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Abstract: The bacterium Helicobacter pylori is a human gastric pathogen that can cause a wide 

range of diseases, including chronic gastritis, peptic ulcer and gastric carcinoma. It is classified 

as a definitive (class I) human carcinogen by the International Agency for Research on Cancer. 

Flagella-mediated motility is essential for H. pylori to initiate colonization and for the develop-

ment of infection in human beings. Glycosylation of the H. pylori flagellum with pseudaminic 

acid (Pse; 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-l-manno-nonulosonic acid) is essential 

for flagella assembly and function. The sixth step in the Pse biosynthesis pathway, activation 

of Pse by addition of a cytidine 5′-monophosphate (CMP) to generate CMP-Pse, is catalyzed 

by a metal-dependent enzyme pseudaminic acid biosynthesis protein F (PseF) using cytidine 

5′-triphosphate (CTP) as a cofactor. No crystal–structural information for PseF is available. This 

study describes the first three-dimensional model of H. pylori PseF obtained using biocomputa-

tional tools. PseF harbors an α/β-type hydrolase fold with a β-hairpin (HP) dimerization domain. 

Comparison of PseF with other structural homologs allowed identification of crucial residues 

for substrate recognition and the catalytic mechanism. This structural information would pave 

the way to design novel therapeutics to combat bacterial infection.
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Introduction
Motility is crucial for the bacterium Helicobacter pylori to colonize in the human 

stomach and to develop an infection. More than half of the global population is infected 

with H. pylori.1 H. pylori can cause acute gastritis, duodenal ulcers, mucosa-associated 

lymphoid tissue lymphoma, gastric carcinoma2–6 and other extra-gastrointestinal 

diseases,7 including iron-deficiency anemia,8 idiopathic thrombocytopenic purpura,9 

cardiovascular diseases,10 liver illness,11 pancreatic cancer,12 respiratory illness,13 skin 

diseases14 and diabetes.15 This is the first bacterium to be classified as a definitive human 

carcinogen by the International Agency for Research on Cancer.16 The current treatment 

for H. pylori eradication is the simultaneous use of a proton pump inhibitor with two 

or more broad-spectrum antibiotics. However, the emergence of multiple antibiotic 

resistance has narrowed down the choice of treatment.17 Therefore, identification and 

development of novel therapeutics to treat H. pylori infection is an urgent need.
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H. pylori uses flagella-mediated motility to facilitate 

colonization in mucosa in the human stomach. H. pylori 

flagella need to be O-glycosylated with an unusual nine-

carbon sugar pseudaminic acid (Pse) for proper assembly and 

function.18 Pse is synthesized in H. pylori via five enzymatic 

steps and then activated by addition of a cytidine 5′-mono-

phosphate (CMP) before being transferred onto the flagellin. 

The activation reaction is catalyzed by a metal-dependent 

enzyme CMP-Pse synthase (also known as pseudaminic 

acid biosynthesis protein F [PseF], EC 2.7.7.38) using 

cytidine 5′-triphosphate (CTP) as a cofactor. This enzyme 

belongs to the nucleotide–diphosphate–sugar transferases 

superfamily.19 Insertional inactivation of the PseF gene 

in H. pylori resulted in the loss of formation of functional 

flagella and rendered the bacterium nonmotile.18 This sug-

gests the importance of PseF for biosynthesis of flagella 

and bacterial virulence.18 Therefore, the Pse biosynthesis 

pathway is a potential target for the development of novel 

drugs targeting bacterial motility.

A functional homolog from Neisseria meningitidis 

CMP-5-N-acetylneuraminic acid synthetase (NmCNS; 24% 

sequence identity with H. pylori PseF [HpPseF]) catalyzes 

activation of N-acetylneuraminic acid (NeuAc) to form a 

CMP-neuraminic acid (CMP-Neu5Ac) in the presence of 

Mg2+ using CTP as a cofactor.20 The CMP-NeuAc is then 

transferred onto the sugar moiety that forms part of lipo-

polysaccharide and capsule, which are essential for bacterial 

virulence.21 These glycoproteins serve an important role in 

cellular development, immunity and other functions.22,23 

Structural analysis of NmCNS structure revealed that it exists 

as a domain-swapped homodimer architecture consisting of a 

catalytic hydrolase fold with a short α-hairpin (HP) domain.20

The CMP-5-N-acetylneuraminic acid synthetase (CNS) 

enzymes follow ordered–sequential kinetic mechanism 

where the CTP binds first, which is followed by the sialic 

acid to catalyze the reaction.24 Horsfall et al24 reported that 

CNS enzymes require two Mg2+ ions for proper orientation 

of the substrates and activating the α-phosphate of CTP. An 

ordered solvent molecule has been proposed to serve as the 

general base for the reaction.20

Currently, to the best of knowledge, no crystallographic 

three-dimensional (3D) structural information on HpPseF is 

available. In the current study, the physicochemical, structural 

and functional properties of HpPseF along with its protein–

protein interaction (PPI) network information were obtained 

via different in silico approaches. In addition, the modeled 

3D structure is compared with other structurally character-

ized hydrolyzing enzymes to study the structure–activity 

relationship and identify crucial residues for substrate rec-

ognition and catalytic mechanism.

Materials and methods
Sequence retrieval, physicochemical 
properties and secondary structure 
analysis
The amino acid sequence of PseF from H. pylori P12 (Uni-

ProtKB id: B6JKQ2, 229 amino acids) was retrieved from 

the protein database of National Center for Biotechnology 

Information (NCBI). The ExPASy ProtParam tool was used 

to predict the physicochemical characteristics of HpPseF, and 

the results are listed in Table 1.25 The computed physicochem-

ical parameters included molecular mass, isoelectric point, 

extinction coefficient, instability index, aliphatic index and 

grand average of hydropathicity (GRAVY). The CYS_REC 

tool from SoftBerry and the CONCORD26 server were used 

to predict the existence of disulfide bridges and secondary 

structural components of HpPseF, respectively.

TM helix prediction and subcellular 
localization
The subcellular localization of HpPseF was predicted by the 

consensus web server PSORTb.27 Membrane topology and 

transmembrane (TM) helix of HpPseF were determined by 

the TOPCONS server.28

Model building, refinement and validation
The HpPseF model was predicted with the following serv-

ers: IntFOLD,29 I-TASSER,30 SWISS-MODEL,31 RaptorX,32 

Phyre233 and M4T.34 The quality of the predicted models was 

Table 1 Physicochemical properties of the HpPseF

Properties Value

Sequence length 229
Molecular weight (kDa) 26.1
Theoretical pI 6.96
Extinction coefficients (M-1⋅cm-1) 15150 v
Instability index 40.9
Aliphatic index 88.7
GRAVY index -0.241
Estimated half-life 30 h (mammalian reticulocytes in 

vitro), >20 h (yeast in vivo), >10 h 
(E. coli in vivo)

Total number of positively charged 
residues (Arg + Lys)

28

Total number of negatively charged 
residues (Asp + Glu)

28

Abbreviations: HpPseF, Helicobacter pylori pseudaminic acid biosynthesis protein F; 
pI, isoelectric point; GRAVY, grand average of hydropathicity; E. coli, Escherichia coli.
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determined by the protein structure and model assessment 

tools in the SWISS-MODEL workspace.31,35 The best model 

was selected according to the QMEAN4 Z-score, which 

is a linear combination of four geometrical descriptors of 

protein.36 Model refinement was performed by the 3Drefine 

web server.37 The final model was validated using the ProQ38 

and Verify3D programs.39 The accuracy and stereochemical 

features of the final 3D model were checked by the RAM-

PAGE40 and ERRAT41 servers. PPI networks analysis was 

carried out by the STRING database.42 The HpPseF model 

was achieved in the Protein Model Database under the access 

code of PM0080987. Structure figures were prepared using 

PYMOL (http://www.pymol.org/).

Ligand docking
The HpPseF model was used for detailed structural analysis 

and prediction of the ligand-binding site using the 3DLigand-

Site43 and I-TASSER30 web servers. The CTP was modeled 

in the ligand-binding pocket. The program LigPlot+ was used 

to depict ligand-binding residues of HpPseF.44

Results and discussion
Physicochemical and functional 
characterization
Analysis of the physicochemical characteristics of HpPseF 

revealed that the protein is neutral (estimated isoelectric point 

[pI] = 7.0) with a molecular weight of 26115 Da (Table 1). 

Analysis of the amino acid composition of HpPseF revealed 

that leucine is the most predominant amino acid (12.2%). 

The instability index of the protein is >40, which suggests 

that the protein would be less stable in solution. The protein 

is expected to be cytoplasmic and harbors no TM helix. The 

computed negative GRAVY index (-0.24) suggests that 

HpPseF is hydrophobic and most likely to be insoluble in 

water. Therefore, expression of the protein for X-ray crystal-

lographic studies would be difficult. No disulfide bonding 

pattern among cysteine (Cys) residues has been predicted 

in HpPseF. Estimation of the secondary structure element 

revealed that HpPseF is an α/β protein and consists of 

mainly α-helices (45%), followed by the random coil (20%), 

extended β-strands (27%) and β-turn (8%).

Model building and refinement
The HpPseF models were predicted using different web 

servers (Table 2). The best model was selected based on the 

global QMEAN4 Z-score. The global QMEAN4 Z-score is 

an estimate of the absolute quality of a model and calculated 

based on the structure comparison between the modeled 

structure and high-resolution X-ray structures obtained 

from the protein database. Structure with QMEAN4 Z-score 

equivalent to 1 is similar to X-ray-diffracted crystal structure. 

The detailed analysis of the predicted models is presented 

in Table 2. RaptorX generated a model with a QMEAN4 

Z-score of -3.10 (Table 2).29 The RaptorX model 1 was fur-

ther refined and optimized by the 3Drefine web tool.37 The 

estimated QMEAN4 Z-score of the refined HpPseF model 

was -2.65 (Figure 1).

Model validation
The stereochemical properties of the HpPseF model was 

analyzed by using two web servers, ProQ38 and Verify3D.39 

Table 2 Comparison of the predicted models of the HpPseF

Program Model no QMEAN4 Z-score

RaptorX 1 -3.10
SWISS-MODEL 1 -3.90
IntFOLD 1 -4.32

2 -3.95
3 -3.95
4 -4.15
5 -3.98

I-TASSER 1 -5.92
Phyre2 1 -4.68
M4T 1 -4.03

Abbreviation: HpPseF, Helicobacter pylori pseudaminic acid biosynthesis protein F.
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Figure 1 Quality analysis of the refined 3D model of PseF from H. pylori.
Notes: (A) The QMEAN quality analysis of the HpPseF 3D model (presented by 
a red star) is compared to the X-ray crystallographically determined structures of 
similar size proteins. (B) The QMEAN4 Z-score of the final HpPseF model.
Abbreviations: 3D, three-dimensional; PseF, pseudaminic acid biosynthesis 
protein F; H. pylori, Helicobacter pylori; HpPseF, Helicobacter pylori pseudaminic acid 
biosynthesis protein F; PDB, Protein Data Bank.
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The HpPseF model showed a ProQ-LG score of 4.48, which 

suggests that the quality of the refined model is very good. 

Analysis with Verify3D revealed that >79% of the residues 

in the model had scored ≥0.2 in the 3D/one-dimensional 

(1D) profile, indicating that residues are in the favorable 

region (Figure 2).

The HpPseF model was further evaluated for overall 

quality, backbone torsion angles and side chain interaction 

energies. The overall quality of the model was assessed by 

the ProSA-web server.45 The estimated Z-score of -6.83 is in 

the range of structures of proteins of similar size determined 

by X-ray crystallography. The distribution of backbone tor-

sion angles was checked by the RAMPAGE (Figure 3).40 A 

total of 95% of the residues (n = 215) were in the favored 

region, and the other 5% of the residues (n = 12) were pres-

ent in the allowed region. Errors in non-bonded interactions 

were calculated by the ERRAT server,41 and the obtained 

score of 94.11 means that 94% of the residues in the model 

were below the rejection limit (experimental structures had 

scores ~90%; Figure 4). Altogether, this suggests that the 
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Figure 2 The 3D scores of the HpPseF model calculated by the Verify3D server.
Abbreviations: 3D, three-dimensional; HpPseF, Helicobacter pylori pseudaminic acid biosynthesis protein F; 1D, one-dimensional.
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Figure 3 Ramachandran plot for the modeled PseF from H. pylori.
Note: The dihedral angles ϕ and ψ were measured in degrees.
Abbreviations: PseF, pseudaminic acid biosynthesis protein F; H. pylori, Helicobacter pylori.
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strand β1 and helix α1 is known as P-loop (Figure 5), which 

interacts with the pyrophosphate arm of the cofactor CTP 

in other structural homologs.20,46 The HP domain protrudes 

out from the central β-sheet and contains two antiparallel 

β-strands (β6 and β7) and two α-helices (α6 and α7). In other 

structurally characterized CNS enzymes, the HP domain 

plays an important role in the formation of a homodimer.20,46

Comparison of PseF against the published structures 

deposited in the Protein Data Bank that have been described 

in the literature, using the Dali server,47 revealed that mammal 

(Mus musculus) CMP-5-N-acetylneuraminic acid synthe-

tase (MmCNS; root-mean-square deviation [RMSD] = 1.3, 

sequence = 23%, Z-score = 32.5, PDB code: 1QWJ46) 

showed the highest similarity followed by NmCNS (RMSD = 

2.2, sequence = 22%, Z-score = 28.1, PDB code: 1EYR;20 

 Figures 6 and 7). Detailed analysis of the superimpositions 

revealed that structural similarity extends over the entire 

fold and includes all the secondary structural elements and 

the HP domain.
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Figure 4 ERRAT result shows the overall quality factor of the HpPseF model (error-axis represents the error values to reject regions that exceed error value).
Abbreviation: HpPseF, Helicobacter pylori pseudaminic acid biosynthesis protein F.
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Figure 5 The overall structural fold of HpPseF.
Notes: (A) Stereo diagram of the HpPseF structure. β-strands and α-helices are 
colored as green and red, respectively. The P-loop is colored cyan. The figure was 
prepared using PyMOL. (B) Secondary structure profile of PseF from H. pylori.
Abbreviations: HpPseF, Helicobacter pylori pseudaminic acid biosynthesis protein 
F; PseF, pseudaminic acid biosynthesis protein F; H. pylori, Helicobacter pylori; HP, 
hairpin.

C

B

A

Figure 6 Comparison of HpPseF with other hydrolyzing homologous enzymes.
Notes: (A) HpPseF. (B) NmCNS. (C) MmCNS. α-helices, loops and β-strands are 
colored red, gray and green, respectively.
Abbreviations: HpPseF, Helicobacter pylori pseudaminic acid biosynthesis protein 
F; NmCNS, Neisseria meningitidis CMP-5-N-acetylneuraminic acid synthetase; 
MmCNS, Mus musculus CMP-5-N-acetylneuraminic acid synthetase; CMP, cytidine 
5′-monophosphate.

final HpPseF model is of a good quality and could be used 

for further studies.

Overall structure of HpPseF and 
comparison to other homologs
The HpPseF has an α/β-hydrolase domain with an 

~35- residue inserted β-HP domain. The core domain is a 

αβα three-layer sandwich architecture consisting of seven 

β-strands with the topological order (↑β3-↑β2-↑β1-↑β4-

↓β8-↑β5-↑β9; Figure 5). The central β-sheet is flanked by 

four α-helices (α1, α2, α5 and α9) on one side and three 

α-helices (α3, α4 and α8) on the other side. The loop between 
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Prediction of the ligand-binding pocket 
and ligand docking
The CASTp server48 predicted the putative ligand-binding 

site in the core of the hydrolase domain. The calculated 

surface area and volume of the pocket are ~438.2 Å2 and 

~1711.6 Å3, respectively. Prediction of the ligand-binding 

residues in HpPseF was performed using the 3DLigandSite43 

and I-TASSER servers.30 The ligand CTP was modeled at the 

putative pocket. Figure 8 shows residues that form interac-

tions with the CTP-modeled structure. The pyrophosphate 

moiety interacts with the residues of the P-loop between 

β1 and α1, while the sugar moiety is accommodated by the 

residue from the β3–α3 region. The CTP forms hydrogen 

bonds and van der Waals interactions with six (Lys14, Lys19, 

Arg70, Ala75, Asp76 and Tyr104) and five residues (Leu8, 

Arg10, Ser13, Asn20 and Asp209), respectively. Prediction 

of the metal-binding site has revealed that Tyr104, Asp207 

and Asp209 would likely interact with the metal cofactor. 

Sequence alignment of HpPseF with other homologs shows 

that residues involved in CTP binding are conserved among 

other homologous enzymes (Figure 7).

Analysis of the acceptor substrate-
binding site and catalysis mechanism
The closest bacterial functional homolog NmCNS was 

solved in complex with CDP,20 while the murine homolog 

(MmCNS) was solved in complex with the reaction product 

CMP-NeuAc.46 Both CNS proteins form a homodimer, 

where the HP domain from one monomer interacts with 

the catalytic domain of the opposite monomer and contrib-

utes to the formation of the active site. Detailed structural 

β9

β6 β7β5

β3

β1 β2

β4

α2

α5

α1

α4

α6

α8

α7

α9

α3

β8

Figure 7 A sequence alignment of HpPseF, NmCNS and MmCNS.
Notes: The elements of the secondary structure and sequence numbering for HpPseF are shown above the alignment. Conserved residues are highlighted in red. Metal 
binding and catalytic residue are presented as blue stars. Yellow stars represent residues that interact with pyrophosphate arm of cofactor CTP. Residues that form a 
hydrophobic pocket to determine substrate specificity and contribute in proper positioning of the substrate NeuAc in NmCNS are represented as black and green stars.
Abbreviations: HpPseF, Helicobacter pylori pseudaminic acid biosynthesis protein F; NmCNS, Neisseria meningitidis CMP-5-N-acetylneuraminic acid synthetase; MmCNS, Mus 
musculus CMP-5-N-acetylneuraminic acid synthetase; CMP, cytidine 5′-monophosphate; CTP, cytidine 5′-triphosphate; NeuAc, N-acetylneuraminic acid.

ser13

Arg10

Asp76 Ala75

Arg70

Asn20

Leu8

Tyr104

Lys19
Lys14

Asp209

CTP

Figure 8 Ligplot+ results showing the residues of PseF from H. pylori interacting with 
the modeled CTP molecule.
Note: Residues making van der Waal’s contacts with CTP are indicated by red arcs 
with spokes radiating toward the ligand moieties they contact.
Abbreviations: PseF, pseudaminic acid biosynthesis protein F; H. pylori, Helicobacter 
pylori; CTP, cytidine 5′-triphosphate.
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analysis of the NmCNS active site revealed that the enzyme 

has a hydrophobic pocket formed by the residues (Tyr179, 

Phe192 and Phe193) to aid binding of the methyl group of 

the N-acetyl moiety of acceptor substrate Neu5Ac and thus 

determines substrate specificity.24 Alanine substitution of 

these residues resulted in the greatest loss of enzyme activity 

and thus confirmed their crucial role in substrate recogni-

tion.24 The HpPseF model also adopts a hydrophobic pocket 

consisting of Y177, I190 and F191, which would likely play 

a crucial role in the determination of the substrate specificity 

 (Figures 7 and 9).

The CNS enzymes require two metal ions (preferably, 

manganese Mg2+) to catalyze the condensation reaction.24 In 

NmCNS and MmCNS, two Asp residues (D211 and D209) 

are involved in binding the catalytic Mg2+ ion,20 while another 

Gln residue (Q104 in NmCNS and Q141 in MmCNS) is 

believed to play a crucial role in binding the second metal 

ion at the intermediate stage of the reaction. A mutagenesis 

study has confirmed their role in catalysis.24 Structural and 

sequence alignment analyses have shown that HpPseF har-

bors two Asp residues (D207 and D209) and one Tyr residue 

(Y104) in the corresponding positions (Figures 7, 10 and 11).

The CNS enzymes follow an ordered bi–bi sequential 

kinetic mechanism where binding of a CTP with the enzyme 

is followed by sialic acid to generate CMP-NeuAc.24,46 The 

role of both Mg2+ ions is believed to be in proper orientation 

of the substrates and activation of the α-phosphate moiety 

of CTP. The sugar hydroxyl group of NeuAc is activated by 

the catalytic Mg2+ ion.24 The structural similarities among 

HpPseF and other well-characterized homologs (NmCNS 

and MmCNS) suggest that HpPseF would likely follow the 

same sequential catalytic mechanism (Michaelis–Menten 

equation) and catalyze the reaction via formation of a tetra-

hedral intermediate.

Protein network analysis
Analysis of PPI networks is necessary for better understand-

ing of intricate molecular mechanisms and identification of 

novel therapeutics to combat multidrug-resistant bacteria. 

Figure 12 shows PPI partner proteins of HpPseF derived from 

the STRING database. The functional partners are mainly 

flagella glycosylation pathway proteins (PseB, PseC, PseH, 

HpPseG, PseI)19,49 and flagellar basal body L-ring protein 

(FlgH). In addition, HpPseF interacts with other proteins 

including polysialic acid capsule expression protein (KpsF), 

50S ribosomal protein L34 (RpmH) and three hypothetical 

proteins (HP0465; HP0114, HP1570).

Conclusion
The present study presents physicochemical properties, struc-

tural and functional analysis and crucial residues of substrate 

recognition and the catalytic mechanism of HpPseF derived by 

using a broad range of biocomputational tools. The deduced 

structural information would serve as a fundamental basis to 

Phe191

Tyr177

IIe190

CMP-Pse

Figure 9 Substrate binding pocket of HpPseF.
Notes: CMP-Pse, modeled in the active site of PseF, is colored by atom type with the carbon set as magenta. Predicted residues that would likely determine substrate 
specificity are represented as red sticks.
Abbreviations: HpPseF, Helicobacter pylori pseudaminic acid biosynthesis protein F; CMP, cytidine 5′-monophosphate; Pse, pseudaminic acid; PseF, pseudaminic acid 
biosynthesis protein F.
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design in vivo biochemical and X-ray crystallographic assays 

for a better understanding of the catalytic mechanism and 

molecular biology of Pse and sialic acid synthase enzymes. 

The HpPseF 3D model would pave the way for the design and 

production of inhibitors and mimetics of Pse and sialic acid 

biosynthesis pathway enzymes targeting motility to combat 

drug-resistant bacterial infection in the near future.
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