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Abstract: Clinical studies in asthma are not able to clear up all aspects of disease pathophysiol-

ogy. Animal models have been developed to better understand these mechanisms and to evaluate 

both safety and efficacy of therapies before starting clinical trials. Several species of animals have 

been used in experimental models of asthma, such as Drosophila, rats, guinea pigs, cats, dogs, 

pigs, primates and equines. However, the most common species studied in the last two decades 

is mice, particularly BALB/c. Animal models of asthma try to mimic the pathophysiology of 

human disease. They classically include two phases: sensitization and challenge. Sensitization 

is traditionally performed by intraperitoneal and subcutaneous routes, but intranasal instilla-

tion of allergens has been increasingly used because human asthma is induced by inhalation of 

allergens. Challenges with allergens are performed through aerosol, intranasal or intratracheal 

instillation. However, few studies have compared different routes of sensitization and challenge. 

The causative allergen is another important issue in developing a good animal model. Despite 

being more traditional and leading to intense inflammation, ovalbumin has been replaced by 

aeroallergens, such as house dust mites, to use the allergens that cause human disease. Finally, 

researchers should define outcomes to be evaluated, such as serum-specific antibodies, airway 

hyperresponsiveness, inflammation and remodeling. The present review analyzes the animal 

models of asthma, assessing differences between species, allergens and routes of allergen 

administration.

Keywords: asthma, animal models, airway hyperresponsiveness, allergen, sensitization, 

challenge

Introduction
Asthma affects approximately 300 million individuals of all age groups worldwide 

and its prevalence is increasing.1 According to estimates, there are 18 asthma-related 

deaths per million people and 180,000 deaths per year.2 Asthma has an impact on 

society because of adults’ loss of productivity and children’s learning impairment. 

Global Strategy for Asthma Management and Prevention defines “asthma as a 

heterogeneous disease, usually characterized by chronic airway inflammation. It 

is defined by the history of respiratory symptoms such as wheeze, shortness of 

breath, chest tightness and cough that vary over time and in intensity, together with 

variable expiratory airflow limitation”.1 This chronic inflammation leads to airway 

remodeling, characterized by mucus hypersecretion, epithelial fibrosis, metaplasia 

and hyperplasia of goblet cells, and hypertrophy and hyperplasia of airway smooth 

muscle.3
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For many reasons, studies of humans with asthma do not 

fit all the ethical committee requirements. Therefore, animal 

models are necessary to better understand the pathophysi-

ological mechanisms and to evaluate both safety and efficacy 

of new therapies on asthma before starting clinical trials in 

humans.4 Nevertheless, the use of experimental animals in 

research laboratories also requires compliance with ethical 

precepts. These requirements were published by the National 

Institutes of Health (NIH), which were revised over 20 years 

ago (Guide for the Care and Use of Laboratory Animals – 

NIH; publication 85–23, revised in 1985). Since then, 

experimental models that do not meet these requirements 

are not acceptable.

Different phenotypes have been described in asthma but 

there is no standard way to distinguish them.5 They differ 

regarding clinical parameters, physiological criteria and 

environmental triggers, and biomarkers to identify distinct 

endotypes are needed.6 Animal models are limited for not 

being able to mimic all features and phenotypes of human 

asthma.7,8

However, they have proved their worth in amplifying the 

knowledge of many inflammatory, structural and physiologi-

cal characteristics of asthma.7 The Type 2 (T2 High) pheno-

type has been widely studied, but unfortunately in half of 

asthma patients the immune response is not Th2 mediated.8,9 

Therefore, animal models that best represent each phenotype 

of asthma are needed.7

There are many asthma models described in the lit-

erature, using different species and different methods to 

better mimic human asthma. They represent a scenario to 

understand disease pathophysiology and to test potential 

drug therapies. Positive results in animal experiments can be 

translated to clinical studies.8,10 In this review we perform a 

different approach about animal models of asthma, focusing 

on differences between species, allergens, routes of allergen 

administration and major outcomes evaluated.

Animal species
Asthma is a complex syndrome observed exclusively in 

humans. In animals, asthma-like conditions are observed 

in cats with eosinophilic bronchitis and in equines with 

heaves.11,12 During the last decades, several studies were 

performed using animal models to better understand 

the pathophysiology of disease and its immunological 

mechanisms.13

Many animal species have been used to study the 

mechanisms involved in asthma (Drosophila, rat, guinea 

pig, cat, dog, swine, cattle, sheep, horse and primates), 

but the most common model is the murine allergic airway 

inflammation.14–16

Fruit fly Drosophila melanogaster has being used as an 

alternative prototype to address the innate immunity and 

airway epithelial cells in asthma.17 This invertebrate model 

merges a comparatively simple physiology and genetic 

organization together with an unparalleled toolkit for genetic 

manipulation. Roeder et al proposed the use of Drosophila as 

an asthma model based on the potential homology of known 

asthma-susceptibility genes between humans and this inver-

tebrate as well as the characteristics of airway immunity and 

asthma-like phenotypes observed in the fruit fly.18

Experimental asthma in guinea pigs was introduced in 

1937 by Kallós P and Kallós L.19 Guinea pigs have been the 

animal species most widely used as the first animal models 

of allergic respiratory disease, because they present airway 

physiological processes much similar to humans. They also 

respond strongly to allergens and have autonomic control of 

airways. Then, efficacy of drugs such as bronchodilators can 

be tested before their use in clinical trials.18

On the other hand, primary disadvantages of using 

guinea pig are the lack of specific probes and reagents for 

studying allergic outcomes, which are not easily available. 

So, comprehension of humoral and cellular mechanisms 

was very difficult. In addition, there is paucity of transgenic 

models and few strains of guinea pigs for comparative stud-

ies.20 Moreover, the notable axon reflex presented in these 

animals has not been described in human airways until now.20 

Another handicap of guinea pig is the longer gestation time 

(60–75 days) comparing with mice (20–30 days), and the 

lower number of offsprings.

In 1994, the first mouse models resembling allergic 

asthma were published and, thereafter, have resulted in 

significant strides in our understanding of atopic disease 

pathophysiology.21–25 Mice have become the most widely 

used species, because they are easy to breed, maintain and 

handle. In addition, a wide array of specific reagents are 

available for analysis of cellular and humoral responses, 

and genetically engineered transgenic or gene-knockout 

mice for modeling airway disease are available.26,27 The most 

commonly used mouse strain in antigen challenge models is 

BALB/c as they develop a good Th2-biased immunological 

response, although C57BL/6 and A/J strains have also been 

used successfully in experimental models of respiratory 

allergic disease.28

Mice do not develop asthma spontaneously. So, the dis-

ease has to be artificially induced in the airways. The murine 

models of allergic respiratory diseases induced by ovalbumin 
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(OVA) and aeroallergens have been widely used to elucidate 

immunological and nonimmunological mechanisms involved 

in the pathogenesis of asthma. In addition, they are useful 

for identifying and investigating new targets for controlling 

allergic inflammation.28 For that, acute and chronic experi-

mental models have been developed.

Acute mice models have successfully reproduced many 

features of asthma such as high levels of serum total and 

specific immunoglobulin E (IgE), airway inflammation, epi-

thelial hypertrophy, goblet cell hyperplasia and airway hyper-

responsiveness (AHR). Besides, in some models, researches 

can induce early- and late-phase bronchoconstriction in 

response to allergen challenge. On the other hand, in acute 

models, the pattern and distribution of pulmonary inflamma-

tion are different from that found in asthmatic individuals.29 

First, bronchoalveolar lavage (BAL) and histologic studies 

indicate that the influx of inflammatory cells is dominated 

by eosinophils. Many pathologic findings of chronic human 

asthma, such as chronic inflammation of the airway wall and 

remodeling, cannot be observed since the animal is exposed 

to the antigen-less times in acute models. Finally, there is a 

major difference between acute mouse models and human 

asthma: airway inflammation and AHR seem to resolve within 

a few weeks after the final antigen provocation in the animal. 

In human asthma, inflammation persists and a new exposition 

to the allergen tends to induce recurrence of symptoms.28

Although presenting some discrepancies, the acute 

asthma models were successfully used to investigate some of 

the pathophysiological aspects of this disease. For example, 

cell-mediated pulmonary inflammation and many disease 

mediators have been well demonstrated. One of the major 

theories proved by acute animal models is that allergic asthma 

is a Th2-mediated disease. Moreover, these studies allow the 

comprehension about the role of the T cell and eosinophils 

in the occurrence of allergic response and AHR.28

Chronic models of murine asthma have been shown to 

reproduce more closely human asthma. Some of the hall-

marks are allergen-dependent sensitization, a Th2-dependent 

allergic inflammation characterized by eosinophilic influx 

into the airway mucosa and AHR. Thus, chronic models of 

asthma lead to remodeling of the airways, which is one of the 

observations of asthma in human adults. In addition, in some 

models of chronic asthma, AHR and pulmonary inflammation 

persist for days or weeks after the last allergen challenge.4,29,30 

However, maintenance of AHR and lung inflammation vary 

according to the exposure protocol applied.28,31

As noted above, asthma is a peculiar human disease and 

no laboratory animal commonly used to study this condition, 

including mice, rats, guinea pigs or rabbits, exhibits similar 

symptoms of human asthma. The main exception is eosino-

philic bronchitis presented by cats.11

In terms of T-helper activation profile, according to cyto-

kine measurement, few data are available about most species. 

In rodent models, Th2 cytokine profile (interleukin 4 [IL-4], 

IL-5 and IL-13) has been well documented.15,20,32 In a feline 

model, IL-4 has been demonstrated in airway allergic inflam-

mation,33 while in a sheep asthma model recently published, 

it has been demonstrated that both IL-4 and IL-13 increase 

in BAL after allergen challenge.34 In equines, former studies 

were controversial in terms of inflammation pattern, ranging 

from Th1, Th2 and Th17 cytokines profile,35,36 but recent 

studies have shown that inflammation seems to be mainly 

mediated by Th17 cytokines, like CXCL13 and IL-17.37,38

In Table 1, we summarize some of the main discrepancies 

between different animal species used in animal models.

Allergens and agents
Studies with animal models of allergic asthma assess disease 

pathogenesis. It is well known that allergic imune response 

initiates with a first phase named sensitization, which is 

characterized by production of specific IgE driven to the 

allergen by B cells. Once IgE is produced, it will bind to the 

high-affinity receptor FcεR1 on the surface of mast cells 

and basophils.32,33

The second phase is named challenge. In future contacts 

with the same allergen, effector cells (mast cells and baso-

phils) in the airways will be activated through FcεR1, initiat-

ing an immediate hypersensitivity reaction.40,41 Minutes after 

allergen cross-linking two IgE molecules, these effector cells 

release preformed and rapidly synthesized mediators such as 

histamine, resulting in bronchospasm, edema and mucous 

secretion in the lower airways.41 There can be a late phase, 

which is mediated by cytokines and chemokines and is char-

acterized by edema and leukocytic influx, usually 6–24 hours 

after the immediate phase. The most important leukocytes of 

the late phase are eosinophils, which are recruited by IL-5 and 

are essential to maintain the chronic inflammatory process 

and tissue damage. As asthma is a chronic disease, recurrence 

of challenges leads to chronic eosinophilic inflammation.41

To mimic the pathogenesis of human asthma, protocols 

for development of animal models must include a sensitiza-

tion and a challenge phase.42 They usually use repeated doses 

of systemic allergen administration together with adjuvants, 

such as aluminum hydroxide, to increase immune response.28 

However, as cited above, the pattern of lung inflammation and 

its distribution within lower airways is quite different from 
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Table 1 Advantages and disadvantages of animal species most frequently found in experimental models of asthma

Animal species Advantages Disadvantages

Guinea pig15,19,20,27 Easily sensitized and challenged
Good model for airways disease
Natural AHR
Lung pharmacological responses
Development of immediate and late-phase asthmatic 
responses

Higher cost than mice and rat
Specific probes for studying allergic outcomes not easily available
Axon reflex
Reagents not easily available
Limited genetic knowledge
Tolerance after repeated allergen exposure

Rat15 Low cost
Easily sensitized and challenged
Larger size than mice
Larger volumes of serum and BAL fluid

Specific probes for studying allergic outcomes not easily available
Reagents not easily available
Tolerance after repeated allergen exposure

Mice15,26–28,39 Low cost
Different strains available
Easily sensitized and challenged
Genetic known-in details
Easy to handle
Easy to manipulate under transgenic technology
Specific probes for studying allergic outcomes available
Reagents largely available

Nonphysiological late-phase bronchoconstriction
Distribution of lung inflammation different from human asthma
Lack of chronicity of the response to allergen
Tolerance after repeated allergen exposure

Cat12,15,16 Distal lung anatomy similar to human’s
Idiopathic bronchial disease similar to human asthma

High cost
Reagents not easily available
Extremely intensive labor

Dog15,16 Natural susceptibility to allergens
Easy development of atopy
Eosinophils naturally found in the airways
Development of long-term changes in pulmonary function

High cost
Larger airways (almost no bronchoconstriction)
Reagents not easily available
Extremely intensive labor

Equine11,16 Heaves – airway disease with some hallmarks of human 
asthma

High cost
No allergic immediate response after challenge
Heaves – disease more similar to chronic obstructive pulmonary disease
Neutrophilic inflammation
Reagents not easily available
Extremely intensive labor

Sheep15 Natural susceptibility to allergens
Immediate physiological responses to inhaled allergen
Nonspecific AHR
Long-term AHR after challenge (similar to human asthma)

High cost
Extremely intensive labor
Platelet factor antagonists modulate the late-phase allergic response in 
sheep but not in humans

Abbreviations: AHR, airway hyperresponsiveness; BAL, bronchoalveolar lavage.

human asthma.43 There are many sensitization protocols that 

can induce acute or chronic asthma in animals and they will 

be addressed later on.

Adjuvants, such as potassium aluminum sulfate, are used 

to increase allergen immunogenicity leading to better chances 

of sensitization.44 In human beings, sensitization relies on 

mucosa exposure to allergen followed by immunological 

recognition and Th2 inflammatory response. In animal mod-

els, allergens can be delivered to the immune system through 

subcutaneous (SC) injection, intraperitoneal (IP) injection, 

intranasal (IN) drops or inhaling.

Allergens that have been used in animal models are OVA, 

house dust mite (HDM), such as Dermatophagoides ptero-

nyssinus (Der p) or D. farinae (Der f), mite allergens (Der 

p 1, Der f 1, Der p 23, etc), fungi (Aspergillus fumigatus, 

Alternaria alternata), cockroach extracts, Ascaris antigens, 

cotton dust, ragweed and latex (Hevea brasiliensis). The 

allergen of choice depends on the condition to be replicated 

and it can be used separately or in combination.15

OVA is the most used allergen. It is derived from chicken 

egg and can be produced in large quantities, making it less 

expensive. OVA has been used in experimental models of 

asthma and induces intense allergic pulmonary inflamma-

tion.45 Nevertheless, OVA does not induce airway inflamma-

tion in humans and it has been questioned as a good allergen 

to study asthma. HDM has been successfully used to induce 

asthma in animal models. Three characteristics of this aller-

gen make it suitable: intrinsic enzymatic activity, immunoge-

nicity and direct activation through the Dectin-2 receptor of 

innate immune cells that promote allergic inflammation.46,47

Cockroach extracts mostly used in animal models are 

derived from Blatella germanica. Previous studies have 
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shown that the protein Bla g 2 is a potent allergen and it can 

be identified in 60%–80% of patients allergic to domestic 

cockroaches.48

Ascaris lumbricoides is one of the most common para-

sites found in human disease, infecting about 25% of the 

world’s population. Ascaris allergens were described over 

two decades ago.49 Since then, their antigens have been used 

in a few animal models of asthma.50–53

It is well known that fungi are between the major allergens 

that induce allergic rhinitis and asthma. Then, many animal 

models have been developed, particularly using A. fumigatus, 

the classical causative agent of allergic bronchopulmonary 

aspergillosiss.54 Animals that underwent Aspergillus sensiti-

zation and challenge develop high levels of IgE, eosinophilia 

and lung inflammation.54

Ragweeds are flowering plants from the genus Ambrosia, 

belonging to the aster family Asteraceae. Ragweed pollen 

is responsible for allergic reactions in humans, particularly 

hay fever.55 It is estimated that half of the cases of hay fever 

in North America are induced by ragweed.55 Despite the 

impact of pollen allergy, few ragweed models can be found 

in the literature. One of them is a dog model with T cells 

locally activated in the lungs within 4 hours after exposure 

to ragweed allergen.56

Proteins from H. brasiliensis (latex) can also lead to sen-

sitization and allergic reactions in human.57 Results obtained 

from a murine asthma model induced by latex suggest that 

curcumin has potential therapeutic effects. The study showed 

that eosinophilic inflammation, expression of co-stimulatory 

molecules and expression of some genes involved in the 

process were attenuated by curcumin.58

Routes of sensitization and challenge
Chronic models of allergic respiratory disease involve 

repeated airway exposition to low levels of allergen for peri-

ods of up to 12 weeks. Different antigens have been employed 

and coadministration of an adjuvant is usually, but not always, 

required.28 On the other hand, repeated long-term allergen 

exposure, in particular with protein antigens such as OVA, 

may be associated with tolerance development.59

Aiming to develop both acute and chronic animal models 

of asthma, several approaches in terms of routes of sensi-

tization and challenge have been tested. Since 1980s, IP 

route has probably been the most traditional way to induce 

sensitization. One of the most commonly repeated protocols 

was animal sensitization with two IP injections spaced by 

7–14 days and the challenge is performed 1 week later with 

the culprit allergen.51–54

Nevertheless, SC route has been successfully used in 

last years, both in models of OVA and aeroallergen-induced 

pulmonary inflammation. As far as we know, the first manu-

script about an animal model of asthma using SC injections 

for sensitization was published in 1999.61 Since then, many 

studies were performed, but there is limited data in terms 

of comparison between these two different systemic routes, 

IP and SC.

SC and IP routes have been compared in terms of sen-

sitization with OVA, with conflicting results,62,63 but until 

recently there were no published data about this comparison 

in animal models of asthma induced by aeroallergens. In 

2015, we showed that sensitization by SC route was superior 

than IP in a murine model of asthma induced by HDM.64 

Nevertheless, to our knowledge, it is still the only publica-

tion on this topic, and further studies comparing different 

allergens and protocols are needed to confirm our findings.

After systemic sensitization, allergen challenge is neces-

sary to drive inflammation to the airways. Most studies pub-

lished to date use allergen challenge via the airways, usually 

over a period of several days. Allergen may be inhaled as a 

nebulized formulation (aerosol), or administered by intratra-

cheal (IT) or IN instillation of an aqueous formulation.50,59–61 

In authors’ experimental practice, aerosol route of challenge 

spends higher amount of allergen, but is less invasive and 

does not require animal sedation. On the other hand, IN 

and IT routes are more invasive and require sedation to be 

administered. The clear advantage of IN and IT routes is that 

allergens are instillated directly inside the airways and could 

drive a more intense allergic inflammation.

One of the major criticisms over animal models of 

asthma is that they do not mimic the real ways to induce the 

allergic response. First of all, it is well known that asthma 

is a chronic disease resulting from intermittent or continued 

aeroallergen exposure leading to airway inflammation. This 

exposure occurs throughout life, primarily via the inhala-

tion of allergens and irritants through the airways during 

ventilation. Furthermore, using IP or SC routes to sensitize 

animals is far from natural in terms of inducing an allergic 

inflammatory response. In line with that knowledge, some 

studies have evaluated the possibility to use IN instillations 

of allergen to sensitize animals and then challenge with 

aerosol.68,69 IN instillation of allergen would be the most 

similar to that occurring in human asthma. Two different 

protocols published in 2004 used repeated IN exposition 

to HDM without adjuvants and induce pulmonary allergic 

inflammation analog to asthma.30,70 The study published by 

Johnson et al30 used a chronic protocol, with IN instillation 
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of HDM or OVA 5 days a week, during seven consecutive 

weeks. They showed that HDM, but not OVA, elicited severe 

and persistent eosinophilic airway inflammation, suggesting 

that continuous exposure to OVA could have led to toler-

ance or the need of an adjuvant for sensitization.30 Chronic 

exposure to aeroallergen mimics better human asthma, and 

could allow the development of better treatment and immu-

notherapeutic strategies. Those reasons explain why this 

protocol has recently been replicated or adapted so many 

times in the literature.71–76

In terms of sensitization and challenge, we can conclude 

that using the airways to administer the allergen has been a 

recent tendency, trying to mimic human asthma, instead of 

IP or SC routes. However, SC route can be very interesting 

to study new immunotherapeutic strategies, taking into con-

sideration that SC is the most widely used route of allergen 

immunotherapy in humans. In Table 2, we describe the main 

differences between routes of sensitization and challenge.

Major outcomes
In general, animal models have contributed to the current 

understanding of how the immune system interacts with the 

functional respiratory system and pulmonary pathophysiol-

ogy. Differences in observed results may be related to dis-

tinct allergens, sensitization routes, experimental designs 

and animal species or lineages used. Anyway, most of the 

experimental asthma models usually evaluate the following 

outcomes: immunological (IgE, IgG, cytokines), histopatho-

logical (pattern of inflammatory infiltrate in the airway) and 

functional (lung function measured by plethysmography).

Several authors have shown that allergen-induced respi-

ratory disease alters lung function with changes in airway 

resistance, airway elastance, or increased hyperresponsive-

ness.77–79 This alteration in lung function is followed by an 

increased deposition of elastic and collagen fibers in the 

perivascular space and in parenchyma lung tissue,80 goblet 

cell hyperplasia and airway smooth muscle thickening similar 

to the pathologies observed in human asthma.75–77

Regarding pulmonary inflammation, it is possible to 

observe in experimental models of asthma an intense influx 

of eosinophils, especially in the airways, peribronchial space 

and parenchyma.58,81–85 Increased eosinophil count is also 

present in blood and BAL in conjunction with an increase 

of lymphocytes, macrophages and neutrophils.86–88 Con-

comitantly, dendritic cells may migrate from outside into 

the ganglia to interact with sensory neurons enhancing or 

protecting the allergic airway inflammation.89

Cytokine production is another important outcome 

assessed in experimental models of asthma. Influx of eosino-

phil and other leukocytes, as well as the role of many cyto-

kines and chemokines has been demonstrated through animal 

models.90,91 In recent years, biological actions of some novel 

mediators, such as interleukins IL-25 and IL-33 and thymic 

stromal lymphopoietin, major airway epithelial-derived 

cytokines, have been described. These cytokines have been 

entitled as “epithelial-derived alarmins” because of the abil-

ity of activation and potentiation of the immune system. An 

intense correlation of these epithelial-derived alarmins with 

the pathobiological responses induced by aeroallergens was 

observed in the airways.92 Finally, about humoral response, 

guinea pigs share with mice the shortcoming of utilizing 

IgG1 and IgE in regulating the immediate hypersensitivity 

response to allergen.11–14,19,20,93–98

Conclusion
Animal models remain the easiest way to understand patho-

physiology of allergic asthma and to help developing new 

Table 2 Comparison between different routes of sensitization 
and challenge in animal models of asthma

Advantages Disadvantages

Routes of sensitization
Intraperitoneal28,64,65 Most traditional

Few doses required
Sedation not required

Induction of tolerance
No similarity to human 
sensitization
Usually requires an 
adjuvant

Subcutaneous62–65 Few doses required
Sedation not required
Less invasive than IP
Better than IP in a HDM 
model
Comparable to IP in an 
OVA model

No similarity to human 
sensitization
Usually requires an 
adjuvant

Intranasal30,70 Mimics human 
sensitization
Can be used for chronic 
exposition
Does not require 
adjuvants

Many instillations 
required
Sedation required

Route of challenge
Aerosol65 Mimics human exposition High allergen dose 

required
Intranasal30,64,70 Mimics human exposition

Induces upper airway 
inflammation
Can be used for chronic 
exposition

Many instillations 
required
Sedation required

Intratracheal66,67 Drive the allergen into 
lower airways
Low allergen dose 
required

Invasive
Sedation required

Abbreviations: HDM, house dust mite; IP, intraperitoneal; OVA, ovalbumin.
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drugs and immunotherapy strategies for the treatment of this 

complex disease. However, there are tremendous variations 

between animal species, protocols and allergens used, but 

few studies assessed these discrepancies in order to deter-

mine the best model. The most recent protocols have been 

inducing sensitization and challenge by the same routes in 

which the human disease occurs (eg, IN route) and to using 

the same aeroallergens that trigger clinical disease (eg, 

HDMs). Nevertheless, many approaches cannot be simply 

translated to human disease. Researchers should take a step 

back to define what the best strategies are. Then they will 

be ready to move forward, to better develop models of dif-

ferent asthma phenotypes, such as non-atopic disease, and 

to advance further in the development of future treatments. 

It seems that transgenic models will be great future options 

for a better understanding of the role of each molecule and 

cytokine in the different asthma phenotypes and endotypes.
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