCL-18,51 can 
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prognosticate breast cancer patient outcomes. Second, useful 

gene expression profiles that could be included in this study 

were limited by incomplete clinical information. This caveat 

was an unavoidable inadequacy found in all publicly avail-

able data sets. Third, evaluations of these gene models were 

limited to the breast cancer subtypes discussed above. Few 

authors have investigated the impact of immune-related prog-

nostic gene models on conventional breast cancer subtypes. 

Few studies have published validation data sets containing 

clinical information that specifies patient molecular subtypes. 

Rather, previous studies published information specifying 

ER status and regional LN involvement. This allowed, in 

the current study, for the stratification of summary C-indices 

by these characteristics. The model by Nagalla et al29 was 

the only tool in which subgroup analyses were performed 

in subtypes. In those studies, basal-like breast tumors were 

positively associated with T/NK, M/D, and B/P metagenes. 

Similarly, luminal B tumors trended toward association with 

the T/NK metagene and were significantly associated with 

the M/D metagene. None of the metagenes were significantly 

associated with the luminal A, HER2-enriched, or claudin-

low tumor subtypes.

Despite these limitations, the current analysis revealed 

the top-ranked immune-related prognostic gene models for 

ER+, ER−, LN+, and LN− breast cancer subtypes. Moreover, 

these data showed that immune-related gene signatures had 

good prognostic value in breast cancer, especially for ER− 

and LN+ tumors. Therefore, immune-related gene models 

may be clinically relevant and complementary to current 

proliferation-related gene models. The use of immune-related 

gene models may fulfill an unmet need in breast cancer 

prognostication.
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Supplementary material
Full forms of genes provided in Table 1
STAT1: Signal transducer and activator of transcription 1

IFN: Interferons

IR: Immune response gene

C1QA: Complement C1q subcomponent subunit A

LY9: T-lymphocyte surface antigen Ly-9

TNFRSF17: Tumor necrosis factor receptor superfamily 

member 17

SPP1: Bone sialoprotein I

XCL2: Chemokine (C motif) ligand 2

HLA-F: HLA class I histocompatibility antigen, alpha 

chain F

IL2: Interleukin 2

IL12: Interleukin 12

IFNG: Interferon gamma

IL4: Interleukin 4

IL13: Interleukin 13

TGFB: Transforming growth factor beta

UBE2C: Ubiquitin-conjugating enzyme E2 C

PRC1: Protein regulator of cytokinesis 1

CCNB2: G2/mitotic-specific cyclin-B2

CDC20: The cell-division cycle protein 20

CD3D: T-cell surface glycoprotein CD3 delta chain

CD52: Cluster of differentiation 52

CCL19: Chemokine (C-C motif) ligand 19

TRBV20-1: T-cell receptor beta variable 20-1

LYN: LYN Proto-oncogene, Src family tyrosine kinase

STK17A: Serine/threonine kinase 17a

CSF1R: Colony-stimulating factor 1 receptor

PIM2: Pim-2 proto-oncogene, serine/threonine kinase

LCK: LCK proto-oncogene, Src family tyrosine kinase

STK17B: Serine/threonine kinase 17b

BTK: Bruton tyrosine kinase

HCK: HCK proto-oncogene, Src family tyrosine kinase

PRKCB1: Protein kinase C beta

PRKCQ: Protein kinase C theta

FYN: FYN proto-oncogene, Src family tyrosine kinase

ITK: IL2 Inducible T-cell kinase

ZAP70: Zeta chain of T-cell receptor associated protein 

kinase 70

MAP4K1: Mitogen-activated protein kinase 1

STK10: Serine/threonine kinase 10

B/P metagenes: B/P cluster consisted of genes (mostly 

immunoglobulin-encoding genes)

M/D metagenes: Genes of M/D cluster (including major 

histocompatibility complex class II and myeloid-specific 

markers)

T/NK metagenes: Expression of genes in T/NK cluster (such 

as components of the T cell receptor–cluster of differentiation 

3 complex and granzymes)

CXCL13: C-X-C motif chemokine ligand 13

HAPLN1: Hyaluronan and proteoglycan link protein 1

HRBL: Arf-GAP domain and FG repeats-containing protein 2

MATN1: Matrilin 1, cartilage matrix protein

PRTN3: Proteinase 3

SSX3: SSX family member 3

RPS28: Ribosomal protein S28

EXOC7: Exocyst complex component 7

ABO: Alpha 1-3-N-acetylgalactosaminyltransferase and 

alpha 1-3-galactosyltransferase

CLIC5: Chloride intracellular channel 5

RFXDC2: Regulatory factor X domain containing 2

ZNF3: Zinc finger protein 3

PRRG3: Proline rich and Gla domain 3

CD247: CD247 molecule

CD3E: CD3e molecule

CD4: CD4 molecule

CD28: CD28 molecule

CTLA4: Cytotoxic T-lymphocyte associated protein 4

CXCL11: C-X-C motif chemokine ligand 11

CXCL13: C-X-C motif chemokine ligand 13

CXCL9: C-X-C motif chemokine ligand 9

CXCR3: C-X-C motif chemokine receptor 3

HLA–DQA1: Major histocompatibility complex, Class II, 

DQ alpha 1

IL1B: Interleukin 1 beta

ITK: IL2 Inducible T-cell kinase

LAG3: Lymphocyte activating 3

LCK: LCK Proto-oncogene, Src family tyrosine kinase

NFATC2: Nuclear factor of activated T-cells 2

PPIA: Peptidylprolyl isomerase A

PTPRC: Protein tyrosine phosphatase, receptor type C

SLAMF6: SLAM family member 6

SLAMF7: SLAM family member 7

SLAMF9: SLAM family member 9

TCRA: T-cell receptor alpha locus

RELT: RELT, TNF receptor

CD27: CD27 molecule

VTCN1: V-set domain containing T-cell activation 

inhibitor 1

ATRN: Attractin

CD69: CD69 molecule

ICOS: Inducible T-cell costimulator

IL7R: Interleukin 7 receptor

B2M: Beta-2-microglobulin
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CD8B: CD8b molecule

GZMB: Granzyme B

IL12B: Interleukin 12B

LILRB3: Leukocyte immunoglobulin like receptor B3

TIA1: TIA1 Cytotoxic granule associated RNA binding 

protein

CD72: CD72 molecule

IGHG1: Immunoglobulin heavy constant gamma 1 (G1m 

marker)

IGHM: Immunoglobulin heavy constant Mu

IGHG2: Immunoglobulin heavy constant gamma 2 (G2m 

marker)

IGJ: A J chain is a protein component of the antibodies IgM 

and IgA.

C1S: Complement C1s subcomponent

C3: Complement C3

PTPRC: Protein tyrosine phosphatase, receptor type C

CD53: CD53 molecule

LCP2: Lymphocyte cytosolic protein 2

LAPTM5: Lysosomal protein transmembrane 5

DOCK2: Dedicator of cytokinesis 2

IL10RA: Interleukin 10 receptor subunit alpha

CYBB: Cytochrome B-245 beta chain

CD48: CD48 molecule

ITGB2: Integrin subunit beta 2

EVI2B: Ecotropic viral integration site 2B
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