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Abstract: The prevalence of obstructive sleep apnea (OSA) continues to rise. So too do the 

health, safety, and economic consequences. On an individual level, the causes and consequences 

of OSA can vary substantially between patients. In recent years, four key contributors to OSA 

pathogenesis or “phenotypes” have been characterized. These include a narrow, crowded, or 

collapsible upper airway “anatomical compromise” and “non-anatomical” contributors such 

as ineffective pharyngeal dilator muscle function during sleep, a low threshold for arousal to 

airway narrowing during sleep, and unstable control of breathing (high loop gain). Each of these 

phenotypes is a target for therapy. This review summarizes the latest knowledge on the different 

contributors to OSA with a focus on measurement techniques including emerging clinical tools 

designed to facilitate translation of new cause-driven targeted approaches to treat OSA. The 

potential for some of the specific pathophysiological causes of OSA to drive some of the key 

symptoms and consequences of OSA is also highlighted.

Keywords: pathophysiology, sleep-disordered breathing, arousal, upper airway physiology, 

control of breathing, precision medicine

Introduction
Obstructive sleep apnea (OSA) is an increasingly common, chronic, sleep-related 

breathing disorder.1–3 OSA is characterized by periodic narrowing and obstruction 

of the pharyngeal airway during sleep. Untreated OSA is associated with long-term 

health consequences including cardiovascular disease,4,5 metabolic disorders,6 cogni-

tive impairment,7 and depression.8 Common symptoms include excessive daytime 

sleepiness, fatigue, non-refreshing sleep, nocturia, morning headache, irritability, and 

memory loss.9,10 Untreated OSA is also associated with lost productivity and workplace 

and motor vehicle accidents resulting in injury and fatality.11–13 The costs of untreated 

OSA and sleep loss are substantial.14,15 Recommended therapy can relieve symptoms16,17 

and reduce some of the associated sequelae.18,19 However, many people with OSA 

struggle with the first-line therapy, continuous positive airway pressure (CPAP), for 

which adherence rates remain unacceptably low.20,21 Non-CPAP therapies (e.g., oral 

appliance therapy and upper airway surgery) are beneficial in many cases but have vari-

able and unpredictable efficacy.22–25 Thus, new approaches to treat OSA are required.

Indeed, most people with OSA are undiagnosed and untreated.26–28 In some cases, 

this may be attributed to, at least in part, a lack of awareness of the disorder.29 Other 

potential barriers to seek treatment include stigma related to some of the features of 

the disease such as snoring, access to polysomnography (PSG) and diagnostic services 
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(particularly in remote communities and in the develop-

ing world),27,29 perceived lack of enthusiasm with existing 

treatment options, and, in some cases, concern that driving 

licenses will be revoked. In addition, primary care physi-

cians may not be prompted to explore an early diagnosis of 

OSA. This is especially true if patients do not present with 

subjective sleepiness and the classic characteristics of a high 

body mass index. Symptoms such as fatigue or sleepiness 

may also be attributed to comorbid disease that is common 

in people with OSA.30 However, we know that absence of 

subjective sleepiness does not rule out substantial sleep-

disordered breathing and up to 50% of people with OSA 

are not obese.2,31 Indeed, 25% of individuals with moderate 

OSA have neither subjective nor objective sleepiness.32,33 

Nonetheless, given the burden of disease, the shortcomings 

of existing diagnostic and treatment approaches, and the 

substantial health, safety, and economic consequences of 

untreated OSA, there is a pressing need to continue to raise 

awareness and develop new strategies to manage and treat 

this common chronic health condition.

There are multiple contributors to OSA.34,35 Each con-

tributor represents a therapeutic target.34,35 While these new 

research findings offer hope for new therapies, identification 

of these new targets has not yet translated to new models 

of care for OSA.36 However, there has been recent progress 

toward achieving this goal. For example, strategies to extract 

information from existing clinical PSG studies to help inform 

treatment decisions according to a cause-driven targeted 

therapy model for OSA have been developed.37–41 In accor-

dance with this objective, simple wakefulness upper airway 

and respiratory physiology tests may also be useful.42–45 These 

concepts are the focus of the current review.

existing clinical measures of OSA
The gold standard method used to diagnose sleep-disordered 

breathing is a comprehensive in-laboratory PSG. The main 

outcome used to define OSA severity is the apnea-hypopnea 

index (AHI). This index represents the number of breathing 

stoppages (apneas) and periods of reduced airflow (hypop-

neas) lasting greater than 10 seconds that result in a brief 

awakening (arousal) or reduced oxygenation that occur per 

hour of sleep. While severity cutoffs vary, mild sleep apnea is 

typically defined as 5–15, moderate 15–30, and severe more 

than 30 respiratory events/h sleep.

While in-laboratory PSG is comprehensive, it is also 

labor intensive, time-consuming, and costly (see the study 

by Edwards et al46 for a review). To facilitate the diagnosis 

process, home-monitoring technologies have emerged. These 

range from a replication of the same measurements used in 

the laboratory (a level 2 unattended study) to limited channel 

devices that focus on a few core signals (e.g., oxygen and an 

airflow sensor). These tend to be most useful for the detec-

tion of severe disease, provided patients do not have severe 

comorbidity.47–49

Despite the quantity of neurophysiological signals 

obtained during an overnight PSG, most of the data col-

lected is ignored and treatment decisions rely heavily on 

the AHI. While the AHI remains a widely used measure of 

OSA severity clinically and for research purposes, it has 

several limitations. For example, a patient with very long 

respiratory events may experience substantial hypoxemia 

but have a relatively low AHI. Conversely, another patient 

may have more frequent events and therefore a much higher 

AHI, but minimal exposure to hypoxemia.50 Thus, the effects 

of hypoxia from OSA and its adverse impact on the cardio-

vascular system in the patient with a low AHI may be more 

pronounced.51,52 In addition, non-apneic respiratory events 

that do not meet the scoring criteria for a hypopnea are 

associated with heart rate changes and increased expiratory 

pharyngeal resistance.53 Breathing disruptions that do not 

cause major hypoxemia are also associated with objective 

daytime sleepiness.54 Furthermore, the total AHI correlates 

poorly with the key causes and consequences of the dis-

ease.35,55 Conversely, recent studies indicate that REM sleep 

apnea may be more important in mediating insulin resistance 

and the cardiovascular consequences of OSA.56–59 Thus, these 

examples highlight the heterogeneity in the various clinical 

manifestations of OSA and its consequences and some of the 

limitations with currently used diagnostic methods.

OSA pathophysiology
Similar to the clinical heterogeneity, OSA pathogenesis is also 

multifactorial. There are “anatomical” and “non- anatomical” 

causes34,35,60 (Figure 1). In recent years, the potential role that 

factors beyond pharyngeal anatomy and craniofacial structure 

play in OSA pathophysiology has been recognized. Indeed, 

OSA can develop due to multiple contributors, the combi-

nation of which likely varies substantially between patients. 

These concepts have been the focus of several recent review 

articles (e.g., studies by Eckert,34 Carberry et al,36 Edwards 

et al,61 and Eckert and Wellman62) and are therefore only 

briefly summarized here.

Non-anatomical contributors include impaired pharyn-

geal dilator muscle function, premature awakening to mild 

airway narrowing (low respiratory arousal threshold), and 

unstable control of breathing (high loop gain3,34,35) (Figure 1). 
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As highlighted in later sections, when combined with a pha-

ryngeal airway that is susceptible to closure during sleep, 

impairment in one or more of these non-anatomical contribu-

tors can perpetuate OSA severity. Given that airway obstruc-

tion in OSA only occurs during sleep, the combination of an 

anatomical predisposition combined with state-dependent 

changes in non-anatomical contributors is crucial in driving 

this common disorder.34,35,63

OSA is largely a sleep-dependent 
anatomical problem
As highlighted, OSA is a multifactorial disorder. However, 

some level of upper airway anatomical impairment is essen-

tial.34,35 Thus, it is logical that most existing therapies for OSA 

aim to correct the anatomical problem. Imaging studies64–66 

have identified key pharyngeal anatomical abnormalities in 

people with OSA. For example, a narrow pharyngeal air-

way, increased airway length, and certain pharyngeal lumen 

shapes are all associated with the propensity for pharyngeal 

collapse during sleep.67–69 The upper airway can collapse at 

one or multiple sites.70 The pharyngeal structures that can 

contribute to airway crowding and collapse include the dilator 

muscles such as genioglossus, soft palate, lateral pharyngeal 

walls, and the epiglottis. Obesity is an important risk fac-

tor.71 Neck circumference is routinely measured in the clinic 

and has been used to help predict OSA risk.72,73 Craniofacial 

morphology,74,75 position of the hyoid bone,76 airway surface 

tension,77 tongue scalloping,78 and tongue fat79 are some of the 

factors associated with OSA risk and its severity. While these 

approaches have provided insight into OSA pathogenesis, 

limitations for clinical use include 1) high cost of imaging 

procedures and 2) awake static imaging provides limited 

Figure 1 Schematic of the anatomical and non-anatomical causes of OSA.
Notes: Some degree of anatomical vulnerability is present in OSA. However, the extent of impairment varies widely between patients. The non-anatomical contributors, 
which are present in approximately 70% of OSA patients, play a key role in mediating the absence or presence of OSA. in the schematic, the gray tracings indicate the desired 
response, whereas the black tracings represent impairment in the non-anatomical trait. Refer to the text for further detail. Reprinted from Chest, Carberry JC, Amatoury J, 
eckert DJ, Personalized management approach for OSA, epub 2017 June 16, Copyright (2017), with permission from elsevier.36

Abbreviations: EEG, electroencephalography; EMG, genioglossus electromyography; MTA, 100 ms moving time average of the rectified raw EMG signal; OSA, obstructive 
sleep apnea.
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insight into the properties of a dynamic structure that closes 

involuntarily during sleep.

Upper airway collapsibility
Pharyngeal critical closing pressure (Pcrit) is a well- 

established technique used to quantify upper airway col-

lapsibility during sleep.80–82 Pcrit has been used to describe 

differences in upper airway collapsibility across the sleep-

disordered breathing spectrum (from snoring to OSA80). 

It is considered as the gold standard approach to quantify 

“functional anatomy” during sleep.34 The Pcrit technique 

allows the pharyngeal airway to be examined under condi-

tions of reduced,82 although not absent,83 neuromuscular 

input compared to wakefulness. Once a therapeutic CPAP 

level that prevents airway obstruction or narrowing is estab-

lished, brief reductions (5 breaths) in the holding pressure 

are applied during stable sleep.70 This procedure is repeated 

at different levels of mask pressure until airflow limitation 

and closure occurs. The pressure-flow relationship between 

peak inspiratory flow for flow-limited breaths and the cor-

responding mask pressure is compared. These values are then 

extrapolated to determine the “Pcrit”, the mask pressure at 

zero airflow. Within an individual, Pcrit measurements are 

stable over time (days to months).84 However, factors such 

as weight gain over a longer period would be expected to 

increase airway collapsibility (Pcrit).85,86

On average, OSA patients tend to have Pcrit values near 

atmospheric pressure. This indicates that their airway closes 

at or near 0 cmH
2
O during sleep.35,76,86 However, there is sub-

stantial variability in Pcrit in OSA and therefore anatomical 

vulnerability to pharyngeal collapse. Indeed, Pcrit can range 

from approximately −5 to greater than +5 cmH
2
O in OSA. 

A Pcrit at or near +5 cmH
2
O indicates a highly collapsible 

airway, whereas a sub-atmospheric Pcrit indicates a relatively 

stable upper airway as suction pressure is required to close 

the upper airway during sleep. OSA is very rare in people 

with Pcrit values less than −5 cmH
2
O.35,86 However, within the 

sub-atmospheric range (0 to −5 cmH
2
O), there is consider-

able overlap in Pcrit between people with and without OSA. 

Indeed, approximately 20% of OSA patients have similar 

pharyngeal collapsibility during sleep compared to people 

without OSA.35 In this group, the interaction between mild 

anatomical susceptibility and impairment in one or more of 

the non-anatomical causes of OSA is crucial in driving OSA 

pathogenesis.34,35 These patients are more likely to benefit 

from targeted non-CPAP therapies compared to those with 

very high Pcrits.34,36 Thus, given the key role that upper airway 

anatomy/collapsibility plays in driving OSA pathogenesis, a 

simple measure of airway collapsibility would be invaluable to 

inform targeted treatment decisions. The problem, however, is 

that the Pcrit technique is not clinically viable as the protocol 

is technically challenging, somewhat invasive (requires CPAP 

and ideally a pharyngeal pressure catheter), time-consuming, 

and requires skilled personnel to collect and analyze the data.

New simplified methods to estimate 
upper airway collapsibility
There has been recent progress toward development of simple 

and reliable methods to estimate the extent of anatomical/

airway collapsibility contribution to OSA. The first tech-

nique involves an existing tool traditionally used to assess 

expiratory flow limitation in patients with chronic obstruc-

tive pulmonary disease.42 Participants are fitted with a nasal 

breathing mask and brief (2 second) periods of negative 

pressure (−5 cmH
2
O) are delivered during early expiration.42 

This elicits a transient increase in expiratory airflow the 

extent to which is mediated, at least in part, by upper airway 

collapsibility/anatomy. The average response is quantified as 

the ratio between the exhaled volumes (during the first 0.2 

seconds) for at least 4 breaths prior to the expiratory pres-

sure application versus the expiratory pressure breaths for 

10 replicate trials. An increase in this ratio suggests a col-

lapsible airway. A modest relationship with Pcrit and other 

important anatomical components that contribute to OSA 

was detected.42 Thus, this technique alone is unlikely to be 

helpful in informing treatment decisions, but if combined 

with other simple measures it may play a role.

Preliminary data from our group indicate that a 10–15 

minute protocol in which brief pulses of suction are applied 

during early inspiration through a nasal mask during wake-

fulness correlates well with Pcrit.43 The prescribed CPAP 

level from a routine CPAP titration study is also associated 

with passive Pcrit.37 Thus, the therapeutic CPAP level may 

be useful in distinguishing patients with mildly versus highly 

collapsible upper airways.37 Genta et al39 have also recently 

demonstrated that analysis of the shape of the inspiratory flow 

curve during airflow limitation during sleep and the degree of 

negative effort dependence (extent to which the airway nar-

rows during inspiration) can inform the site of upper airway 

collapse. This was determined using endoscopy to locate 

the site of collapse while simultaneously monitoring nasal 

airflow and pharyngeal pressures. Averaging multiple flow-

limited breaths revealed characteristic flow patterns that were 

associated with different sites of airway narrowing/collapse.39 

In addition, simply quantifying peak flow during routine 

polysomnography has recently been shown to be associated 
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with active Pcrit (a measure that encompasses upper airway 

collapsibility and neuromuscular  compensation40). Thus, 

there are several new promising approaches to estimate the 

extent of anatomical impairment in people with OSA. Given 

their relative simplicity, one or more of these approaches 

may be preferable compared to more invasive procedures 

such as drug-induced endoscopy, which is becoming increas-

ingly used to help inform patient selection for upper airway 

surgery.87

The upper airway muscles
The human pharynx is unique in that it lacks rigid bony sup-

port. Its predominant soft tissue structure enables it to change 

cross-sectional area with varying intraluminal pressures. How-

ever, depending on the dynamic balance of intraluminal pres-

sure and neural drive to the upper airway dilator muscles, the 

human pharynx is vulnerable to collapse during sleep.88 There 

are over 20 muscles in the upper airway. These are involved 

in respiratory and non-respiratory tasks (speech, mastication, 

swallowing, and breathing). A subset of these muscles plays 

a predominant role in airway stability during breathing.89 In 

healthy individuals and people with OSA during wakefulness, 

activation of the upper airway dilator muscles is effective in 

opposing the collapsing pressures generated during inspiration. 

However, during sleep, state-dependent reductions in muscle 

activity when combined with anatomical susceptibility (nar-

row/crowded/collapsible airway) can induce airway collapse.88 

Thus, understanding the neural control of the airway muscles 

and their mechanical consequences is important for develop-

ment of new treatments and preventative measures to improve 

upper airway function in OSA.

The upper airway muscles have complex patterns of neu-

ral activation that differ between muscles. For example, the 

genioglossus, the largest pharyngeal dilator muscle located 

at the base of the tongue, receives up to six different pat-

terns of drive.90 It receives central input from the brainstem 

(respiratory pattern generator neurons) and reflex input 

from pharyngeal mechanoreceptors and chemoreceptors. 

The summation of drive to genioglossus typically results 

in a phasic pattern of activation (i.e., more activity during 

inspiration and less during expiration, Figures 1–4). Genio-

glossus activity is reduced at sleep onset91 and varies between 

sleep stages.83 However the tensor palatini muscle (a palatal 

muscle) displays predominantly tonic (constant throughout 

the breathing cycle) patterns of activation.92 It is less sensi-

tive to small changes in pharyngeal pressure compared to 

genioglossus but can be activated in a similar manner with 

larger transient pressure swings93 and is sensitive to sleep state 

but has minimal change across sleep stages in the absence 

of upper airway resistance.83 The combinations of a loss in 

central drive and reflex input to the upper airway muscles 

during sleep are thought to be important contributors to OSA 

pathogenesis.94,95 Similarly, the ability to increase reflex drive 

to airway narrowing during sleep is important in OSA patho-

genesis.35,96,97 Indeed, approximately 30% of OSA patients 

have poor genioglossus muscle responsiveness to airway 

narrowing during sleep35 (Figure 2). Many patients have a 

high recruitment threshold to respiratory stimuli during sleep 

that is not reached without awakening from sleep (arousal).96 

Conversely, others are able to restore airflow during sleep via 

pharyngeal muscle recruitment without arousal (Figure 3). 

In addition, enhanced muscle responsiveness can protect 

certain obese individuals from developing OSA despite 

their anatomical compromise.98 Thus, the combination of 

non-anatomical and anatomical compromise is crucial in 

preventing or promoting OSA.

In addition, recent findings suggest a mismatch between 

central neural drive to the genioglossus muscle and the 

mechanical response of the muscles in OSA patients.99 Indeed, 

in healthy individuals, dynamic magnetic resonance imaging 

shows anterior movement of this fan-shaped muscle during 

inspiration and increased cross-sectional area (CSA) of the 

pharynx.100 However, tongue movement patterns during quiet 

breathing vary in people with OSA.101 Some patients have 

counterproductive motion characterized by anterior motion 

at the base of the tongue followed by airway narrowing at the 

level of the soft palate, while others have little to no move-

ment during inspiration.101 These patterns of movement are 

dependent, at least in part, on OSA severity whereby minimal 

movement is most common in severe OSA.101 Compensatory 

mechanisms in healthy individuals who have a narrow airway 

CSA compared to controls display larger anterior movement 

of the tongue during inspiration.102 Accordingly, breathing 

stability is associated with greater genioglossus activity.103 

However, increased genioglossus activity is sometimes insuf-

ficient to re-open the airway (Figure 4). Thus, the contribution 

of the other upper airway muscles may also play a contributing 

role.104 How the various components of upper airway muscle 

function change over time is unknown. However, increased 

weight gain over time and fat accumulation in the tongue are 

predicted to worsen upper airway motion.79

Treatments to target the upper airway 
muscles
One approach to activate the upper airway muscles during 

sleep is to deliver current to the muscles via direct stimulation 
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or via stimulation of the hypoglossal nerve. Clinically, this 

is achieved via surgical implantation of a stimulation device 

connected to a cuff placed around the nerve.105 Mechanistic 

studies have also used fine-wire electrodes or non-invasive 

methods such as transcutaneous electrodes (see recent 

review to compare different methods106). Improvements in 

Figure 2 example of minimal genioglossus muscle responsiveness.
Notes: in this example of a naturally occurring apnea, despite clear phasic activation of the genioglossus muscle (as shown in the raw and MTA genioglossus eMG channels), 
there is minimal activation of genioglossus during the respiratory event. This is despite substantial increasing negative epiglottic pressure (Pepi) swings from the first to last 
effort (last effort nadir epiglottic pressure = arousal threshold). it is only when cortical arousal occurs (as shown in the eeG channel) that major genioglossus activation occurs 
(signal clipped in this example) and airflow is restored.
Abbreviations: EEG, electroencephalography; EMG, genioglossus electromyography; MTA, 100 ms moving time average of the rectified raw EMG signal.
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Figure 3 Example of robust genioglossus muscle responsiveness and restoration of airflow without cortical arousal.
Notes: in contrast to the example in Figure 2, in this example of a naturally occurring hypopnea, there is robust activation of the genioglossus muscle (as shown in the raw 
and MTA genioglossus EMG channels), to increasing negative epiglottic pressure (Pepi) swings from the first to last effort which ultimately results in recovery of airflow 
without cortical arousal.
Abbreviations: EEG, electroencephalogram; EMG, genioglossus electromyography; MTA, 100 ms moving time average of the rectified raw EMG signal.
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 inspiratory airflow, AHI, apnea duration, oxygen saturation, 

arousal index, sleep architecture, and excessive daytime 

sleepiness have all been reported to varying degrees using 

these methods.107–111 Clinical trial follow-up studies show 

long-term sustained reductions in AHI (~50–66%).111–114 

However, it is difficult to predict responders. The STAR trial 

used endoscopy for pre-screening to eliminate patients with 

concentric airway collapse, which may have increased the 

response rate to therapy.105 However, one-third of patients 

were still classified as non-responders.105 Thus, other factors 

such as airway shape and Pcrit are also likely to be important 

considerations to optimize treatment response rates.105,110

To date, attempts to develop pharmacotherapy to increase 

upper airway muscle activity to treat OSA have not been suc-

cessful. Targets have included serotonergic, noradrenergic 

and GABAergic systems, as well as potassium channels (for 

reviews see).115,116 However, recent studies with the tricyclic 

antidepressant desipramine which has strong noradrenergic, 

mild antimuscarinic, and mild serotonergic effects, have 

shown preservation of sleep-related reductions in genioglossus 

activity.117 Desipramine also yields  improvements in airway 

collapsibility and OSA severity in patients with poor muscle 

responsiveness.118 Thus, this combined approach may be 

superior to single system targets.115,119–121 Interestingly, the hyp-

notic zolpidem (which acts on the GABAergic system) shows 

potential to increase pharyngeal muscle responsiveness during 

airway narrowing without impairing the other key causes of 

OSA.122 Designer Receptors Exclusively Activated by Designer 

Drugs that allow for selective targeting of a group of neurons 

via introduction of an engineered macromolecule (designer 

receptor) with viral vectors that can be activated with a specific 

drug (designer drug) have also recently been tested in animal 

models with the objective to increase pharyngeal muscle 

activity during sleep.123,124 These exciting findings demonstrate 

lasting increases in genioglossus activity and offer promise 

that these new concepts will ultimately translate to humans.

Other strategies to improve pharyngeal muscle func-

tion include training modalities. Indeed, regular didgeridoo 

playing and oropharyngeal exercises can reduce snoring 

and OSA severity (~50% reduction in AHI) and daytime 

 sleepiness.125–128 However, the mechanisms are largely 

unknown. No studies have investigated upper airway muscle 

tone or muscle properties pre-training versus post-training. 

Longitudinal follow-up studies are also lacking. Under-

standing the mechanisms may help to inform which OSA 

phenotypes are most likely to respond to this form of therapy.

Figure 4 Example of robust genioglossus muscle responsiveness without restoration of airflow.
Notes: in contrast to the example in Figure 3, in this example of a naturally occurring apnea, there is robust activation of the genioglossus muscle (as shown in the raw and 
MTA genioglossus EMG channels) to increasing negative epiglottic pressure (Pepi) swings from the first to last effort (last effort nadir epiglottic pressure = arousal threshold). 
However, despite substantial genioglossus muscle activation during the apnea, it is insufficient to restore airflow, which only occurs with cortical arousal (as shown in the 
EEG channel). The genioglossus signal is clipped in this example when airflow is restored with arousal.
Abbreviations: EEG, electroencephalogram; EMG, genioglossus electromyography; MTA, 100 ms moving time average of the rectified raw EMG signal.
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Prediction tools and simplified methods 
to estimate pharyngeal muscle function
Identification of patients who have poor pharyngeal muscle 

function may facilitate development of targeted therapies 

directed toward this trait118 and improve treatment success 

rates with existing therapies (e.g., hypoglossal nerve stimu-

lation). However, gold standard methodology to quantify 

pharyngeal muscle activity is complex, invasive (fine-wire 

electrodes inserted directly into the muscle), requires spe-

cialized personnel and equipment, and is time-consuming.34 

There are no simplified tools to estimate pharyngeal muscle 

function to identify people with this clinical phenotype 

accurately. However, while multiple variables impact inspi-

ratory flow during sleep, mean peak inspiratory airflow 

during airflow limitation appears to be a good surrogate for 

active Pcrit, a measure that incorporates both anatomical 

and neuromuscular components.40 Thus, if this approach 

proves useful to predict treatment outcomes, automated sig-

nal processing algorithms based on routine PSG data could 

be implemented.40 Nonetheless, additional practical tools to 

determine pharyngeal muscle function are urgently required 

in order to advance personalized treatment approaches that 

target the upper airway muscles.

Respiratory arousal threshold
The role of the respiratory arousal threshold in OSA patho-

genesis has been described in detail.129 Accordingly, these 

concepts are outlined only briefly here. Historically, given 

that most respiratory events are associated with a cortical 

arousal, arousals were considered crucial to reopen the upper 

airway following a respiratory event in OSA.130,131 However, 

approximately 20% of respiratory events cease without corti-

cal arousal and an additional 20% occur after the upper airway 

has already reopened and airflow has been restored.129,132–134 

Indeed, 75% of adults with OSA have respiratory events that 

terminate without an arousal or the arousal occurs following 

airway reopening at some stage of the night.132 Thus, airway 

reopening can occur without arousal. Rather, continual 

unnecessary arousals can worsen OSA and contribute to OSA 

pathophysiolgy.129,132 Specifically, repetitive arousals can per-

petuate blood-gas disturbances and cause sleep fragmentation 

to promote cyclical breathing and prevent establishment and 

maintenance of more stable, deeper stages of sleep.135–138

Numerous respiratory stimuli can contribute to arousal 

from sleep during a respiratory event.129,139–142 Increased 

respiratory effort due to a narrowed pharyngeal airway 

increases negative intrathoracic pressure. Although the 

amount of negative intrathoracic pressure generated can 

vary greatly between individuals and in different stages of 

sleep,35,132,143–147 the magnitude of negative pressure required 

to cause an arousal from sleep is relatively constant within 

an individual.147–149 This is the case regardless of whether the 

respiratory disturbance is caused by hypoxia, hypercapnia, 

or respiratory loading.147

Accordingly, the gold standard method to quantify the 

threshold for arousal to respiratory stimuli requires an epi-

glottic or esophageal pressure catheter combined with PSG 

recording equipment. Specifically, the respiratory arousal 

threshold is the nadir pressure immediately prior to corti-

cal arousal (Figures 1, 2, and 4). The respiratory arousal 

threshold is quantified by averaging multiple pressure val-

ues throughout the night to an experimental intervention 

designed to cause airway narrowing or activate respiratory 

afferents35,147 or during naturally occurring respiratory 

events.144,145

In people with OSA who require large intrathoracic 

pressure swings to cause an arousal (i.e., patients with high 

respiratory arousal thresholds ≤25cmH
2
O), respiratory 

events are often prolonged, particularly if these patients also 

have poor upper airway muscle responsiveness.129 Thus, in 

the absence of neuromuscular compensation, arousal from 

sleep and reintroduction of wakefulness drive can act as a 

last line of defense to facilitate rapid reopening of the air-

way to re-establish airflow and normalize blood-gas levels 

in these individuals.129,130,150 The consequences of OSA such 

as sleep deprivation increase, while CPAP therapy decreases 

the respiratory arousal threshold.151,152 Nonetheless, approxi-

mately 30–50% of OSA patients wake to relatively small 

intrathoracic/epiglottic pressure swings (i.e., patients with 

low respiratory arousal thresholds ≥−15 cmH
2
O).35,38,129,145 In 

these patients, given that the stimuli for arousal are the same 

as the stimuli required to recruit the pharyngeal dilator mus-

cles (i.e., blood gas changes and negative pressure swings), 

premature arousal limits the opportunity for neuromuscular 

compensation mechanisms to overcome airway narrowing 

and stabilize breathing.132 Frequent arousals can also cause 

sleep fragmentation and sleep instability, prevent deeper 

stages of sleep, and perpetuate unstable breathing.132,142 Thus, 

strategies to reduce arousals in these patients may allow for 

more stable breathing during sleep.

Treatments to target the respiratory 
arousal threshold
Given the abovementioned rationale, the potential thera-

peutic role of hypnotics to treat OSA in patients with a low 

respiratory arousal threshold phenotype has been an area 
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of recent research focus.150 This strategy requires a care-

ful targeted approach to optimize benefit in those with the 

desired phenotype and avoid harm in those with high arousal 

thresholds. In particular, the selected agent to increase the 

threshold for arousal to respiratory stimuli must do so with-

out impairment in pharyngeal muscle activity. Apart from 

an early wakefulness benzodiazepine study,22 subsequent 

studies during sleep have not shown systematic reductions 

in pharyngeal muscle activity or responsiveness to negative 

pharyngeal pressure with common doses of zopiclone,96,144 

trazodone,153 temazepam,122 or zolpidem.122 While a recent 

study found more variable effects on genioglossus muscle 

responsiveness with temazepam, paradoxically, on average, 

zolpidem increased muscle responsiveness 3-fold in people 

with and without OSA.122

The other concern with hypnotic use in OSA is prolonga-

tion of respiratory events and worsening hypoxemia due to 

blunted arousal responses in those individuals with a high 

threshold for respiratory arousal. Indeed, this can occur with 

high doses or in obese patients with very severe disease.129 

By contrast, the hypnotics eszopiclone,145 zopiclone,22 and 

trazodone154 can reduce OSA severity as measured by the AHI 

without worsening hypoxemia. In the eszopiclone study,145 

reductions in AHI occurred invariably in those with a low 

arousal threshold phenotype. The number of arousals per 

hour of sleep also decreased.145 Given the contrasting effects 

of hypnotics in OSA, screening tools to distinguish between 

patients with low and high respiratory arousal thresholds and 

to determine who will benefit versus be susceptible to harm 

are important.

Prediction tools and simplified methods 
to estimate the respiratory arousal 
threshold
The gold standard approach to quantify the respiratory 

arousal threshold is impractical for routine clinical use as it 

is time-consuming, costly, and somewhat invasive (requires 

an airway pressure catheter). Preliminarily findings indicate 

that respiratory sensation to inspiratory loading during 

wakefulness is related to the respiratory arousal threshold 

during sleep.155 Edwards et al have developed a simple tool to 

estimate the respiratory arousal threshold with high sensitiv-

ity and specificity based on three measures from a standard 

overnight PSG (AHI, nadir oxygen saturation, and the apnea 

to hypopnea ratio).38 Thus, while prospective intervention 

studies are required, this simple approach could easily be 

implemented in the clinical setting to inform  treatment 

 decisions. Given that over 40% of OSA patients may also 

have insomnia,156–158 simple accurate tools to determine which 

OSA patients will benefit versus those at risk of harm with 

hypnotics would be invaluable.

Loop gain
Loop gain is a term used to describe the stability of a feedback 

control system. In the context of respiratory physiology, loop 

gain is the ventilatory response to ventilatory disturbance 

ratio. It comprises three principal components: 1) plant gain 

(i.e., tissues, blood, and lungs where CO
2
 is stored) and 2) 

delays in circulation (i.e., time it takes for a change in CO
2
 

to mix with the existing blood to arrive and be detected by 

the chemoreceptors) and 3) controller gain (i.e., chemosen-

sitivity). Any medical condition that modifies one or more of 

these components (e.g., heart failure) will alter loop gain.34 

Components of OSA such as intermittent hypoxia can also 

alter respiratory control.159 People with high loop gain have 

exaggerated ventilatory responses to minimal changes in 

CO
2
. This is a marker of an unstable control system. This can 

be reduced with CPAP therapy.160 On the other hand, those 

with extremely low loop gain often experience hypoven-

tilation during sleep, as is the case in people with obesity 

hypoventilation syndrome.34

In their landmark study using proportional assist ventila-

tion to induce breathing oscillations during sleep after the 

airway was stabilized with CPAP, Younes et al showed that 

severe OSA patients have high loop gain.138 Subsequent stud-

ies confirmed that many people with OSA have high loop 

gain.35,161 When combined with even a modest impairment 

in upper airway anatomy, high loop gain can drive OSA 

pathogenesis.35,161 Similar to the other phenotypic traits, loop 

gain can be quantified using transient reductions in CPAP 

during sleep to create a disturbance to breathing.161,162 Rapid 

reintroduction of CPAP is then applied so that the ventilatory 

response (overshoot) can be quantified (using a breathing 

mask and pneumotachograph) to calculate loop gain. This 

procedure is repeated as many times as possible throughout 

the night. Loop gain is then calculated as the ventilatory 

response divided by the ventilatory disturbance ratio after 

scaling for the different levels of ventilatory disturbances 

presented.161,162 This technique results in a negative number 

such that more negative numbers reflect higher loop gain.162 

Approximately one-third of OSA patients have high loop 

gain (<−5) which indicates a >5 L/min increase in minute 

ventilation in response to 1 L/min reduction in minute 

ventilation.35
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Treatments to target loop gain and 
simplified methods to estimate loop gain
O

2
 therapy reduces loop gain and OSA severity in people with 

high loop gain.163 Carbonic anhydrase inhibitors such as acet-

azolamide also reduce loop gain by approximately 40% and 

OSA severity.164 Similarly, zonisamide reduces OSA severity.24 

In addition, stabilization of CO
2
 and hypercapnia can prevent 

hypoventilation and unstable respiratory control during sleep 

in OSA.165 Strategies that combine O
2
 therapy to reduce loop 

gain with a hypnotic to increase the arousal threshold can 

yield major reductions in OSA severity.146 In addition, recent 

studies from the Mateika group indicate that several of the 

key contributors to OSA such as airway collapsibility, arousal 

threshold, and respiratory control are influenced by circadian 

phase.166–168 Thus, novel strategies that target the circadian 

system may have therapeutic potential in OSA.

The current approaches to quantify loop gain during sleep 

require experienced personnel to perform CPAP manipula-

tions and analyze the data. However, Terrill et al have devel-

oped an analysis approach that uses the nasal pressure signal 

from a standard PSG to estimate loop gain.41 This approach 

has been used to explain and predict changes to a range of 

interventions in OSA.30,47,146 Wakefulness tests of respira-

tory control may also be helpful in estimating responses to 

pharmacotherapies.44,45

Potential links between phenotypic traits, 
treatment, and health consequences
In addition to the role that the phenotypic traits play in con-

tributing to OSA pathogenesis, the traits may also provide 

insight into disease consequences and physiological reasons 

for treatment failure. For example, a low arousal threshold 

trait may be a physiological contributor to poor CPAP adher-

ence and compliance.31 A low arousal threshold trait and 

its consequences such as sleep fragmentation and frequent 

hypopneas with minimal changes in oxygenation may be a 

marker for cognitive impairment and daytime sleepiness.54,169 

Similarly, patients who tend to have more “intense” arousals, 

which appear to be an inherent trait,47,170 may experience more 

daytime sleepiness than those who do not. People who have 

OSA that is driven by high loop gain may be more vulnerable 

to the cardiovascular consequences of OSA. Conversely, strat-

egies that target certain components of respiratory control 

such as mild intermittent hypoxia to elicit respiratory plastic-

ity may help improve CPAP compliance and potentially also 

directly target the autonomic, cardiovascular, neurocognitive, 

and metabolic systems.171,172 While possible links between 

the phenotypic traits and specific disease consequences have 

not yet been investigated, emergence of simplified tools to 

estimate the traits will enable these theoretical concepts to 

be tested systematically in cohort studies.

Conclusion
Characterization of the different causes or phenotypes of OSA 

in recent years has provided new pathways for targeted therapy. 

New simplified approaches to estimate each of the key causes 

of OSA have recently been developed. While more work is 

required, particularly directed toward the impaired pharyngeal 

muscle trait, these new tools offer promise for the translation 

of detailed phenotyping concepts to the clinic. Identification 

of the traits may also provide insight in to which patients are 

more likely to develop specific disease consequences.
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