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Abstract: Cognitive dysfunction is a common and significant non-motor symptom of Par-

kinson’s disease (PD). PD mild cognitive impairment (PD-MCI) is evident in approximately 

one-quarter of patients at the time of PD diagnosis, and half of PD patients have progressed to 

PD dementia (PDD) after 10 years. The transition to PDD from PD-MCI is not linear and may 

depend on the facets of cognition affected. Despite increased understanding of pathological, 

neurotransmitter and genetic drivers, there are no proven pharmacological treatments for PD-

MCI and those licensed for PDD are of modest benefit only. Biomarkers to predict those most 

at risk of developing PDD are under investigation and are likely to be essential so that early and 

individualized treatment can be provided.
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Introduction
Modern understanding has changed the perception of Parkinson’s disease (PD) from a 

pure movement (or motor) disorder to a multisystem disease. PD comprises motor and 

non-motor symptoms (NMSs) and involves changes to dopaminergic, noradrenergic, 

serotonergic and cholinergic neurotransmitter systems within the brain. A range of 

NMSs are described in PD, and among the most common is cognitive impairment. A 

spectrum of cognitive deficit is associated with PD, from subjective cognitive decline 

(PD-SCD) to mild cognitive impairment (PD-MCI) and dementia (PDD). Longitudinal 

cohort studies have demonstrated that approximately half of those diagnosed with PD 

for 10 years develop PDD,1–3 while the point prevalence of dementia among those with 

PD is between 35% and 30%.4 In context, PDD accounts for 3%–4% of dementia of 

all types within the general population, a much smaller percentage than Alzheimer’s 

disease (AD; 50%–70%) or vascular dementia (15%–25%).5 There is good evidence 

that PD cognitive impairment reduces quality of life, increases mortality and intensi-

fies caregiver burden.6–8

The construct of PD-MCI was formally defined in 2012 by the International 

Parkinson and Movement Disorder Society (MDS),9 and it has since been shown that 

approximately one-third of people have PD-MCI at the time they are diagnosed with 

PD.10,11 The risk of progression from PD-MCI to PDD is not uniform – PD-MCI may 

remain static or even reverse rather than always inexorably progress to PDD. Under-

standing the complex pathological and genetic factors governing transition between 

normal cognition, PD-SCD, PD-MCI and PDD is an active area of research. One major 

aim is to identify biomarkers that can accurately predict those PD patients most at 
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risk of developing PDD, as this would allow targeted stud-

ies of such people and early delivery of disease-modifying 

medication, when this becomes available.

Cognitive subtypes in PD
Subjective cognitive decline
SCD is a relatively new term, introduced over the past few 

years to describe cognitive impairment identified by the 

patient, their family or health care professionals in the context 

of normal performance on cognitive tests. There is established 

evidence that in the general population SCD is a risk factor for 

amnestic MCI and AD.12 There are currently no established 

criteria to define this syndrome in PD and limited published 

research. Small studies have shown that PD-SCD patients are 

at increased risk of developing PD-MCI compared to those 

without SCD,13,14 but further research is required.

PD mild cognitive impairment
The 2012 MDS PD-MCI diagnostic criteria9 were published 

to create a unifying set of diagnostic measures to standard-

ize practice across clinical trials and improve understanding 

of PD-MCI. The key difference between PD-MCI and PDD 

is that cognitive deficits are not sufficient to significantly 

impair activities of daily living in the former. In order to 

align with the 2007 MDS PDD diagnostic criteria,15 the 2012 

MDS PD-MCI criteria contain two diagnostic categories: 

a “level 1” category diagnosis allows an approved test of 

global cognitive function to demonstrate deficits, whereas a 

“level 2” category diagnosis is more rigorous, requiring two 

neuropsychological tests of the five core cognitive domains 

most often affected in PD, which are attention and working 

memory, executive function, language, memory and visuo-

spatial function.9 Deficits need to be identified in at least 

two tests to make a level 2 diagnosis. The abnormal tests can 

both be within the same cognitive domain or within different 

cognitive domains, allowing subtyping of level 2 PD-MCI 

into single or multiple cognitive domains.

The definition of “impairment” in cognitive tests is not 

precisely defined by the MDS criteria, and large-scale vali-

dation is underway.16 The results will help resolve a number 

of problems identified and refine them appropriately. For 

example, there is uncertainty regarding the optimum cut off 

for impairment values when compared to normative means, 

which has a marked influence on the number of PD subjects 

classified as having PD-MCI.11,17 The validity of approved 

global cognitive screening tests to make a level 1 diagnosis 

of PD-MCI also needs to be established. To achieve a sensi-

tivity and specificity of 80%, the best of three approved tests 

in one study (the Montreal Cognitive Assessment [MoCA]) 

had a diagnostic accuracy of 57% and 68%, respectively.18

The literature looking at the outcome of PD-MCI in 

longitudinal studies suggests that it is a risk factor for PDD. 

In one study, PD-MCI was strongly associated with PDD 

development during 4 years of follow-up after controlling for 

age, disease stage, education and gender (odds ratio 5.1).19 

Three-year follow-up of 182 participants in the Norwegian 

ParkWest Study cohort showed that 10 of 37 subjects with 

PD-MCI at baseline had converted to PDD, compared to one 

of 145 with normal cognition, a relative risk of 39.2.20 How-

ever, this study also found that 22% of PD-MCI subjects at 

baseline reverted to normal cognition, implying that PD-MCI 

can be reversible. The PD-MCI converters were significantly 

older and had significantly worse scores on tests of executive 

function at baseline compared to the PD-MCI reverters.20 

More information is needed to understand the transition 

between normal cognition, PD-MCI and PDD. PD-MCI and 

PDD appear to share several risk factors such as level of 

education,21 severity of motor deficit22,23 and male gender.24

The CamPaIGN cohort study assessed PD patients’ 

cognition at baseline and conversion to dementia at 3.5 and 

5.2 years of follow-up; it showed that deficits in semantic 

fluency and visuospatial function at baseline were risk 

factors for dementia development but deficits in executive 

function were not.22,23 This finding, among others, led to the 

“dual syndrome hypothesis”25,26 which proposes that those 

with PD-MCI characterized by executive dysfunction, prin-

cipally driven by changes in dopaminergic pathways, are 

less likely to transition to PDD. In contrast, those PD-MCI 

patients with deficits in memory and visuospatial function 

(Figure 1), caused predominantly by deficits in acetylcholine 

(ACh), are more prone to rapid cognitive decline and PDD. In 

newly diagnosed PD, there is some evidence that functional 

magnetic resonance imaging (fMRI) changes and genetic risk 

factors support the dual syndrome hypothesis,27 but further 

longitudinal follow-up, for example, via the ICICLE-PD 

study,11 is required to test this theory in more detail.

PD dementia
The importance of cognitive decline in PD was highlighted 

when several longitudinal studies demonstrated that approxi-

mately 50% of patients have developed dementia 10 years 

after the initial diagnosis of PD.1–3 The Sydney Multicenter 

Study – the longest published follow-up of a newly diagnosed 

PD cohort to date – found that 83% of those alive at 20 years 

had developed PDD and 75% developed PDD before death,28 

suggesting that dementia may be an inevitable consequence 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Journal of Parkinsonism and Restless Legs Syndrome 2018:8 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

3

Cognitive deficits in PD

of PD if survival allows. However, the 17% of subjects in the 

study without dementia at 20 years could represent a distinct 

subgroup with some protection from PDD.

Disentangling the effect of age, age at the onset of PD 

and duration of disease in cohort studies is complex, but it 

appears that age, rather than age at the onset of PD, conveys 

an increased risk of developing PDD (Box 1).29 Those diag-

nosed with PD earlier in life live for longer before developing 

dementia,30 and four clinical milestones, including dementia, 

have been shown to herald the onset of a terminal phase of PD.31

The postural instability gait disorder (PIGD) motor 

phenotype is associated with a more rapid cognitive decline 

than the tremor-dominant motor phenotype,23,32 and in some 

studies, PDD is almost exclusively a condition occurring in 

PIGD.33 It has been argued that ACh deficit may link cogni-

tive decline – particularly deficits in attention – and PIGD 

due to degeneration of the nucleus basalis of Meynert (nbM) 

and the pedunculopontine nucleus (PPN), respectively.34,35

Mechanisms causing cognitive 
deficits
Understanding the drivers of cognitive deficit in PD is com-

plex and hindered in part by the absence of good animal 

models. The pathological changes seen are important, but 

other factors such as alterations to neurotransmitter systems 

and genetic influences are also significant. Disentangling 

these factors and their relevance to each individual patient 

is an unmet need.

Pathological studies
The major pathological driver of cognitive decline in PD is 

believed to be the presence of Lewy bodies and Lewy neurites 

within the limbic system and neocortex, although AD-related 

pathology – tau neurofibrillary tangles (NFTs) and amyloid 

beta plaques (Aβ) – is also important. The core constituent 

of Lewy bodies and neurites is abnormal alpha synuclein 

(α-syn), which causes neurotoxicity via a range of proposed 

mechanisms including impairment of axonal transport, oxida-

tive stress, mitochondrial changes and synaptic dysfunction.36 

The Braak pathological stage37 – a six-stage caudo-rostral 

propagation of Lewy pathology from the medulla oblongata 

to the neocortex – has been linked to cognitive function,31,38 

but not all brains with evidence of Lewy pathology within 

the neocortex are associated with a history of cognitive 

impairment. Some have argued that α-syn may be a marker 

of neural protection rather than cause neural death,39 or 

alternately that those with neocortical Lewy pathology may 

have died prior to developing cognitive dysfunction.36 Other 

pathological markers of cognitive decline must exist, because 

it is possible, although rare, for people with a pathological 

diagnosis of PD and a clinical diagnosis of PDD to have no 

evidence of cortical Lewy pathology.37

The presence of combined Lewy pathology, NFT and 

Aβ is a better neuropathological correlate of PDD than any 

single pathology in isolation,40 and animal models suggest 

that the trio may be synergistic.41 Furthermore, 40%–50% 

of pathologically proven PDD cases also fulfill pathological 

diagnostic criteria for AD.36 Coexisting PDD and AD pathol-

ogy is more likely to be seen in elderly brains because of the 

association between increasing age and presence of NFT and 

Aβ.42 Cerebrovascular disease and hippocampal sclerosis may 

also be important pathological markers of cognitive deficit 

in PD, but further work is needed to establish their role in 

Figure 1 Visuospatial function is affected in Parkinson’s cognitive impairment.
Notes: Progressive difficulty copying interlocking pentagons. Based on level 1 MDS 
diagnostic criteria, patient “A” has normal cognition, patient “B” has PD-MCI and 
patients “C” and “D” have PDD.
Abbreviations: MDS, Movement Disorder Society; PD, Parkinson’s disease; PDD, 
PD dementia; PD-MCI, PD mild cognitive impairment.

A B

C D

Box 1 Summary of risk factors for PDD

Risk factors

Older age29

Male gender24

More severe motor impairment22,23

Level of education21

PD-MCI19,20

Baseline deficits in semantic fluency* and visuospatial function**,22,23

PIGD motor subtype22,32,33

SCNA77 and GBA83,84 gene mutations
Possibly APOE88 and MAPT23 gene mutations (mixed evidence)

Notes: *Semantic fluency test: name as many animals as you can in 60 seconds. 
**Visuospatial function test: drawing interlocking pentagons.
Abbreviations: APOE, apolipoprotein E; MAPT, microtubule-associated protein 
tau; PD, Parkinson’s disease; PDD, PD dementia; PD-MCI, PD mild cognitive 
impairment; PIGD, postural instability gait disorder.
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more detail. Pathological studies of subjects with PD-MCI 

are currently lacking.

Neurotransmitter dysfunction
Dopamine
The relationship between dopaminergic activity in the meso-

limbic and mesocortical pathways, and executive function and 

attention, is complicated. It has long been demonstrated that 

PD patients have deficits in facets of executive function and 

some studies have shown an association between deficit sever-

ity and motor symptoms.43 The profile of deficits in execu-

tive function in PD is linked to dopaminergic stimulation of 

frontostriatal cortical loops.43 An improvement in some tests 

of executive function (such as spatial working memory and 

planning44) and attention flexibility45 when PD patients are 

tested “on” compared to “off ” has been shown. However, the 

relationship between dopamine and cognitive performance 

is not linear because other tests of executive function (such 

as reversal learning46 and motor sequencing learning47) were 

shown to deteriorate in the “on” state.

The “dopamine overdose hypothesis” was proposed 

to explain these findings and is based on the sequential 

degeneration of dopaminergic neurons within the substantia 

nigra pars compacta (SNpc). The ventral lateral tier, whose 

dopaminergic projections primarily connect to the dorsal 

putamen, is most severely affected.48 Executive functions 

such as flexibility and response inhibition, as well as work-

ing memory, are mediated by the dorsal putamen and are 

improved by dopaminergic stimulation early in the disease 

course. However, the dorsal SNpc tier, whose dopaminergic 

projections primarily connect to the ventral striatum, is less 

affected early in the disease course (Figure 2) and cognitive 

functions mediated by this pathway, such as reversal learning 

and motor sequence learning, are effectively “overdosed” 

by dopaminergic stimulation at this stage.25 Longitudinal 

positron emission tomography (PET) scanning studies have 

demonstrated that the dorsal–ventral gradient of reduced 

dopamine storing within the putamen persists as disease 

progresses but reduces in prominence over time.49

In addition to its influence on the dorsal and ventral stria-

tum, there is evidence that excessive dopaminergic stimula-

tion can have deleterious consequences on the dorsolateral 

prefrontal cortex (DLPFC), which receives dopaminergic 

stimulation from neurons located in the ventral tegmental 

area via the mesocortical pathway.50,51 Establishing the effect 

of dopamine levels on the functioning of the DLPFC has 

occurred indirectly, by studying PD patients who have been 

stratified according to COMT gene polymorphism.23 A methi-

onine to valine polymorphism at residue 158 of the COMT 

gene exists, and each valine substitution is associated with 

a fourfold increase in the efficiency of the enzyme COMT 

and therefore a more rapid removal of dopamine.52 Moreover, 

because dopamine transporters are relatively absent in the 

DLPFC, levels of COMT are the major factor in regulating 

dopamine levels.26 In the CamPaIGN study, it was shown that 

in “early PD” (<1.6 years disease duration) the methionine 

homozygotes performed worse than the “later” PD group 

(>1.6 years since diagnosis) in a test of executive function.23 

This suggests that methionine homozygosity, and therefore 

relative inefficiency of COMT, results in overdosing of the 

DLPFC leading to impaired executive function in the early 

stages of PD. As the disease progresses, and dopaminergic 

stimulation of the mesocortical pathway is reduced, the 

inefficiency of COMT metabolism results in higher, more 

optimum, levels of DLPFC dopamine. Further advancement 

of disease then reduces available DLPFC still further leading 

to impaired executive function due to dopamine deficiency. 

Each individual with PD will have a different starting point 

on this “inverted U shape” pattern (poorer performance, 

better performance, poorer performance) and the overall 

Figure 2 The dopamine overdose hypothesis.
Notes: Progressive dorsal–ventral loss of striatal dopaminergic neurons is demonstrated on Dopamine transporter imaging using 123I-N-3-fluoropropyl-2beta-carbomethoxy-
3beta-4-iodophenyl tropane single-photon emission computed tomography (123I-FP-CIT SPECT): substantia nigral projections to the dorsal putamen are lost early in PD 
(A), then the ventral putamen (B) and caudate in later stages (C and D). Dorsal putamen domains (executive function and working memory) are improved by dopaminergic 
stimulation early in the disease course, whereas the cognitive functions associated with the relatively preserved ventral striatum (reversal learning and motor sequence 
learning) are “overdosed” by dopaminergic stimulation at this stage.
Abbreviation: PD, Parkinson’s disease.

A B C D
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effect of dopamine on executive function at a particular time 

will be related to disease progression, the striatal structure 

used in a cognitive test and genetic factors including COMT 

polymorphism.23,50 Interestingly, there is some emerging 

evidence from animal studies that adenosine A2A antago-

nism may influence facets of cognition, including working 

memory and attention, via changes to dopamine levels in the 

prefrontal cortex.53

Noradrenaline and serotonin
In PD, there is a loss of noradrenergic neurons from the 

locus coeruleus and serotonergic neurons from the dorsal 

and median raphe nuclei.54 These nuclei have extensive 

mesocortical connections, and there is growing evidence of 

noradrenergic and serotonergic influence on cognition in PD. 

The selective noradrenaline reuptake inhibitor (SNRI) atom-

oxetine caused a small but statistically significant improve-

ment in cognition compared to placebo in one study, although 

this was a secondary outcome measure.55 Subsequently, it 

has been shown that a single dose of atomoxetine can reduce 

impulsivity in PD,56 and fMRI suggests that this medication 

can restore connectivity between the pre-supplementary 

motor cortex and inferior frontal gyrus.57 A single dose of 

citalopram, a selective serotonin reuptake inhibitor (SSRI), 

has also been shown to influence impulsivity compared to 

placebo in selected PD patients with more severe motor 

 disease.58 Recent work has shown that it is possible to predict 

whether atomoxetine and citalopram will affect impulsivity, 

as measured by response inhibition, using a combination of 

clinical, structural and functional imaging.59 There is some 

evidence of downregulation of serotonin receptors associated 

with cognition in PD, although no association with executive 

function was found.60

Acetylcholine
The basal forebrain nuclei, including the nbM, are the major 

source of ACh to the cortex, whereas the PPN is the major 

source of cholinergic projections to the thalamus, as well as 

projecting to the spinal cord, the cerebellum and numerous 

brainstem nuclei.34,61 ACh is believed to be particularly impor-

tant in regulating attention via projections from the basal 

forebrain nuclei to the DLPFC in animals62 and humans.63 

The exact mechanism by which ACh modulates attention is 

unknown although it is established that ACh levels within 

the prefrontal cortex are transiently increased during tasks 

requiring attention.64

The nbM is significantly depleted in postmortem studies 

of PD patients when compared to controls,65 and the PPN 

loses about 50% of its laterally placed large neurons in PD, 

whereas it remains relatively intact in AD.66 According to the 

Braak staging model of PD,37 the two major ACh-producing 

nuclei are infiltrated with Lewy pathology at a similar time to 

the SNpc. PET and single-photon emission computed tomog-

raphy (SPECT) studies of the cholinergic system in PD are 

compatible with the pathological changes seen at postmor-

tem.67 Baseline deficits of attention in a cohort of PD patients 

were associated with a more rapid cognitive decline.35 In 

addition, medications that reduce ACh levels in the brain are 

linked to PD deficits. For example, in a PD cohort of 235, it 

was shown that those taking anti-cholinergics at baseline had 

a higher median reduction in Mini-Mental State Examination 

(MMSE) at 8 years (6.5 points) than those not who were not 

(1 point). Regression analysis adjusting for age, depression 

and baseline cognition suggested that duration and load of 

anti-cholinergic drugs were both significantly associated with 

decline on MMSE score.68 Conversely, cholinesterase inhibi-

tors (ChEIs) – drugs that indirectly increase the availability 

of ACh – are the only proven treatment to enhance cognitive 

function in PDD according to meta-analysis.69

Genetics
The contribution of genetic changes to cognitive deficits in 

PD can broadly be divided into the study of monogenic forms 

of PD, the study of candidate genes in idiopathic – or sporadic 

– PD and emerging gene-wide association studies (GWAS).

Gene-wide association studies
The first published GWAS of 443 PD subjects did not find 

any significant single-nucleotide polymorphism (SNP) 

associations with cognitive function but was likely to be 

underpowered.70 Subsequent studies of similar sizes have 

also failed to find significant associations between SNPs 

found in GWAS of AD71 or type 2 diabetes72 and PD cogni-

tive impairment. The complexity of cognitive dysfunction in 

PD means that large, well-powered GWAS are likely to be 

needed to understand the variance of candidate genes and 

hopefully this work will be forthcoming.

Monogenic PD
Analysis of monogenic forms of PD has provided informa-

tion about their influence on cognition, although longitudinal 

data on dementia frequency in such cases are suboptimal.73 

Leucine-rich repeat kinase 2 (LRRK 2) mutations are the most 

common autosomal-dominant (AuD) form of PD. Clinical 

features are similar to sporadic PD,74 and studies have gen-

erally shown that this mutation is neutral75 or protective76 
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from cognitive impairment. In contrast, several mutations in 

SCNA, as well as SCNA triplication,77 suggest that this AuD 

PD  variant is associated with a severe and rapid cognitive 

change. Pathologically, SCNA mutations are characterized 

by diffuse Lewy body deposition throughout the cortex and 

brainstem.78

Parkin mutations account for 50% of autosomal recessive 

(AR) early-onset PD.79 Lewy bodies are absent or sparse, 

and cell loss is limited to the ventral substantia nigra and 

locus coeruleus.80 This restriction of pathology is associ-

ated with a very low incidence of cognitive dysfunction; a 

review of published data on Parkin-associated PD found that 

dementia occurred in <3% of cases and was more common 

in heterozygotes (7%) than homozygotes (1%), suggesting 

a protective effect.81

Sporadic PD
Homozygous mutation in the gene coding for glucocerebro-

sidase, known as GBA, causes Gaucher’s disease, a multi-

system lysosomal storage disease. Heterozygous mutation of 

GBA is believed to be most frequent genetic risk factor for 

sporadic PD, occurring in ~3%–4% of cases.82 Those with 

GBA-associated PD have a younger onset and higher risk of 

dementia development – the point prevalence of dementia in 

GBA-associated PD is ~50%, twice that of sporadic PD.83 Pro-

gression to dementia in GBA-associated PD is significantly 

quicker than sporadic PD,84 but the reason for this is not yet 

fully understood. Pathologically, GBA-associated PD has 

similar findings to sporadic PD, although glucocerebrosidase 

is present in the majority of Lewy bodies.85 The mechanism 

by which glucocerebrosidase causes α-syn accumulation 

and aggregation is believed to involve changes to lysosomal, 

mitochondrial and endoplasmic reticulum function.86

COMT polymorphism, as discussed earlier, influences 

performance on executive function via fronto-striatal dopa-

minergic pathways but is not believed to be a risk factor for 

dementia development.23 Polymorphisms of gene coding for 

apolipoprotein E, APOE, are known to be associated with AD 

development. For example, those with the E4/E4 genotype 

are eight times more likely to develop AD than those with 

the most common E3/E3 genotype, although 50% of those 

with AD do not carry an E4 allele.87 Given the pathological 

association between NFT, Aβ and PDD,40 there has been 

interest in the influence of APOE in PD cognitive impairment 

and meta-analysis found an increased odds ratio of 1.6 for 

dementia development in those with at least one E4 allele.88 

However, the authors comment that publication bias, study 

heterogeneity and relatively small numbers (295 PD and 163 

PDD) need to be considered when interpreting these data.88 

Two longitudinal studies of APOE in newly diagnosed PD 

subjects have shown no association with dementia develop-

ment over 523 and 9.7 years,89 whereas a study of subjects with 

average disease duration of 7 years at trial onset showed that 

APOE E4 carriers had more rapid cognitive decline.90 It has 

been suggested the influence of APOE on dementia progres-

sion in PD may be greater with advancing age.91

Tau proteins are involved in the stabilization of microtu-

bules, which maintain cell structure and perform other key 

roles. Microtubule-associated protein tau (MAPT), located 

on chromosome 17, codes for tau proteins via alternative 

splicing. An inversion in MAPT, H2, is present in ~25% of 

people with European ancestry.91 The H1/H1 genotype is a 

risk factor for PD development (odds ratio 1.4).92 The Cam-

PaIGN study suggested that H1/H1 genotype was strongly 

associated with dementia development with an odds ratio of 

12.1 at 5 years,23 but other studies have not found an associa-

tion.90,92 The influence of MAPT H1 on cognition might be 

greatest at disease onset91 – supported by fMRI imaging27 – 

because the association between PDD and H1/H1 genotype 

appears to reduce over time.1

Biomarkers
Over the last decade, there has been an enormous drive to find 

biomarkers that can accurately identify, at the early stages of 

PD, those individuals who are at highest risk of developing 

PDD. Biomarker development has largely focused on imaging 

modalities and cerebrospinal fluid (CSF) analysis, although 

there are a few studies using electrophysiological techniques 

and combinations of biomarkers have also been studied. 

Recent review papers discuss this topic in more depth.93,94

Imaging
Advanced magnetic resonance imaging (MRI) techniques 

have enabled researchers to demonstrate that both structural 

and functional connectivity of certain brain areas are altered 

in PD cognitive impairment. Structural MRI studies of PD-

MCI found a loss of volume within the hippocampus and 

the frontal, parietal and posterior cortices.95,96 Longitudinal 

studies of patients with PD-MCI have shown that these 

areas progressively lose volume and this correlates with 

cognitive deficit.95,97 By the time PDD is diagnosed, there 

is significant thinning of the parietal, occipital, frontal and 

temporal regions, plus further atrophy of the hippocampus, 

parahippocampus, insular and cingulate.98,99

Diffusion tensor imaging (DTI) has revealed evidence 

of reduced structural connectivity in similar regions – in 
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 particular, the hippocampus and frontal and parietal white 

matter tracts – and this is associated with a decline in 

executive functions and verbal and visuospatial memory 

tests.100,101 fMRI studies have demonstrated progressive 

impaired connectivity of various brain regions in PD, 

especially posteriorly, and this correlates with reduction in 

cognitive performance.102 The frontal and corticostriatal tract 

networks are particularly disrupted in PDD, and the level of 

cognitive decline is associated with the degree of impaired 

connectivity.103

PET imaging has provided useful in vivo information 

on the activity of certain neurotransmitters and the presence 

of abnormal proteins that are important in the pathogenesis 

of PD cognitive impairment. For example, cholinergic PET 

molecular imaging has shown that loss of cholinergic activity 

occurs throughout the cortex early in the course of PD but is 

much more severe, especially in the forebrain, in PDD.67 It 

is unclear at this stage if cholinergic PET imaging is sensi-

tive to PD-MCI, but reduced levels of acetylcholinesterase 

were correlated with worse performance on tests of memory, 

executive functioning and attention in PD subjects without a 

diagnosis of cognitive impairment.67,104

In contrast to AD, where PET imaging of Aβ plaques is 

nearly always abnormal, there are abnormalities in less than 

20% of PDD patients on PET.105 PD-MCI patients with Aβ 

on their PET scan are at increased risk of further cognitive 

decline.106 It has also been shown that the distribution of Aβ 

deposition is important, with cognitive impairment worse in 

PD cases with Aβ deposition in striatum and cortex, com-

pared to the cortex alone.107 Likewise, a recent PET imaging 

study of tau deposition in PDD showed that cortical deposi-

tion, especially in the inferior temporal lobes, may potentially 

be a biomarker.108

It is perhaps not surprising that dopaminergic imaging has 

only revealed subtle differences between PD and PDD when 

one considers the long preclinical period of neurodegen-

eration that has occurred before a motor diagnosis is made. 

Nevertheless, there is some evidence that reduced dopamine 

transporter levels in the caudate are associated with impaired 

executive function109 and that more advanced nigrostriatal 

degeneration occurs in those who develop PDD.110

Cerebrospinal fluid
Several studies have assessed CSF proteins in PD, and it has 

been consistently shown that there is an association between 

low CSF levels of Aβ42 and cognitive impairment in PD.94 

Longitudinal studies have shown that newly diagnosed PD 

patients with lower levels of CSF Aβ42 show a more rapid 

cognitive decline.111 The findings for tau are less clear – some 

studies found an association between cognitive decline and 

increased levels of tau in CSF but others have not. The rel-

evance of α-syn CSF levels is also inconclusive; associations 

with cognitive impairment have been found with both high112 

and low113 levels.

Treatment
Non-pharmacological
A systematic review of eight studies comprising a total of 158 

PD patients suggested that physical exercise has beneficial 

effects on global cognition (measured with the MoCA, for 

example)114 and in particular there is evidence of improve-

ment in executive function.115,116 Speculated mechanisms 

include enhanced perfusion and angiogenesis.117 However, 

published studies are heterogeneous in relation to intensity, 

mode and duration of exercise, and more research is needed.

Cognitive training (CTr) is a structured teaching or 

practice designed to target a specific cognitive domain. 

Research suggests that it is efficacious in healthy elderly 

adults118 and those with MCI.119 CTr in PD was reviewed in 

a meta-analysis comprising seven studies and 272 patients;120 

overall, a small but statistically significant benefit was found 

compared to control conditions. Subanalysis suggested that 

CTr benefited processing speed and executive function but no 

other facets of cognition, including memory and visuospa-

tial function. No significant difference in MMSE or MoCA 

scores was found.

Pharmacological
ChEIs are licensed for use in the treatment of PDD primarily 

based on the results of two large, randomized controlled trials 

(RCTs). The EDON study compared donepezil 5 mg daily, 

10 mg daily and placebo over 24 weeks in 550 participants,121 

and the EXPRESS study compared rivastigmine at doses of 

between 3 and 12 mg per day (highest well-tolerated dose 

maintained) with placebo in a 2:1 ratio over 24 weeks in 541 

participants.122 There is better evidence overall to support the 

use of rivastigmine than donepezil although the benefits of 

both are modest – for example, the EXPRESS study showed 

a single-point difference in MMSE score (secondary outcome 

measure) at 24 weeks between groups.

The N-methyl-d-aspartate (NMDA) receptor antagonist, 

memantine, a drug that blocks activity of the excitatory 

neurotransmitter glutamate, has been studied in PDD. Three 

RCTs have been performed on a total of 299 subjects, each 

comparing memantine 20 mg per day with placebo. Meta-

analysis concluded that memantine has a mild beneficial 
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effect on global impression of change assessments but not 

on cognitive function as measured using MMSE.69

No successful treatments for PD-MCI have yet been 

identified in RCTs. A 24-week RCT crossover study of 

rivastigmine in PD-MCI was performed in 28 patients, of 

whom 26 completed the trial and 23 tolerated medication 

for both phases.123 Only a trend toward significance was 

demonstrated in the primary outcome – global impression 

of change (p 0.096) – and secondary outcome measures 

of cognition, including MoCA, were not significantly dif-

ferent. The small number of participants in the study may 

have influenced results, and it has been suggested that the 

heterogeneous nature of PD-MCI may also have contributed: 

perhaps only those with PD-MCI characterized by posterior 

cortical dysfunction, mediated primarily by ACh deficiency, 

will benefit from ChEI,124 as extrapolated from the dual 

syndrome hypothesis.

The monoamine oxidase B inhibitor (MAO-B), rasagi-

line, was studied in 170 PD patients in a 24-week, placebo- 

controlled RCT, and no significant effect on global impression 

of change or MoCA was detected.125 As discussed earlier, 

there is accumulating evidence that SNRIs55,56 and SSRIs58 

might positively influence cognition in PD but large-scale 

RCTs are awaited. A number of other active clinical trials are 

underway, including the use of dual 5-HT6/5-HT2 antagonists, 

and these were summarized in a recent review.126 As with other 

neurodegenerative conditions such as AD, disease-modifying 

agents are a huge unmet need in PD. Many potential avenues 

are being explored in animal models, including the use of 

immunotherapies to target α-syn,127 tau and amyloid.128

Conclusion
Cognitive deficits in PD are common, even at the point of 

diagnosis, and have a significant negative impact on patients 

and their carers. The influence of neuronal toxicity by α-syn 

and AD-related pathology, neurotransmitter changes, genetic 

risks, age and other factors on cognition is different in each 

PD patient. Despite major research advances in the last 2 

decades, the current pharmacological treatment of cogni-

tive deficits in PD is unsatisfactory; benefits are modest and 

only drugs originally designed for use in AD are licensed. A 

greater understanding of PD cognitive impairment is likely 

to come via the identification of biomarkers to identify 

accurately those most at risk. In turn, this will hopefully 

lead to a move away from a reactive, “one-size-fits-all” 

treatment approach toward proactive, individualized and 

targeted therapy.
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