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Introduction: Epigenetic regulation has been shown to play an important role in the develop-

ment of inflammatory diseases, including chronic rhinosinusitis and nasal polyps. The latter 

are characterized by epithelial mis-differentiation and infiltration of inflammatory cytokines. 

H3K4me3 has been shown to be involved in regulating lineage commitment. However, the under-

lying mechanisms, especially in human nasal epithelial cells (HNEpC), remain underexplored. 

The objective of this study was to investigate the role of H3K4me3 in HNEpC differentiation 

treated with the Th2 cytokine IL-13. 

Patients and methods: The expression levels of mRNA and proteins were investigated using 

reverse transcription-polymerase chain reaction (RT-PCR) assays and Western blot in nasal polyp 

tissues and human nasal  epithelial cells respectively. We measured these levels of H3K4me3, 

MLL1 and targeted genes compared with control subjects.

Results: We demonstrate that expression of H3K4me3 and its methyltransferase MLL1 was 

significantly upregulated in IL-13-treated HNEpC. This elevation was also observed in nasal 

polyps. Expression of cilia-related transcription factors FOXJ1 and DNAI2 decreased, while 

goblet cell-derived genes CLCA1 and MUC5a increased upon IL-13 treatment. Mechanistically, 

knockdown of MLL1 restored expression of these four genes induced by IL-13. 

Conclusion: These findings suggest that H3K4me3 is a critical regulator in control of nasal 

epithelial cell differentiation. MLL1 may be a potential therapeutic target for nasal inflamma-

tory diseases.
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Introduction
The nasal epithelium possesses a pseudo-stratified structure, with specialized cell types 

including goblet cells, ciliated or non-ciliated columnar cells, and basal cells. This epithe-

lium plays an important role in protecting the airway from infection, inflammation, and 

physical injury.1 Epithelial remodeling is induced upon damage, which is characterized 

by accumulation of pseudocyst formations, lack of collagen, and excessive inflamma-

tory infiltrations, resulting in potentially irreversible structural changes.2 Epithelial 

cells undergo migration, proliferation, and differentiation in response to environment 

stimuli. The process is highly organized and is regulated by diverse growth factors and 

cytokines. Cytokines play essential roles in mediating allergic inflammation. Chronic 

rhinosinusitis (CRS) is a prevalent condition causing poor quality of life. CRS is divided 

into two subtypes: CRS with or without nasal polyps (CRSwNP or CRSsNP). CRSwNP 

displays epithelial barrier dysfunction with ciliary impairment and excessive mucus 

secretion.3 CRSwNP is characterized by a Th2 inflammatory pattern with high expression 
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of type 2 cytokines IL-4, IL-5, and IL-13. CRSsNP merely 

expresses these biomarkers, but with high levels of INF-γ, 

characterized by predominance of Th1 cell.4–6 In addition, 

some CRS patients express a neutrophilic type of inflamma-

tion via Th1 and/or Th17 cells.7 Type 2 cytokines are induced 

by epithelium cells, which can activate type 2 innate lymphoid 

cells such as mast cells. These effector cells also produce type 

2 cytokines, contributing to tissue remodeling. Nasal polyps 

display epithelial mucociliary dysfunction with excessive 

mucus secretion and cilia disappearance.8 Although the cause 

of nasal polyps is not clear, accumulated evidence suggests 

that cytokines play crucial roles. Previous studies suggest that 

IL-13 leads to stasis of sinonasal mucus production and cilia 

dysfunction,9 resulting in persistent inflammation. In human 

bronchial epithelial cells, IL-13 induced goblet cell hyper-

plasia and ciliated cell loss.10,11 The underlying mechanisms 

have yet to be fully explored.

Epigenetic regulation has been found to be involved in 

a number of inflammatory disorders.12–15 Previous studies16 

have shown that, in nasal polyps, transcription and protein 

expression levels of HDCA2 are increased. Treatment with 

histone deacetylase inhibitor and histone modifications sup-

pressed myofibroblast differentiation and altered extracellular 

matrix production.16,17 HDAC inhibitors suppressed inflam-

mation via induction of FoxP3+ regulatory T-cells that also 

have relevance to asthma.18,19 In addition, in nasal polyp 

fibroblasts, H3 lysine27 acetylation (H3K27Ac) was highly 

expressed, suggesting that histone modifications regulated 

development of nasal polyps.20 It is noteworthy that increased 

active histone markers, including H3-K9 acetylation and 

H3-K4 trimethylation across the IL-4 and IFN-γ loci, were 

observed with Th1 or Th2 cell lineage commitment.21–23 It 

has been found that MLL1 can regulate the development of 

Th2 reactions by H3K4me3 modification through stabilizing 

expression of GATA3.24 MLL1 can also influence Th1 cell 

proliferation via regulating IL-12 responsiveness,25 suggest-

ing that MLL1 has played a key role of regulating cellular 

inflammatory processes.

In the present study, we observed elevated H3K4me3 

expression in the nasal polyps. We investigated the func-

tion of the histone methyltransferase MLL1 in human nasal 

epithelial cells (HNEpC) upon IL-13 treatment. We found 

that H3K4me3 may play an important role in the mis-dif-

ferentiation of nasal epithelium in inflammatory disorders.

Patients and methods
Subject collection
Nasal polyp tissues and normal inferior turbinate tissues 

were collected from 16 patients with CRSwNP undergoing 

functional endoscopic sinus surgery from the Department 

of Otorhinolaryngology, Affiliated Hospital of Qingdao 

University, China. All tissues were used immediately and/or 

snap-frozen at -80°C. The study was approved by the local 

ethics committee and the regulatory authorities of China. Writ-

ten informed consent was obtained from all subjects before 

sample collection. Patients with an established immunodefi-

ciency and pregnancy were excluded from the study. None 

of the patients had allergy, asthma, or aspirin sensitivity and 

treated with corticosteroids for at least 1 month before surgery.

Cell culture and treatment with IL-13
HNEpCs were purchased from PromoCell (Atlanta, GA, 

USA) and cultured in 1640 medium (Thermo Fisher Scientific, 

Waltham, MA, USA), supplemented with 10% fetal bovine 

serum and 1% penicillin–streptomycin (Thermo Fisher Scien-

tific) in 5% CO
2
 atmosphere at 37°C. The cells were stimulated 

with Recombinant Human IL-13 (2#00-13, Escherichia coli; 

Peprotech, Rocky Hill, NJ, USA) at a final concentration of 

5, 10, 50, 100, and 200 ng/mL for indicated time.

Plasmids and transfection
MLL1 shRNA plasmids were obtained from GeneChem Com-

pany (Montreal, QC, Canada). The targeted sequences were 

5′-GATTATGACCCTCCAATTAAA-3′ and 5′-GCACTGT-

TAAACATTCCACTT-3′. The plasmids were transfected with 

helper vectors, pDelta8.9 and pVSV-G, into HEK293FT cells. 

After 48 h of transfection, the medium was collected and cen-

trifuged at 50,000 ×g for 3 h. The pellets were resuspended in 

PBS. Lentivirus was transduced into the HNEpC. To obtain 

a stable and pure MLL1-knockdown cell population, we 

performed selection with 2 μg/mL of puromycin after 48 h 

of transfection. It usually takes 2 days for all the control cells 

to die. After selection, we collected cells and examined the 

efficiency of transfection through real-time polymerase chain 

reaction (PCR) and Western blot.

Western blot analysis
To obtain cell and tissue proteins, samples were processed with 

2% sodium dodecyl sulfate (SDS) lysis buffer and sonicated 

to break up DNA. Lysates were boiled for 10 min at 98°C. 

Then, the samples were measured by BCA Protein Assay Kit 

(Beyotime Institute of Biotechnology, Shanghai, China), and 

20 μg of total protein was loaded. Transferred polyvinylidene 

fluoride membranes were incubated with primary antibodies 

against H3K4me3 (1:1000; #GC-263, PTMbiolabs, Chicago, 

IL, USA), MLL1 (1:1000; #14197, Cell Signaling Technology, 

Danvers, MA, USA), and β-tubulin (1:3000; Beyotime Institute 

of Biotechnology) overnight at 4°C, followed by incubation 
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with secondary antibodies of anti-mouse IgG and anti-rabbit 

IgG, respectively (1:2000; CWbiotech, Beijing, China) for 

1 h at room temperature. Western blot analyses were normal-

ized to β-tubulin. The blots were developed with Super Signal 

Pico substrate (Pierce Biotechnology, Shanghai, China). Each 

immunoblot was repeated three times, with samples obtained 

from different experiments. The relative intensity of protein 

bands was measured with NIH image J software.

RNA preparation and quantitative real-
time qPCR
Samples were stored at -80°C until homogenization and no 

more than 25 mg tissues were homogenized in Trizol. For 

quantitative real-time PCR, total RNA was extracted from 

HNEpC and tissues using RNAiso Plus (D9108; Takara Bio, 

Tokyo, Japan) following the instructions from the manufac-

turer. RNA quantity and purity were determined by Nanodrop 

spectrophotometer. GAPDH was used as an internal control. 

Reverse cloning of cDNA by 500 ng RNA was performed 

using a First Strand cDNA Synthesis Kit (RR037A; Takara) 

according to the manufacturer’s instructions. Real-time 

PCR was performed to determine the mRNA expression. In 

brief, real-time PCR was conducted using the Roche Light-

cycler480 Real-time PCR System with SYBR green reagents 

from Takara (RR820A). Quantifications were normalized to 

GAPDH. Relative gene expression was calculated using the 

2-ΔΔCt method.

The primer sequences used for application were as follows:

FOXJ1 forward: 5′-GTTCTCCCGAGGCACTTTGA-3′ 
and reverse: 5′-CACCAAGATCACCCTGTCGG-3′; 
DNAI2: forward: 5′-GTTGAGGGTCAAGAGGTGGG-3′ 
and reverse: 5′-GGATGAGGAGCACCGATG-3′; MUC5a: 

forward: 5′-ACCCATGGAATTCGGGAACC-3′ and 

reverse: 5′-TTGATCACCACCGTCTG-3′; CLCA1: for-

ward: 5′-TGGTAACCGCCTCAATCGAC-3′ and reverse: 

5′-GCCAACCTTAGCAATGCCTG-3′; GAPDH: for-

ward: 5′-TCGACAGTCAGCCGCATCTT-3′ and reverse: 

5′-GAGTTAAAAGCAGCCCTGGTG-3′; MLL1: forward: 

5′-TTTAGAGGAGAACGAGCGCC-3′ and reverse: 

5′-AGGGTGATAGCTGTTTCGGC-3′; MLL2: forward: 

5′-GTCGCAAGCATAAGACGACC-3′ and reverse: 

5′-ACCATCCGTTCTGTGCCTTC-3′; MLL3: forward: 

5′-TCCTCGGCTCCAACAAAATCT-3′ and reverse: 

5′-CAGGACCAATATCTGAATGATCAAC-3′; MLL4: 

forward: 5′-AAACGGCCCCATACCCTGA-3′ and reverse: 

5′-GTTGTTCTTCCATTCGGTGCG-3′; MLL5: forward: 

5′-GCCATTTTCCCAGAGCGAGA-3′ and reverse: 

5′-TGTCTATGCCCACTCTGTTGC-3′; SETD1A: for-

ward: 5′-CGTTGCCATGTCAGGTCCAA-3′ and reverse: 

5′-GCACGTTGTCATTCAGCCTT-3′; and JARID1B: 

forward: 5′-CATATCTGCCCAATGGTGCG-3′ and reverse: 

5′-TCTAACACTGGCACACGTCC-3′.

Statistical analyses
Statistical analyses were done using descriptive and infer-

ential statistics by GraphPad Prism software version 6.0 

(GraphPad Software, Inc., La Jolla, CA, USA). Student’s 

t-test and ANOVA test were performed to determine the 

statistical significance between two groups and among more 

than two groups, respectively. All in vitro experiments were 

done and repeated at least three times. In Figures 1–3, mean 

value ± 1 SD are presented. For all statistics, P=0.05 was 

considered to be statistically significant.

Results
Increased expression of H3K4me3 and 
relative epithelial gene mRNA expression 
in nasal polyps
Pathological remodeling of nasal polyps is characterized by 

epithelial dysfunction. First, we collected nasal polyp tissues 

and inferior turbinate samples from the same side of nasal 

polyps  patients undergoing polypectomy for the treatment 

of nasal obstruction. mRNA expression of FOXJ1, DNAI2, 

CLCA1, and MUC5a was examined. Expression of FOXJ1 

and DNAI2, major cilia-related transcription factors, was 

decreased in nasal polyps  compared to control, whereas 

that of CLCA1 and MUC5a, goblet cell-derived genes, 

was elevated (Figure 1A), suggesting mis-differentiation 

of epithelium. H3K4me3 expression was increased in nasal 

polyps  samples compared with control (Figure 1B and 1C), 

suggesting that histone methylation may play an important 

role in metaplasia of nasal epithelia.

Elevation of H3K4me3 and MLL1 
expression upon IL-13 treatment in 
HNEpC
To further understand the role of H3K4me3 in progression 

of nasal Th2 inflammatory diseases, we treated HNEpC 

cells with IL-13 at varying concentrations. H3K4me3 

expression was elevated by IL-13 treatment (Figure 

2A). Peak expression of H3K4me3 occurred at 10 ng/

mL concentration of IL-13 (Figure 2B). Thus, we chose 

10 ng/mL concentration of IL-13 for further experiments. 

Next, we analyzed mRNA expression of FOXJ1, DNAI2, 

CLCA1, and MUC5a. IL-13 induced mRNA expression of 

CLCA1 and MUC5a, but suppressed FOXJ1 and DNAI2 
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Figure 1 Increased expression of H3K4me3 and relevant epithelial gene mRNA expression in nasal polyps.
Notes: (A) mRNA expression of FOXJ1, DNAI2, MUC5a, and CLCA1 compared with the control group. (B) H3K4me3 expression was measured in nasal polyps by 
immunoblotting and compared with the control. (C) Relative quantification of H3K4me3 intensity normalized by β-tubulin in tissues. Data are expressed as mean ± SD. 
*P < 0.05, Student’s t-test.
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in HNEpCs (Figure 2C). This is consistent with the results 

obtained for nasal polyps tissues.

H3K4me3 is a dynamic and reversible process that is 

governed by histone methyltransferases and demethylases. 

We examined a variety of important genes regulating the 

methyl group of H3K4me3 by quantitative real-time PCR. 

The methyltransferase genes (MLL1, MLL2, MLL3, MLL4, 

MLL5, and SETD1A) were elevated and demethylase Jarid1b 

was decreased with IL-13 treatment (Figure 2D). Of these, 

MLL1 showed the greatest change. We validated IL-13-in-

duced elevation of MLL1 by Western blot (Figure 2E). These 

results suggest that IL-13-induced H3K4me3 elevation was 

probably regulated by both increase in methyltransferase and 

reduction of demethylase. However, the methyltransferase 

MLL1 plays a predominant role. 

Knockdown of MLL1 reversed IL-13-
induced changes of gene expression
To evaluate whether MLL1 influences IL-13-induced meta-

plasia, we knocked down MLL1 with lentivirus and examined 

mRNA expression of FOXJ1, DNAI2, MUC5a, and CLCA1. 

First, we validated MLL1 shRNA efficiency. Compared with 

control, MLL1 mRNA and protein expression was signifi-

cantly reduced upon MLL1 knockdown (Figure 3A and B), 

and this was proved (Figure 2F). As expected, H3K4me3 

expression markedly declined with MLL1 reduction 

 (Figure 3B). The expression of FOXJ1 and DNAI2 signifi-

cantly increased, while that of CLCA1 and MUC5a decreased 

compared with control (Figure 3C). These data suggest that 

MLL1 knockdown reverses the alterations of hallmark genes 

in nasal epithelium induced by inflammation.

Discussion
To our knowledge, this study is the first to investigate the 

connection between H3K4me3 and HNEpC metaplasia by 

IL-13. We provide additional evidence in favor of histone 

methylation involvement in nasal inflammation.

Histone modifications and DNA methylation are crucial 

for sustaining distinct gene expression.26 Cho et al16 showed 

that in nasal polyps, expression of HDAC2 increased com-

pared to normal nasal inferior turbinates. We found that 

expression of H3K4me3 increased in nasal polyps  compared 

with controls.

Many studies have suggested that a variety of Th2 

inflammatory cytokines are implicated in development and 

maintenance of nasal inflammation, such as three repre-

sentative cytokines (IL-4, IL-5, and IL-13).27,28 It is widely 

accepted that increased IL-4 and IL-13 can upregulate 

eotaxin production in epithelial cells, and IL-5 plays pivotal 

role in the recruitment and survival of eosinophils,29 which 

is also positively associated with serum total IgE.30 Nasal 

polyp  tissue significantly highly expressed IL-5 and IgE in 
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CRSwNP compared with CRSsNP patients,7 which may 

lead to nasal polyp formation at specific sites with mucosal 

inflammation. As for immunoglobulin production, total IgE 

has also often been highly expressed within polyp tissue and 

fluid, especially in eosinophil CRSwNP, which in turn can 

contribute to local inflammation.31–33

H3K4 methylation has played an important role in regulat-

ing inflammatory gene transcription through different ways. 

For example, Li et al34 found that SET7/9, H3K4 methyl-

transferase, was involved in gene expression of TNF-α via 

recruitment of NF-κB p65 to inflammatory gene promoters in 

inflammation and immunity. Enrichment of H3K4me3 could 

increase the expression of IFN-γ and IL-4 produced by Th17 

cells through interrupting the balance between native CD4+ 

T-cell precursors and Th1, Th2, and Th17 T-helper cell subsets 

in asthma,35,36 and IL-4 stimulation could increase H3K4me3 

at IgE locus in CL-01 and primary B cells, resulting in high 

expression of IgE.37,38

IL-13 has been widely recognized as an important cytokine 

in this process.39–41 In our study, we found that expression of 

H3K4me3 and MLL1 showed higher levels in IL-13-induced 

HNEpCs. To our knowledge, this is the first study to show 

that H3K4me3 and MLL1 expression levels increased in nasal 

polyps. As for the status of H3K4me3 in CRSwNP, further 

studies should be applied according to diverse clusters, which 

would be informative for individual treatment.

Increased gene expression of CLCA1 and MUC5AC and 

eosinophilic infiltration is seen following instillation of IL-13 

Figure 2 H3K4me3 and MLL1 protein expression and nasal epithelial hallmark gene mRNA expression with IL-13 treatment.
Notes: (A) H3K4me3 expression was measured in HNEpC treated with IL-13 at indicated concentration. (B) Relative quantification of H3K4me3 intensity normalized by 
β-tubulin. (C) Relative mRNA expression of FOXJ1, DNAI2, MUC5a, and CLCA1 in HNEpC treated with 10 ng/mL IL-13. (D) Relative mRNA expression of H3K4me3 
methyltransferase and demethylase was measured in IL-13-treated HNEpC. (E) MLL1 expression was measured in HNEpC with IL-13 treatment. (F) Relative quantification 
of MLL1 intensity normalized by β-tubulin. Data are expressed as mean ± SD. *P < 0.05, **P < 0.01, Student’s t-test.
Abbreviation: HNEpC, human nasal epithelial cells.
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into mouse airway,42 mediated by the JAK/STAT6 pathway.43 

In nasal polyps, STAT6-positive cells were localized in epi-

thelium, gland cells, and inflammatory cells, and expression 

of STAT6 in epithelium had significantly increased compared 

with the control, which was positively associated with the 

recruitment of eosinophils.44 In the airway epithelium, IL-13 

treatment decreased FOXJ1 mRNA expression via binding 

of STAT6 to the FOXJ1 promoter.45,46 We found increased 

MUC5A and CLCA1 and decreased FOXJ1 and DNAI2 at 

the transcriptional level with IL-13 treatment in HNEpC, 

consistent with previous reports.58 Recently, H3K4me3, 

an activated histone marker, was shown to be important in 

inflammatory processes,47 especially with high expression 

of IL-13.48 Our results suggest that H3K4me3 expression 

increases upon IL-13 treatment, which is at least partially 

attributed to methyltransferase MLL1. We examined four 

genes following MLL1 knockdown. It appears that CLCA1 

and MUC5A expression is positively regulated by MLL1, 

although H3K4me3 enrichment at the promoter of these 

two genes needs to be further investigated. Carson et al49 

found that MLL1-dependent H3K4me3 modification could 

regulate macrophage proinflammatory responses, indicating 

that MLL1 could be a novel therapeutic target for inflamma-

tory diseases. Regarding FOXJ1 and DNAI2, the underlying 

mechanism remains to be explored in future. The signaling 

pathway of H3K4me3 and MLL1 remains poorly understood. 

Some studies have found that histone acetylation regulates 

chronic inflammatory disorders induced by IL-13 via STAT6 

signaling pathway.50 We suspect that H3K4me3 may be 

involved in the STAT6 pathway. In addition, some studies 

have shown that Th2 cytokines such as IL-13 induce the 

airway inflammatory environment via the mitogen-activated 

protein kinase (MAPK) pathway.51,52 Histone modification 

could affect the p38 MAPK pathway, suggesting that histone 

modifications affect inflammatory development induced by 

IL-13 through MAPK.53,54 The function of the H3K4me3 and 

MLL1 signaling network needs to be further investigated.

Meanwhile, some studies have forced the necessitiy 

to develop inhibitors of MLL1 methyltransferase activity. 

MM-401 was able to inhibit MLL1 activity by blocking 

MLL1–WDR5 interaction without affecting other MLL 

family histone methyltransferases,55–57 supporting that MLL1 

could be the target of epigenetic therapy. MLL1 may be a 

potential target for CRSwNP via influencing the process of 

H3K4me3 modification, especially in Th2 cytokine-dominant 

patients.

Figure 3 Knockdown of MLL1 reversed IL-13-induced changes of gene expression in HNEpC.
Notes: (A) MLL1 mRNA and (B) protein expression were measured upon MLL1 silencing. (C) Relative mRNA expression of nasal epithelial hallmark genes upon MLL1 
knockdown in IL-13-treated HNEpC. Data are expressed as mean ± SD. *P < 0.05; Student’s t-test.
Abbreviation: HNEpC, human nasal epithelial cells.
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