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Abstract: With the advancement of a growing number of oncolytic viruses (OVs) to clinical 

development, drug delivery is becoming an important barrier to overcome for optimal therapeu-

tic benefits. Host immunity, tumor microenvironment and abnormal vascularity contribute to 

inefficient vector delivery. A number of novel approaches for enhanced OV delivery are under 

evaluation, including use of nanoparticles, immunomodulatory agents and complex viral–particle 

ligands along with manipulations of the tumor microenvironment. This field of OV delivery 

has quickly evolved to bioengineering of complex nanoparticles that could be deposited within 

the tumor using minimal invasive image-guided delivery. Some of the strategies include ultra-

sound (US)-mediated cavitation-enhanced extravasation, magnetic viral complexes delivery, 

image-guided infusions with focused US and targeting photodynamic virotherapy. In addition, 

strategies that modulate tumor microenvironment to decrease extracellular matrix deposition and 

increase viral propagation are being used to improve tumor penetration by OVs. Some involve 

modification of the viral genome to enhance their tumoral penetration potential. Here, we high-

light the barriers to oncolytic viral delivery, and discuss the challenges to improving it and the 

perspectives of establishing new modes of active delivery to achieve enhanced oncolytic effects.

Keywords: oncolytic viruses, oncolytic virotherapy, drug delivery systems, tumor 

microenvironment

Introduction
Efficient delivery of oncolytic viruses (OVs) remains a major challenge in the field of 

oncology limiting their therapeutic effect. This may account for the disparity between 

in vitro and in vivo preclinical studies1,2 and the relatively modest antitumor effects 

observed thus far in clinical trials.3

Three major limitations need to be addressed to enhance delivery: first, virus 

bioavailability determined by the host vascular dynamics, perfusion parameters and 

innate immune responses;4–6 second, OV biodistribution and propagation,7–9 usually 

impaired by the intra-tumoral microenvironment heterogeneity; and third, the amplifi-

cation of the virus bystander killing effect by cell-to-cell contact or by intrinsic vector 

enhancement.5 In this review, we discuss these three aspects and provide alternatives 

to improve them.

A number of prior studies have been done to optimize systemic delivery of OVs.10–12 

Although a systemic approach is still a major goal of therapy given its simplicity, it has 

been difficult, and clinical trials employing systemic delivery have had limited success 

thus far.3,4,13 Even locoregional approaches of administration – such as  intraperitoneal 
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delivery for ovarian cancer,14 intrapleural delivery for meso-

theliomas,15 intracavitary delivery for gliomas16 and intrader-

mal delivery for melanomas17 – have yielded inconsistent 

results in both preclinical and clinical studies. Despite the 

difficulties for a viral vector to reach and eventually infect 

extravascular tumor cells, the main mode of administration 

has remained direct intravascular infusion through a major 

vessel supplying the tumor or by local intra-lesional injection 

in a solid tumor, with some studies employing both modes of 

administration.14,18 As a result, the intra-lesional approach has 

been preferred due to limited viral inactivation by the innate 

immune system, lower probability of systemic toxicity and 

optimal delivery of viral load in a single dose. Nonetheless, 

intra-tumoral delivery needs to be enhanced given the pres-

ence of a heterogeneous extracellular matrix (ECM) and the 

fact that transvascular perfusion may not be achieved to a 

therapeutic level. Inasmuch as tumor neovasculature is often 

abnormal, it severely impacts the intra-tumoral spread of OVs 

and maintenance of viral propagation. Tumor angiogenesis 

results in heterogeneous pericyte coverage promoting tran-

sient perfusion, leading to a hypoxic and acidic microenviron-

ment, with tendency to microvasculature coagulation. This 

leads to suboptimal infection, impacts treatment resistance 

and may result in tumor recurrence.19–21 In view of this, vec-

tor enhancement has been equally important to improve the 

potential of the virus platform.

The host complex and viral vector 
bioavailability
Strategies for improving vector delivery include shield-

ing of the virus from host immune defenses, and the use 

of nanoparticles for active targeting and nanofilaments to 

improve vector propagation.

Shielding and surface modifications
Shielding is done by cell-based delivery approaches22 listed in 

Table 1, or through an interface with nanoparticle  carriers.23 

The first relies on passive delivery, given that direction and 

flow of viral propagation is dependent solely on the cell-based 

properties towards the target organ or tissue. The latter relies 

on active delivery, where nanoparticle physical properties 

can be used to promote monitoring and targeting of a spe-

cific organ. In this case, shielding may be done by physical 

interface with biomaterials such as encapsulation and coating 

with polymers, or biodegradable nanoparticles, liposomes or 

copolymers.24 It can also be achieved by chemical modifica-

tion with biomaterials such as polyamidoamine, polyethylene 

glycol (PEG), poly-N-(2-hydroxypropyl) methacrylamide, 

polysaccharides, bioreducible polymers, arginine-grafted 

bioreducible polymers, cationic polymers, poly-ethylenimine, 

poly-L-lysine and cationic lipids.24–26 Another way of shielding 

with biomaterials is through immobilization of the vector to a 

material’s surface through a process termed reverse transfec-

tion, solid-phase delivery or substrate-mediated delivery. This 

may also provide controlled viral release rate, localizing the 

gene expression to the surroundings, diminishing systemic 

infectivity, maintaining an elevated local concentration and as 

such helping to overcome transport limitations. Other similar 

biomaterials include microporous scaffolds, hydrogels, silk-

elastin-like polymers, recombinant polymers, alginate and 

poly (lactic-co-glycolic acid), chitosan, fibrin and collagen 

micelles.23,25 Both cell-based and biomaterial interface-based 

delivery approaches are summarized in Table 1.

Using physical properties of nanoparticles 
to enhance active delivery and vector 
propagation
Active delivery is desirable over passive delivery as transvas-

cular extravasation leads to the same constraints for nano-

therapeutic viral delivery that have been described for other 

nanotherapy approaches.19,51 In this sense, the modulation 

of the tumor microenvironment is fundamental to enhance 

tumor spread.

Specific biomaterials possess properties required to allow 

delivery of viral vectors through ultrasound (US) using micro-

bubbles (MBs) and focused sonoporation.52–54 While using 

MBs, contrast is employed for US using inert gas to pre-produce 

MBs that are injected at the tumor followed by percutaneous 

US, with shocking waves propelling the MBs against the tumor 

matrix causing temporary cavitation which may considerably 

enhance OV delivery through increased extravasation.

Another strategy for improved real-time monitoring of 

delivery includes magnetic-viral complexes, detected by 

magnetic resonance55,56 which enables noninvasive therapy 

monitoring. From the active propagation perspective, nano-

filaments57 can be used to enhance viral propagation, in a way 

comparable to the spontaneously formed tunneling nanotubes 

in mesothelioma cells. The goal is to use ultrafine actin-based 

cytoplasmic extensions for increased bystander killing due 

to amplification of cell-to-cell contact.

Appropriate control of viral delivery can also be achieved 

by nanoparticles. Some techniques provide the particles 

with stimuli-responsive properties for enabling antitumoral 

effect. An example is photodynamic virotherapy, where the 

particle–viral ligand is armed with a genetically encoded 

 photosensitizer, such as photofrin or talaporfin,58 which 
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Table 1 Selected examples of shielding the OV from host barriers

Strategy Approach Viral 
platform

Tumor type Outcome References

Cell-based 
delivery

Mesenchymal stem cell 
(bone marrow derived)

MV Liver cancer evasion of host immunity in setting of 
systemic delivery

27

Mesenchymal stromal cell Ad Pancreatic tumor Decreased expression of CD24 and Ki67 
and enhanced activity of caspase-3

28

Neural stem cell Ad GBM Single administration of oncolytic virus-
loaded NSCs allows for up to 31% 
coverage of intracranial tumors

29

Activated T-cells VSV Ovarian cancer Increased efficiency compared to 
nonactivated T-cells

30

immortalized cell line 
from solid tumor

VSV Murine model 
metastatic tumors

ease of manipulation and propagation in 
vitro, but has a tendency to arrest in the 
small capillary beds of the lungs and fail to 
recirculate in animal (mice) model

31

HeLa (cervical carcinoma)
A549 (lung carcinoma)
MCF-7 (breast carcinoma)
CT26 (colorectal 
carcinoma)
SF268 (glioblastoma)
Dendritic cells MV Breast cancer Prevention of pleural exudate in a 

xenograft model
32

Sickle cell Reovirus 
VSV

Melanoma Absorption and transfection despite 
presence of neutralizing antibodies

33

Macrophages Ad Prostate cancer Abolishment of tumor regrowth 34
Myeloid-derived 
suppressor cells

VSV Metastatic colon 
tumor

Robust immunosuppressive activity, 
preferential migration to tumor and 
decreased toxicity

35

Monocytes Ad Syrian hamster models 
of cancer

Antitumoral effect after multiple dosing 36

Ghost erythrocytes VSV-G in vitro transfection Improved transfection efficiency 37
Physical interface 
with biomaterials

encapsulation (within 
biomaterial) alginate

Ad Model for shielding the 
adenoviruses

enhanced transgene expression and 
reduced immune response

38

encapsulation (within 
biomaterial) PLGA

Ad Model for shielding the 
adenoviruses

enhanced transgene expression and 
reduced immune response

38

Surface modification 
coating with 
biodegradable 
nanoparticles (PNLG)

Ad Model for shielding the 
adenoviruses

Improved efficacy and safety 39

Chemical 
modification with 
biomaterials

PAMAM dendrimer-
coated

Ad eGFR+ cells Increased transduction efficiency, 
especially in low-to-medium CAR-
expressing cancer cell lines

40

Cationic polymers* (form 
electrostatic interactions 
with anionic Ad, can also 
be classified as physical 
interface)

Ad Model for shielding the 
adenoviruses

Permitted ligand attachment and 
manipulation of molecular weight

25

PLL (cationic polymer*) Ad Model for shielding the 
adenoviruses

Caused Ad to bind and infect cells through 
a pathway other than classic CAR-
mediated entry

41

PeG-PLL-Ad had gene expression ~4× 
compared to naked Ad

Cationic lipids* Ad Model for shielding the 
adenoviruses

increased delivery ~80× compared to 
naked Ad

42

Liposomes Resulted in effective immune shielding
PeGylation (covalent 
chemical modification)

Ad Model for shielding the 
adenoviruses

increased circulation half-life 43
VSV Protected from neutralization

Poly-HPMA Ad Model for shielding the 
adenoviruses

increased half-life by diminishing hepatic 
transgene expression

44

(Continued)
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provides light-induced antitumor effect when activated at 

a specific wavelength. Another approach is deployment of 

a synthesized pH-sensitive polymer with a bioreducible 

disulfide bond (methoxy-pegylated cystaminebisacryl-

amide) armed to release the viral particle load in an acidic 

 environment.59 Particle ligand approaches have also been 

used to target the tumor. An example of such an approach 

is the use of penetrating peptides or homing peptides60 such 

as arginylglycylaspartic acid (Arg-Gly-Asp) which are fre-

quently used as a targeting moiety in adenovirus/polymer 

complexes with high affinity for αv integrins,61 E-selectins62 

and vascular endothelial growth factor (VEGF) receptors.63 

Target ligands can also be growth factors or antibodies such 

as cetuximab, and even natural ligands such as folate and 

chitosan PEG-folic acid.64 Active delivery approaches using 

virus–particle ligand complexes are summarized in Table 2. 

Some of those strategies may facilitate the induction of virus 

persistence by evasion of the DNA and RNA sensing systems 

and thereby help to improve oncolytic effect. On the top of 

that, further effects on viral replication and necessary viral 

load for each type of nanoparticle used and specific target 

organ still need to be evaluated in a case-by-case fashion.

Biomaterials shielding for improving 
monitoring and control of vector release
Biomaterial shielding has been important to diminish 

peripheral sequestration and to improve targeting by using 

specific ligands, while ensuring that size and molecular shape 

remain fairly uniform. This allows to predict hemodynamic 

interactions at a certain body temperature and blood viscos-

ity depending on the polymer type used such as molecule, 

protein72 or hydrogels. This strategy also allows for prediction 

of the potential rate of viral release at the tumor level.73 In 

the long run, biomaterials may help track and predict viral 

delivery within reliable ranges. From this perspective, co-

polymerization can result in enhanced tumor penetration. 

Similarly, optimal water solubility has been achieved by 

introducing a pH-sensitive cleavable linker and target moiety 

to a multi-arm copolymer and ultimately complexing it with 

viral particles.74,75

The tumor microenvironment: 
perfusion, permeability and 
retention
On one level, the more bioavailability a vector achieves inside 

the tumor, the more optimal the killing effect. On the other 

level, bioavailability can be increased by manipulation of host 

hemodynamics. Improving perfusion pressure may have an 

impact in a short window of time for locally administered 

compounds, as listed in Table 3. Animal studies have shown 

that promoting a hypertensive state through exercise also 

promotes extravasation for OV administration.76 Mayo Clinic 

studies8,76 have proposed a mathematical model of radial 

expansion and conflation of intra-tumoral infectious centers. 

Strategy Approach Viral 
platform

Tumor type Outcome References

Polysaccharides Ad Model for shielding the 
adenoviruses

Unable to evade neutralizing antibodies 45

Substrate-
mediated viral 
gene delivery

Hydrogel Ad Model for shielding the 
adenoviruses

Minimized sequestration by the 
mononuclear phagocytic system

46

Silk-elastin-like polymer Ad Model for shielding the 
adenoviruses

increased viral gene expression but 
demonstrated some acute toxicity

47

Chitosan Ad Model for shielding the 
adenoviruses

infectivity was observed in cells that do 
not express CAR

48

Biogels: fibrin and collagen 
micelle based

Ad Model for shielding the 
adenoviruses

Sustained release of viral particles by fibrin 49

Microporous scaffolds 
(could be considered 
as physical interface 
given that coaxial 
electrospinning is used to 
encapsulate vectors)

Ad Model for shielding the 
adenoviruses

Reduced macrophage activation 50

Note: *Cationic polymers and cationic lipids may be classified as a way to stablish physical instead of chemical interface because they are formed by electrostatic interactions 
with anionic adenoviruses rather than through chemical conjugation.
Abbreviations: OV, oncolytic virus; MV, measles virus; Ad, adenovirus; GBM, glioblastoma multiforme; NSCs, neural stem cells; VSV, vesicular stomatitis virus; VSV-G, 
vesicular stomatitis virus glycoprotein G; PLGA, poly(lactic-co-glycolic acid); PNLG, poly[2-(dibutylamino)ethylamine-L-glutamate]; PAMAM, polyamidoamine; eGFR+, 
epidermal growth factor receptor positive; CAR, coxsackie adenovirus receptor; PLL, poly(L-lysine); PeG, polyethylene glycol; poly-HPMA, poly-N-(2-hydroxypropyl) 
methacrylamide.

Table 1 (Continued)
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This model also predicts the probability of tumor cell survival 

after the oncolytic phase and establishes perfusion pressure 

as a major determinant of intra-tumoral extravasation of OVs. 

The major impact was seen upon density of viral infection 

within the tumor achieved by increase and decrease in the 

mean arterial pressure.8,76

The focus on increasing permeability of tumor blood 

vessels has been critical since the enhanced perfusion and 

retention (EPR) effect was first described in 1986,77 exploit-

ing the leaky nature of tumor vasculature.9,78 Convection is 

compromised on account of the high intra-tumoral interstitial 

pressure, dense heterogeneous stroma, lack of fenestration 

in the tumor endothelium and heterogeneous basement 

membranes hindering lymphatic drainage and impeding 

viral extravasation, all diminishing the EPR effect.19 The 

extent to which the EPR effect observed in murine models 

may translate to the human disease setting remains unclear.25

The tumor microenvironment as a 
barrier to OV delivery
Unlike normal vasculature, intra-tumoral vessels are imma-

ture, chaotic and mostly saccular, with a tortuosity that 

highly impacts effective blood perfusion.79 Nonuniform 

endothelial structure that promotes leakage in nonspecific 

areas plus constant changes in the tumor environment 

due to tumor growth and treatment may partially explain 

why a primary tumor may respond to treatment whereas 

its metastases may be unresponsive. The leakier a tumor 

becomes, the higher the interstitial fluid pressure, as the 

endothelial cells may not maintain pressure gradients 

across the endothelial wall and the drainage by lymphatics 

is dysfunctional. Stasis increases local hypoxia triggering 

upregulation of HIF-1 alpha and VEGF pathway activity, 

leading to a vicious cycle.80 Blocking VEGF has been shown 

to transiently “normalize” vascular structure and function, 

Table 2 Selected examples of active delivery using complexes of virus–viral particle ligands

Strategy Nanoparticle ligand Virus Results References

Bioreducible disulfide 
bond

mPeG-PiP-CBA Ad Armed release of viral particle in hypoxic, 
acidic environment

59

Vascular zip code Linear RGD (Arg-Gly-Asp) Ad enhanced endocytic ability 65
CD-PeG-cRGD
Cyclic CD-PeG-cRGD Ad Downregulation of iCAM-1, VCAM-1, 

e-selectin, iL-6, iL-18, VeGF-A and Tie-2
66

Natural ligand (folate) PeG-folic acid Ad enhanced cell entry through folate receptors 67
Targeting ligands 
(antibodies)

Trastuzumab (HeR2/neu) Ad Retargeted viral receptor to breast cancer 
cells

68
Ad-PeG-HeR
Cetuximab-pHPMA-PeG Ad Retargeted viral receptor to intraperitoneal 

ovarian cancer cells
69

Targeting ligands 
(growth factors)

VeGF-pHPMA or bFGF-
pHPMA

Ad Retargeting evaded neutralizing antibodies 70

Biotin-eGF Ad Enhanced tumor specificity and membrane 
permeability

71

Abbreviations: mPeG-PiP-CBA, methoxy-pegylated pH-sensitive polymer cystaminebisacrylamide; Ad, adenovirus; RGD, arginylglycylaspartic acid; CD-PeG-cRGD, 
cyclodextrin pegylated arginylglycylaspartic acid; iCAM-1, intercellular adhesion molecule 1; VCAM-1, vascular cell adhesion molecule 1; iL, interleukin; VeGF A, vascular 
endothelial growth factor A; PeG-folic acid, pegylated-folic acid; HeR2/neu, human epidermal growth factor receptor 2/proto-oncogene neu; Ad-PeG-HeR, pegylated 
adenovirus conjugated to herceptin; Cetuximab-pHPMA-PeG, cetuximab-pegylated conjugated with poly-N-(2-hydroxypropyl) methacrylamide; VeGF-pHPMA, vascular 
endothelial growth factor conjugated with poly-N-(2-hydroxypropyl)methacrylamide; bFGF-pHPMA, basic fibroblast growth factor conjugated with poly-N-(2-hydroxypropyl)
methacrylamide; biotin-eGF, biotin conjugated with epidermal growth factor.

Table 3 Pharmacodynamic manipulation to enhance oncolytic virus bioavailability

Infusion type Drugs Effect References

Local Nitric oxide Local improvement of vasodilation and perfusion for short 
period of time (normalization window) with impact in  
normal tissues

80
Bradykinin
Nitroglycerin
Histamine
Local hyperthermia
Low-dose paclitaxel

Systemic Angiotensin receptor blockers Decreased collagen deposition improving trans matrix 
propagation

83
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perhaps explaining why anti-VEGF antibodies have shown 

clinical efficacy (increased overall survival) when combined 

with chemotherapy in patients with mesothelioma, colon, 

lung, ovarian or cervical cancers. It was hypothesized that 

anti-VEGF approaches improve tumor perfusion by nor-

malizing functionality of the tumor vasculature. The use 

of anti-VEGF and VEGF receptor therapies could enhance 

viral delivery in selected patients as well, akin to how these 

therapies have been enhancing immunotherapy.81 Similarly, 

another approach to normalize nitric oxide gradients to 

recover vessel function has been described.82

Another obstacle to viral penetration is the ECM, par-

ticularly in highly desmoplastic tumors, where nanoparticles 

injected directly inside the tumor are unable to move far 

from the injection site.84,85 One study co-injected local intra-

tumoral bacterial collagenase with oncolytic herpes virus for 

melanoma treatment, and the distribution area of the OVs was 

found to increase threefold.86 Given that collagen is an inte-

gral structural component of the vascular wall, collagenase 

may never be used systemically. An alternate approach is to 

use an anti-fibrotic agent that can diminish collagen such as 

relaxin, which is known for reorganizing collagen during 

pregnancy, and has been shown to increase tumor penetration 

by OVs after 2 weeks.87 Another option is to use the metal-

loproteinase-1 and -8, which have been shown to increase 

OV delivery, improving distribution and yielding improved 

efficacy.88 A novel use for antihypertensive drugs from the 

angiotensin II receptor blocker class has been to modulate 

transforming growth factor beta activation and decrease col-

lagen deposition.89 This mode of action has been employed 

in the prevention of esophageal sclerosis due to eosinophilic 

esophagitis. Losartan was the first candidate drug to be evalu-

ated for decreasing collagen deposition in the tumor micro-

environment. Dramatic decreases in collagen deposits and 

increase in tumor penetration were observed after 2 weeks.83 

Another study in non-hypertensive patients with pancreatic 

adenocarcinoma demonstrated that use of candesartan was 

associated with a 6-month longer survival compared with the 

control group.90,91 In patients with hepatocellular carcinoma, 

candesartan downregulated the expression of VEGF-A, via 

the angiotensin II type I receptor, suggesting that it might 

be useful to inhibit angiogenesis in liver cancer.92 Studies 

with prostaglandin-I2 analogs have also demonstrated their 

efficiency in promoting vascular blood flow enhancement 

and extravasation at the tumor microenvironment, but safety 

studies must be performed prior to evaluating their potential 

for drug development.93

Intrinsic vector enhancement, 
selective replication and retargeting 
viral tropism
Therapeutic safety of vectors is proportional to their tumor 

target selectiveness. Selective targeting using tumor-specific 

promoters ensures that viral replication will be restricted to 

cancerous tissues while healthy tissues will remain unharmed. 

Examples of tumor-specific promoters are provided in 

Table 4. Another approach is to restrict tropism, and thereby 

enhance selectivity, by retargeting infection by a virus while 

ablating its ability to infect cells through its natural recep-

tors.94 Instead, viruses are hexon swapped95 and pseudotyped 

with a more potent entry gene, or by fusing the entry gene to 

a single-chain antibody against upregulated tumor-specific 

receptors.96–98 To sum up, arming recombinant viruses with 

prodrug convertases, cytokines, and pH-releasing arms using 

a variety of envelopes, capsids and fibers may onset viral 

proteases only in a cancer-specific environment.99 Arming 

the viruses with a prodrug convertase will enable them to 

transform a nontoxic substrate or metabolite into a lethal 

drug within the tumor environment. Using this approach, the 

inclusion of cytotoxic genes and suicide genes was instituted 

in a herpes simplex virus (HSV) encoding thymidine kinase 

Table 4 Selected examples of tumor-specific promoters

Tumor target Virus-encoded promoter Viral platform References

Bladder cancer Uroplakin ii Ad 131
Brain tumors Nestin HSV-1 132

Musashi-1 HSV-1 133
Breast cancer estrogen response element Ad 134
Gastroenteropancreatic neuroendocrine tumors Chromogranin-A Ad 135
Glioma Glial fibrillary acidic protein Ad 136
Hepatocellular carcinoma Alpha-fetoprotein Ad, HSV-1 137
Melanoma Tyrosinase Ad 138
Mesothelioma Mesothelin Ad 139
Ovarian cancer and breast cancer Mucin-1 Ad 140

Abbreviations: Ad, adenovirus; HSV-1, herpes simplex virus-1.
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(TK) to sensitize dividing cells to ganciclovir.100 Still another 

strategy involves introduction of single-stranded RNA 

tumor suppressor or lethal genes with enhanced cytopathic 

and apoptotic effect (ADP-overexpressed adenovirus).101 

Likewise, induction of autophagy can be accomplished 

by telomere-specific replication.102 Moreover, approaches 

where the virus may encode sequences for relaxin,103 deco-

rin,104 hyaluronidase,105 heparanase106 and elastase107 from 

macrophages metalloelastase have tested the concept of 

tumor microenvironment targeting viruses with intrinsic 

capabilities.

Immunomodulation at the tumor 
microenvironment
Oncolysis in cancer cells may be limited by immune 

response. Although most tumor cells have defective immu-

nomodulation and limited response to interferon (IFN) 

stimulation, normal cells can still sense the virus even if 

the progenies are replication deficient. Some viruses have 

developed mechanisms to evade or block the type-I IFN 

pathway at different levels.108 The most potent OVs are often 

wild types. First generations of OVs have been attenuated in 

an effort to achieve therapeutic safety, which led to reduced 

oncolytic potency. Hence, next generations are being engi-

neered by modifying molecular patterns in order to boost 

oncolytic effect without compromising safety. Therefore, 

particular attention has been given to viral evasion of the 

DNA or RNA cytoplasmic sensing mechanisms, antiviral 

IFN blockages and molecular or sub-particle interactions 

that may improve oncolytic efficacy.99,109,110 On one hand, the 

virus should escape recognition by the host. On the other 

hand, the virus genome can be made to enhance tumor cell 

killing by using stimulatory cytokines.111 These include 

tumor necrosis factor-related apoptosis-inducing ligand,112 

cytosine deaminase (CD),113 and immune-stimulatory 

cytokines genes such as interleukin (IL)-2,111 IL-12114 and 

IL-18.115 Some studies have employed a combination strat-

egy with a TK-CD hybrid protein116 to enhance killing and 

cancer specificity.

At the transcriptional level, inhibition of angiogenesis 

by viral encoding genes has been achieved using short 

hairpin RNA-expressing oncolytic adenovirus-mediated 

inhibition of IL-8 resulting in antiangiogenesis and tumor 

growth inhibition.117 Similarly, a VEGF-specific short 

hairpin RNA-expressing adenovirus has been developed118 

to block tumor growth and achieve potent inhibition of 

angiogenesis. These approaches exhibit ability of vector-

encoded RNA knockdown for OV delivery. In addition, a 

vaccinia virus armed with the soluble VEGF receptor 1 

protein developed antiangiogenic effect in a renal cancer 

cell model.119

Micro-RNA (miRNA) is evolving as a regulator of vector 

tropism,120,121 which is in contrast to the initial descriptions of 

RNA viruses where vector tropism could not be controlled 

through transcriptional targeting. This was evident in the case 

of coxsackievirus type A21, which causes off-target severe, 

often fatal myositis.122 miRNA techniques can promote 

detargeting of OVs during systemic administration, reshap-

ing tumor tropism. Several insertions of combined miRNA 

target sites can be adapted to a single vector to detarget pivotal 

organs at risk for off-target side effects.123

Short-interfering RNA (si-RNA)124 delivery systems have 

been designed to increase tumor specificity. Small double-

stranded RNAs impact posttranscriptional gene silencing 

as they target mRNAs that are then taken up by the RNA-

induced silencing complex.125 They can be used to bind and 

guide cleavage of mRNA in a sequence homology-dependent 

manner.126 These may limit side effects, and toxicity, and take 

oncolytic virotherapy to a new safety level. 

At the translational level, OV replication can be targeted 

by internal regulation of viral protein translation. This control 

is made through the internal ribosome entry site (IRES) ele-

ment and is becoming a powerful tool to co-express genes 

of interest from a single mRNA, as IRES appears to play 

the role of a translational enhancer and may soon expand 

perspectives for better vectors.127 As such, multiple genes 

in viral payloads can be delivered using intrinsic genomic 

attributes, to impact viral delivery.

Local spread of the virus can be boosted by immunosup-

pressive drugs, such as cyclophosphamide.128 Pulsed applica-

tion of immunosuppressive drugs is preferred, as seen with 

the prodrug 5-fluorocytosine and measles vaccine virus.129 

Other immunomodulators such as cobra venom factor may 

also facilitate infection with HSV.130

Future directions
There is a need in the field of OV delivery to explore natural 

tropism of therapeutically modified viral platforms, such as 

hepatitis viruses for hepatocellular cancer and encephalitic 

viruses for brain tumors. Thus far, natural tropism of viruses 

has not been vastly explored from an oncolytic viral perspective.

Delivery of multiple distinct therapeutic viral vectors at 

the same time using biomaterials to bypass the viral load 

sequestration and neutralization by the immune system has 
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not been attempted yet. This has the potential for simultane-

ous delivery of complementary viruses in an effort to achieve 

maximal synergy. Use of different viruses has been reported 

with better tumor penetration.141

Most current delivery approaches are passive in nature. 

Enhanced delivery could potentially be achieved using active 

delivery methods such as nanomachine-enabled propulsion 

of viral vectors. Simultaneously, the expectation is that active 

delivery could also contribute to the enoninvasive monitoring 

process of the OV targeting and propagation.

Improved monitoring methods for real-time viral injec-

tions and tagging viral particles for better in vivo visualization 

is also a growing necessity to assess viral delivery, especially 

for evaluating propagation after the first viral replication. 

To date, the gold standard for monitoring is biopsy. Bio-

luminescence and fluorescence optical methods are being 

developed along with noninvasive monitoring that allows 

deep tissue imaging. Examples of agents used for monitor-

ing are radiotracer-coupled surface transporters used as the 

sodium iodide symporter,142 human norepinephrine trans-

porter meta-iodobenzylguanidine which can be imagined 

by positron emission tomography or single photon emission 

computed tomography143 and human somatostatin receptor 

2 radiolabeled with indium-111 along with vaccinia virus.144

Conclusion
Delivery of OVs remains a major challenge in the field 

of oncology. Rapidly evolving, innovative bioengineering 

and molecular approaches, at the host, tumor and viral 

level, are currently being tested. Overcoming the barriers 

to OV delivery will be paramount to clinical translation. A 

multimodal strategy based on novel viral engineering, host 

defense manipulation and novel active delivery techniques 

is necessary for more successful cancer therapy.
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