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Abstract: The nucleotide-binding oligomerization domain (NOD) protein, NOD2, belonging to 

the intracellular NOD-like receptor family, detects conserved motifs in bacterial peptidoglycan 

and promotes their clearance through activation of a proinflammatory transcriptional program 

and other innate immune pathways, including autophagy and endoplasmic reticulum stress. 

An inactive form due to mutations or a constitutive high expression of NOD2 is associated 

with several inflammatory diseases, suggesting that balanced NOD2 signaling is critical for 

the maintenance of immune homeostasis. In this review, we discuss recent developments about 

the pathway and mechanisms of regulation of NOD2 and illustrate the principal functions of 

the gene, with particular emphasis on its central role in maintaining the equilibrium between 

intestinal microbiota and host immune responses to control inflammation. Furthermore, we sur-

vey recent studies illustrating the role of NOD2 in several inflammatory diseases, in particular, 

inflammatory bowel disease, of which it is the main susceptibility gene.

Keywords: innate immunity, intestinal homeostasis, ER stress, autophagy, inflammatory bowel 

disease, extraintestinal disease

Introduction
The human body is constantly in contact with a myriad of microorganisms, either 

pathogens or commensals. Innate immune system, which provides a first line of defense 

against many common microbes, is essential for an appropriate tissue homoeostasis 

as well as for common bacterial infections, and its dysfunction leads to infectious, 

inflammatory and autoimmune diseases.

Innate immune response relies on recognition of evolutionarily conserved structures 

on the microorganisms, termed pathogen-associated molecular patterns (PAMPs), 

through a limited number of germ line-encoded pattern recognition receptors (PRRs) 

present on the host cell surface or in the intracellular compartments.1 Among the lat-

ter, nucleotide-binding and oligomerization domain containing protein 2 (NOD2) is 

a cytosolic receptor belonging to the nucleotide-binding oligomerization (NOD)-like 

receptor (NLR) family.2 NOD2 is able to detect intracellular muramyl dipeptide (MDP), 

a component of the bacterial wall that is ubiquitously present in bacterial peptidogly-

can.3 Upon activation by ligand, NOD2 mediates innate immune response triggering 

proinflammatory responses. NOD2 mutation or altered expression has been found 

in patients with chronic inflammatory disorders such as Crohn’s disease (CD), Blau 

syndrome (BS) and early-onset sarcoidosis (EOS).4–9 In this review, we summarize the 

current knowledge about NOD2 functions and regulation, as well as its involvement 

in chronic inflammatory diseases.
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The NLR family
The 23 NLR family members, intracellular sensors of 

PAMPs, share a common organization consisting of a 

C-terminal leucine-rich repeat (LRR) domain with regulatory 

and ligand recognition functions, a central nucleotide-binding 

and oligomerization domain (NBD) and an N-terminal 

effector-binding domain. The type of effector domain results 

in the division of NLR proteins into five subfamilies: acidic 

transactivation domain (NLRA); baculovirus inhibitor repeat, 

BIR (NLRB); caspase recruitment domain, CARD (NLRC); 

pyrin domain (NLRP) and NLRX1 that localizes to the 

mitochondria and has no homology to any known N-terminal 

domain (Figure 1).10,11 NOD2 belongs to the NLRC subfamily 

of NLRs and, after NOD1, has been the second member of 

the family to be identified.12 NOD2 receptor, encoded by the 

NOD2/CARD15 gene, mapping on chromosome 16q12.1 in 

humans, consists of 1040 amino acids and has a molecular 

weight of 110 kDa.12 It is expressed in monocytes, macro-

phages, dendritic cells, hepatocytes, preadipocytes, epithelial 

cells of oral cavity, lung and intestine, with higher expression 

in ileal Paneth cells and in intestinal stem cells.13,14 NOD2, 

like NOD1, is a cytoplasmic protein, although it is recruited 

in the plasmatic membrane where it detects bacterial invasion 

at the point of entry.15

NOD2 signaling
The innate immune system is critical for clearing infection 

and averting excessive tissue damage. NOD2, an intracellular 

receptor of microbial components derived from bacterial 

peptidoglycan, contributes to the maintenance of mucosal 

homeostasis and the induction of mucosal inflammation. 

Structurally, NOD2 protein is composed of two tandem 

N-terminal CARDs that function as effector domain and 

mediate specific homophilic interaction with downstream 

CARD-containing molecules.16 On activation by MDP, a cell 

wall component of both Gram-positive and Gram-negative 

bacteria, through LRR domain, NOD2 undergoes self-

oligomerization and recruitment of the downstream adaptor 

molecule, the kinase receptor interacting protein 2 (RIP2 

also known as RICK, CARDIAK, CCK and Ripk2), via 

homophilic CARD–CARD interaction.17–19 Active RIP2 leads 

to ubiquitination of nuclear factor-kappa B (NF-κB) essen-

tial modulator, resulting in activation of IκB kinase (IKK) 

complex that phosphorylates NF-κB inhibitor-α (IKBα), the 

inhibitor of transcription factor NF-κB, which translocates to 

the nucleus and starts transcription of proinflammatory genes, 

including cytokines, growth factors and factors responsible 

for stimulation of immune cells.20,21 RIP2 targets transform-

ing growth factor-β-activated kinase 1, which, through IKK 

Figure 1 Structure of the NLR subfamilies.
Abbreviations: AD, atopic dermatitis; BIR, baculovirus inhibitor repeat; CARD, caspase recruitment domain; CIITA, class II major histocompatibility complex transactivator; 
FIIND, function to find domain; LRR, leucine-rich repeat; NAD, NBD-associated domain; NBD, nucleotide-binding domain; NLR, NOD-like receptor; NLRA, acidic 
transactivation domain; NLRB, baculovirus inhibitor repeat; NLRC, caspase recruitment domain; NLRP, NLR family pyrin domain; NOD, nucleotide-binding oligomerization 
domain; PYD, pyrin domain; X, unknown effector domain.
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complex, activates MAP kinases and transcription factor Acti-

vator Protein 1 involved in cell proliferation, differentiation 

and apoptosis.18,22 NOD2 is also known to bind and activate 

caspase-1, through its CARD domain, and starts interleukin 

(IL)-1β processing.23 Moreover, MDP challenge promotes the 

formation of NOD2–NLR family pyrin domain containing 1 

complex that induces caspase-1–dependent IL-1β secretion in 

response to Bacillus anthracis or Yersinia pseudotuberculosis 

infection.23,24 Recently, NOD2 has been suggested to have a 

role in the autophagic process due to its interaction with the 

autophagy protein Autophagy Related 16 Like 1 (ATG16L1), 

which has been described below in-depth (Figure 2).25

NOD2 regulation
The complexity of NOD2 signaling is underlined by the evi-

dence that many cellular proteins interact with NOD2 directly 

and regulate positively or negatively its functional  activity.26 

Among these, Erbin, Centaurin B1,  Angio-Associated 

Migratory Cell Protein, Carbamoyl-Phosphate Synthe-

tase 2,  Mitogen-Activated Protein Kinase Binding Protein 1 

(JNKBP1) and heat shock protein (HSP) 90 have been shown 

to interact with NOD2 and regulate downstream signaling 

events.26–30 Recently, Suppressor of Cytokine Signaling-3 was 

found to recruit the ubiquitin machinery to NOD2, facilitating 

its proteasomal degradation.30 Interferon regulatory factor 4 

(IRF4) is another negative regulator of NOD2-dependent 

NF-κB signaling through inhibition of RIP2 polyubiquitina-

tion in human dendritic cells.31 On the contrary, HSP70 and 

FERM and PDZ domain-containing protein 2 act as positive 

regulators of NOD2 signaling: the first one, after binding with 

NOD2, leads to increase in NF-κB activity and the second 

one favors NOD2 localization at the plasma membrane.29,32

Furthermore, important posttranslational modifications 

are required to control NOD2 signaling.33 The E3 ubiquitin 

ligases Pellino 3 and X-linked inhibitor of apoptosis protein, 

by ubiquitinylating RIP2, are important mediators in the 

Figure 2 Signaling pathways triggered by NOD2.
Abbreviations: AP-1, activator protein-1; ATF6, activating transcription factor 6; ATG, autophagy-related genes; ATG16L1, autophagy related 16 like 1; ER, endoplasmic 
reticulum; ERK, extracellular signal-regulated kinase; IFNs, interferons; IKB, NF-κB inhibitor; IKK, IκB kinase; IRF3, interferon response factor 3; JNK, c-Jun N-terminal 
kinase; MAVS, mitochondrial antiviral signaling; MDP, muramyl dipeptide; NEMO, NF-κB essential modulator; NOD, nucleotide-binding oligomerization domain; PERK, 
protein kinase RNA-like endoplasmic reticulum kinase; RIP2, receptor-interacting protein kinase 2; TAB, TGF-β activated kinase; TAK1, targets transforming growth factor-
β-activated kinase 1; UPR, unfolded protein response.
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NOD2 pathway and regulators of intestinal inflammation.34,35 

Interestingly, loss of Pellino 3 decreases RIP2 ubiquitina-

tion and activation of NF-κB and mitogen-activated protein 

kinases (MAPKs), while genetic X-linked inhibitor of 

apoptosis protein loss causes a blunted NOD2 response.34–36 

Tripartite Motif Containing 27 negatively regulates NOD2 

by ubiquitination, while the E3-ubiquitin ligase ZNRF4, 

degrading RIP2, is a negative regulator of NOD2-induced 

NF-κB activity as well.37,38 Differently, the ovarian tumor 

family deubiquitinase OTULIN was shown to dampen NOD2 

signaling by increasing NF-κB transcription.39

A recent study shows that leucine-rich repeat kinase 2, 

whose polymorphisms have been associated with CD, leprosy 

and familiar Parkinson’s disease, is a new RIP2-positive 

regulator by enhancing RIP2 phosphorylation upon NOD2 

activation.40

NOD2 signaling is known to be regulated by cytoskeleton 

elements also: the intermediate filament protein vimentin has 

been recently shown to interact with NOD2, in response to 

MDP, and affect NF-κB induction.41

Large evidence supports the role of several microRNAs, 

including mir-320, miR-192, miR-122, miR-512, miR-671 

and miR-495, as new important NOD2 regulators.42,43

NOD2 genetics
Hereditary polymorphisms in the gene encoding NOD2 have 

been associated with an increasing number of chronic inflam-

matory diseases, such as CD, BS and EOS.6–8

In particular, the three main NOD2 polymorphisms, 

R702W (Arg702Trp), G908R (Gly908Arg) and L1007fsinsC, 

are highly associated with susceptibility to CD.6,7,44 R702W 

and G908R mutations are single amino acid changes within 

the LRR domain, whereas the L1007fsinsC mutation is 

caused by a deletion producing a reading frameshift that 

leads to the loss of 33 amino acids.6,7 CD-associated muta-

tions result in NOD2 loss of functions, with a reduced 

responsiveness to MDP, enabling invasion of bacteria and 

abnormal mucosal immune response, which culminates in 

chronic intestinal inflammation.5–7

The variants in the NBD and in between the NBD and 

LRR are associated to BS, EOS and NOD2-associated auto-

inflammatory disease, respectively.8,9,45,46

At least 17 different mutations have been identified in 

the NBD domain of NOD2,45 of which the following four 

missense mutations are the most abundant: Arg334Glu 

(R334Q), Arg334Trp (R334W) and Leu469Phe (L469F), 

which together account for 80% of the cases, and Glu383Lys 

(E383K) (5% of cases).47 Other NOD2 mutations, like the 

Arg314Glu (R314Q) polymorphism that codes for a trun-

cated form of the protein, have been described most rarely.8 

These mutations are supposed to be gain of function, causing 

excessive NF-κB and MAPK activation.9

NOD2 functions
NOD2 and intestinal microbiota
Humans are colonized by a collection of microbes, the largest 

numbers of which reside in the distal gut. The constant expo-

sure of the intestinal tissue to gut microorganisms maintains 

the mucosa in a state of physiological inflammation, which 

balances tolerogenic and proinflammatory type responses to 

maintain homeostasis.48 Several studies highlight the essential 

role that NOD2 plays in maintaining the equilibrium between 

microbiome and host immune responses.49–51 An imbalance 

in this relationship results in dysbiosis, whereby pathogenic 

bacteria prevail on commensals, causing damage in the intes-

tinal epithelial barrier as well as allowing bacterial invasion 

and inflammation.52,53 A negative feedback loop between 

NOD2 and commensal bacteria function has been described, 

whereby commensal bacteria promote NOD2 expression, 

which in turn prevents their over-expansion.52 Since NOD2 is 

an intracellular microbial sensor for gram-positive and gram-

negative bacteria, it has been proposed that its deficiency or 

mutations can contribute to the modification of microbial 

composition and disease development in animal models.18,51,52

NOD2-deficient mice show a reduced number of intestinal 

intraepithelial lymphocytes impairing the epithelium integ-

rity and leading to altered immune response to the resident 

microbiota.54 Moreover, NOD2- and RIP2-deficient mice 

show increased sensitivity to dextran sulfate sodium-induced 

colitis and colonic adenocarcinoma due to dysbiosis, which is 

transmitted to wild-type (WT) mice through the microbiota.55 

NOD2 is also a critical regulator of microbiota in the small 

intestine.13 Indeed, NOD2 is highly expressed in Paneth cells, 

specialized cells located at the base of the intestinal crypts of 

Lieberkuhn, which are responsible for the ileal microbiota by 

secreting antimicrobial compounds, in response to bacterial 

products, including MDP, the agonist of NOD2.13,18,56

There is evidence that NOD2 mutations increase the sus-

ceptibility to abnormal ileal inflammation. NOD2-deficient 

mice display Paneth and goblet cell dysfunction that promotes 

larger loads of bacteria in the ileum, including Bacteroides 

vulgatus, and excessive interferon-γ (IFNγ) production.53,57

However, several studies do not support the evidence of a 

relationship between NOD2 mutations and altered microbiota 

composition, suggesting the contribution of other factors 

independent of the genotype, such as maternal microbiota 
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transmission or environmental causes, but results are still 

controversial.58–60 NOD2 participates in the recognition 

of a subset of pathogenic microorganisms that are able to 

invade and multiply intracellularly, such as  Campylobacter, 

Citrobacter, Escherichia, Helicobacter, Listeria, Mycobac-

teria, Pseudomonas, Staphylococcus, Yersinia and other 

 species.51,61,62 In a murine skin Staphylococcus aureus infec-

tion model, Nod2−/− mice show skin lesions and increased 

bacterial numbers in the skin, compared to WT mice.63 

Moreover, NOD2-deficient mice show a higher fecal bacterial 

load after Citrobacter rodentium infection, besides increased 

susceptibility to enteric Salmonella spp. and an impaired 

activation of Th17 cells after C. rodentium or Salmonella spp. 

exposure.64–66 Interestingly, NOD2L1007fsinsC mutants show 

a lower reactive oxygen species production and a reduced 

protection against bacterial invasion.67

NOD2 upregulation following vitamin D treatment 

results in increased killing of pneumococci in patients with 

frequent respiratory tract infections.68 Bacterial lipoprotein-

tolerogenic macrophages show improved NOD1/NOD2-

dependent bactericidal activity to Sta. aureus and Salmonella 

typhimurium.69

NOD2 cooperates with other proteins for defense against 

pathogens, such as the autophagic protein ATG16L1 and 

the oxidase dual oxidase 2 that represents a major source 

of NOD2-dependent bactericidal reactive oxygen species 

generation.70

NOD2 in innate and adaptive immunity
NOD2 drives the innate inflammatory response to bacteria 

and viruses through the activation of NF-κB, MAPK and 

caspase-1 pathways, which results in increased expression 

of proinflammatory factors, including IL-1β, tumor necro-

sis factor-alpha (TNFα), IL-6, IL-12p40, CC-chemokine 

ligand 2, the neutrophil chemoattractants CXC-chemokine 

ligand 8 (also known as IL-8), CXC-chemokine ligand 2 

as well as various antimicrobial agents, as defensins, and 

in recruitment and priming of neutrophils, inflammatory 

monocytes and dendritic cells.64,71–73

NOD2 also activates other signaling pathways. Upon 

binding the bacterial ligand, NOD2 induces recruitment of 

RIP2, which binds TNF receptor-associated factor (TRAF) 

3 that activates the TANK binding kinase 1 and IKKε, 

which phosphorylates and activates regulatory interferon 

response factor 3 (IRF3). Activated IRF3 passes into the 

nucleus, where it binds with the molecules of IFN-stimulated 

response elements inducing the IFN gene expression of 

type I.74,75

Moreover, NOD2 triggers Notch1 signaling response. 

Crosstalk between NOD2 and its novel downstream effector 

Notch1-PI3K in the macrophages contributes to macrophage 

survival, reducing TNFα/IFNγ-induced apoptosis, and modu-

lates the expression of IL-10 and a battery of genes associated 

with anti-inflammatory functions.76

In addition to its main role in innate immunity, NOD2 is 

capable of activating the adaptive immune system; indeed, it 

is a key driver of T helper (Th) 2-type immunity resulting in 

IL-4 and IL-5 production.77 Full Th2 induction upon Nod2 

activation is dependent on both thymic stromal lymphopoietin 

production by the stromal cells and the upregulation of the co-

stimulatory molecule, OX40 ligand, on the dendritic cells.77 

Several studies have shown that co-stimulation with NOD2 

and toll-like receptor (TLR) agonists induces a synergistic 

production of Th1-associated cytokines in different types of 

cells, although the mechanism is still unclear.78,79

Finally, MDP-induced NOD2 activation has been shown 

to promote the development of   Th17 cells and the conse-

quent production of IL-17A, IL-17F, IL-21 and IL-22.80,81

NOD2 and antiviral response
The innate immune system detects viral infections through 

the recognition of virus-associated PAMPs, such as genomic 

DNA, RNA or dsRNA produced in infected cells, which are 

recognized by the PRRs expressed in innate immune cells.82 

After recognition of the viral components, PRRs activate an 

antiviral response that results in the production of type I IFNs, 

proinflammatory cytokines, eicosanoids and chemokines and 

subsequent induction of adaptive immune response.82 Cur-

rent literature evidences that NOD2 is also able to control 

virus infections.83,84 Indeed, the antiviral SB 9200, a novel 

first-in-class oral modulator of innate immunity with a broad-

spectrum activity in vitro and in vivo against RNA viruses 

including hepatitis C virus, norovirus, respiratory syncytial 

virus and hepatitis B virus, is also believed to act via NOD2 

pathway.85 Furthermore, infection with human cytomegalo-

virus results in significant induction of NOD2 expression, 

activating downstream NF-κB and IFN pathways.84 Besides, 

following recognition of a viral ssRNA genome, NOD2 

uses the adaptor mitochondrial antiviral signaling protein 

to activate IRF3; interestingly, NOD2-deficient mice fail to 

produce IFN efficiently. Similar roles for NOD2 are observed 

in response to influenza A and parainfluenza viruses.75

NOD2-induced triggering of NF-κB and IRF3 in response 

to viral infection is also interesting since it has been shown 

that a coordinated activation of NF-κB and IRF3 pathways 

synergistically promotes optimal IFN expression, including 
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IFN-β, and hence the antiviral resistance.86 Moreover, a regu-

latory role of NOD2 in enhancing the function of RNase-L 

through the binding with 2′-5′-oligoadenylate synthetase 

type 2, a dsRNA binding protein, has been described as an 

additional strategy to induce an innate immune response to 

control bacteria and viruses.87

NOD2 and autophagy
Autophagy represents a cellular stress response that plays key 

roles in physiological processes, such as innate and adaptive 

immunity, adaptation to starvation, degradation of misfolded 

or aggregated proteins or damaged organelles and elimina-

tion of intracellular pathogens, in order to promote cellular 

survival. The role of NOD1 and NOD2 in autophagy is a 

recent discovery and still under debate.

Travassos et al suggested that, by a mechanism independent 

of the adaptor RIP2 and transcription factor NF-κB, NOD1 and 

NOD2 recruited the autophagy protein ATG16L1, an essential 

component of the autophagic machinery, to the plasma mem-

brane at the bacterial entry site.25 Moreover, in cells homo-

zygous for the CD-associated NOD2 frameshift mutation, 

mutant NOD2 failed to recruit ATG16L1 to the membrane 

and wrapping of invading bacteria by autophagosomes was 

impaired.25 Furthermore, knockdown of ATG16L1 resulted in 

specific upregulation of NOD2 response, establishing a role of 

ATG16L1 as a negative regulator of the NOD2/RIP2 pathway.88 

NOD2-mediated autophagy is crucial to hold intramucosal 

bacterial burden and limit intestinal inflammation.89–91

Interestingly, ATG16L1 and NOD2 single nucleotide 

polymorphisms are both implicated in increased susceptibil-

ity to CD.91–94

More recently, other authors have provided evidence of 

an alternative mechanism of NOD2-dependent autophagy 

activation which requires RIP2. Cooney et al have shown that 

NOD2 triggering by MDP induces autophagy in dendritic 

cells and this effect requires RIP2.95 Anand et al demonstrated 

that macrophages deficient in the TLR2 and NOD/RIP2 

pathway display defective autophagy induction in response 

to Listeria monocytogenes.96 Homer et al have shown a dual 

role for RIP2 tyrosine kinase activity in NOD2-dependent 

autophagy: RIP2 both sends a positive autophagy signal 

through activation of p38 MAPK and relieves repression of 

autophagy mediated by the phosphatase PP2A.97

NOD2 and endoplasmic reticulum (ER) 
stress
The ER stress, activated by accumulation of unfolded or 

misfolded proteins and microbial infections, triggers a host 

response known as the unfolded protein response (UPR), 

which involves the activation of three transmembrane recep-

tors: activating transcription factor 6, protein kinase RNA-

like ER kinase and inositol-requiring enzyme 1α (IRE1α). 

Once activated, IRE1α recruits TRAF2 to the ER membrane 

to initiate inflammatory responses via c-Jun N-terminal 

kinase (JNK) pathway and NF-κB.98 NOD2 was found to 

transduce ER stress signals to elicit inflammation.99,100 Indeed, 

TRAF2 has been shown to interact with NOD1 and NOD2 

to orchestrate this inflammatory branch of UPR, which also 

requires the adaptor protein RIP2.98 However, the mechanism 

by which ER stress, and more specifically IRE1α, activates 

NOD1/NOD2 signaling is still unclear. Recent work provides 

evidence that the ER stress inducers thapsigargin and dithio-

threitol trigger production of the proinflammatory cytokine 

IL-6 in a NOD1/2-dependent fashion.100,101 In vivo experi-

ments confirmed the in vitro observations by showing that 

systemic proinflammatory responses induced by thapsigargin 

administration were blunted in NOD1–/–NOD2–/– mice.100

Several UPR-related genes have been identified as inflam-

matory bowel disease (IBD) risk loci.102,103 In particular, new 

evidence has linked the UPR and autophagy in Paneth cells to 

the development of CD-like transmural ileitis.104 The genetic 

convergence of genetic polymorphisms on innate immune 

pathways, such as NOD2, autophagy and ER stress, may 

open novel therapeutic options for the treatment of intestinal 

inflammation.105,106 The involvement of ER stress and NOD2 

in chronic inflammatory diseases, including IBD and type 2 

diabetes, has important implications for understanding the 

pathogenesis and for the management of these diseases.107,108

NOD2 and IBD
IBD is a group of chronic multifactorial disorders that 

includes CD, characterized by transmural inflammation 

that can affect any region of the gastrointestinal tract and 

ulcerative colitis that results in inflammation and ulcers of 

the colon and rectum. The etiology of IBD has yet to be fully 

elucidated; however, it is postulated that it is the result of an 

unbalanced crosstalk between gut luminal content and the 

mucosal immune system in genetically susceptible hosts.109

Recent genome-wide association studies have revealed 

163 susceptibility loci for IBD.110 NOD2 was the first gene 

identified as a risk factor for ileal CD.6,7

Three NOD2 polymorphisms in the LRR region are 

directly associated with CD, of which the most known is the 

frameshift mutation (L1007fs), whereas the other two are 

missense mutations (R702W and G908R).6,7 It is postulated 

that the LRR domain of CD-associated variants is likely 
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to be impaired, possibly to various degrees, in recognizing 

microbial components and/or in physiologically inhibiting 

NOD2 dimerization, thus resulting in the inappropriate 

activation of NF-κB in monocytes, bacterial clearance and 

impairment of intestinal permeability.6,111,112 Thus, individuals 

who are heterozygous for NOD2 variants have a 2–4-fold 

increased risk of developing CD, whereas homozygous vari-

ants have an additional risk of 20–40-fold.6,7,113 However, 

many NOD2 variant carriers do not develop the disease, sug-

gesting that other factors are involved in disease onset.111,112 

Similarly, NOD2-knockout mice lack symptoms associated 

with spontaneous intestinal inflammation.114 Nevertheless, 

NOD2-deficient mice demonstrate defects in mediating 

antibacterial responses, such as increased systemic Listeria 

colonization, suggesting decreased antimicrobial peptides 

in their intestine.18 Moreover, NOD2-deficient mice show 

altered gut permeability.49 This evidence is also supported 

by Amendola et al who attributed the absence of spontaneous 

colonic inflammation in NOD2-deficient mice to permeability 

changes: the latter may increase the exposure of dendritic 

cells to factors, such as TLR ligands, that influence T-reg cell 

development and subsequent changes in the microbiota.115

Homozygous/compound heterozygous carriage of the 

CD-associated NOD2 variants has been reported to be signifi-

cantly associated with ileal disease involvement, stricturing/ 

stenosing disease behavior and 2–3 years earlier age of dis-

ease onset compared to NOD2 WT CD patients.116,117 Ileal 

CD patients with NOD2 L1007fs mutation showed a reduced 

release of α-defensin from Paneth cells.118,119

Interestingly, the reduction of α-defensin release seems 

to be a secondary effect of the NOD2 knockdown, causing 

excessive inflammation and loss of Paneth cell. However, the 

question remains controversial.120

Notably, CD-associated NOD2 variants are defective in 

ATG16L1 recruitment and exhibit an altered autophagy in a 

cell type-specific manner.91 Furthermore, in patients with ileal 

CD, mutations in autophagy genes other than in NOD2 lead 

to an impaired secretion of Paneth cell-derived α-defensins 

with a deficiency in clearance of internalized bacteria.119–122 

Therefore, the combination of defective innate immune 

responses by NOD2 and ineffective bacterial clearance by 

autophagy could together be responsible for CD development 

and progression.

NOD2 and extraintestinal diseases
A consistent issue in human genetics is that genes implicated 

in one disorder could potentially increase susceptibility in 

other related disorders. It has been shown that three major 

missense mutations in the NBD domain of NOD2, R334Q, 

R334W and L469F are involved in an extremely rare, mono-

genic dominant disorder characterized by granulomatous 

inflammatory arthritis, uveitis and dermatitis, known as 

BS.45,123,124 The latter is related to gain-of-function mutations 

as opposed to CD mutations which appear to be recessive 

and are characterized with respect to NF-κB activation by a 

loss of function.44 More rarely, the NOD2 R314Q polymor-

phism, coding for a truncated form of the protein, has also 

been found to be associated with BS.8

NOD2 mutations, leading to increased activity of NF-κB, 

have been associated to EOS, a multisystemic granuloma-

tous disease characterized by arthritis, uveitis and cutaneous 

involvement.125 NOD2 mutations and similar clinical and his-

tologic characteristics suggest a link between EOS and BS.9,47

Increased NOD2 expression has been found in patients 

with rheumatoid arthritis, a chronic inflammatory disorder 

that affects the joints, causing structural deformities.126 Upon 

stimulation with MDP, peripheral blood mononuclear cells 

isolated from rheumatoid arthritis patients produced high 

amounts of TNFα, IL-8 and IL-1β, while NOD2 downregu-

lation significantly decreased proinflammatory cytokines, 

NF-κB, TRAF6 and IKK levels.127

Clinical and experimental studies have recently shown a 

role of NOD2 in cardiovascular diseases inducing vascular 

inflammation and severity of atherosclerosis, the most com-

mon pathologic process of coronary artery and cerebrovas-

cular disease.128 NOD2 has been localized in inflamed areas 

of atherosclerotic lesions and is overexpressed in endothelial 

cells delimiting the lumen of diseased vessels.129 Moreover, 

NOD2-mediated IL-6, IL-8 and IL-1β production induces 

vascular inflammation and promotes expansion of the lipid-

rich necrotic areas.130

NOD2 mRNA has also been found to be highly expressed 

in bronchoalveolar lavage and in peripheral blood mono-

nuclear cells from patients with Behcet’s disease, a rare 

disorder with unknown etiology, characterized by a systemic 

vasculitis and pulmonary manifestations.131,132 A recent study 

has shown that NOD2 aggravates myocardial ischemia/

reperfusion injury by inducing cardiomyocyte apoptosis and 

inflammation through JNK, p38MAPK and NF-κB signal-

ing in mice and has suggested NOD2 as a potential target 

for the treatment of the disease.133 Furthermore, NOD2 has 

been reported to be involved in IL-6, IL-8 and monocyte 

chemoattractant protein-1 production induced by the invasion 

of human aortic endothelial cells by Streptococcus mutans, 

the primary etiologic agent of dental caries, associated with 

the development of cardiovascular disease.134
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NOD2 variants have been associated with the systemic 

autoinflammatory disease (NOD2-associated autoinflamma-

tory disease), a genetically complex multisystem disorder 

characterized by periodic fever, dermatitis, arthritis and gas-

trointestinal and sicca-like symptoms, but with a phenotypic 

and genotypic profile distinct from CD.135

NOD2 polymorphisms have been also related to atopic 

dermatitis, a chronically relapsing inflammatory skin disease 

associated with basophil infiltration and an exacerbation of 

inflammation by Sta. aureus.136–138

Recent literature describes a central role of NOD2 

in susceptibility to obesity and metabolic dysfunction.139 

NOD2-deficient mice show increased bacterial adherence to 

the intestinal mucosa and bacterial infiltration in metabolic 

tissues, such as hepatic and adipose tissue, exacerbating 

inflammation and insulin resistance.140 Moreover, NOD2−/− 

BALB/c mice have shown susceptibility to obesity, hyper-

lipidemia, hyperglycemia, glucose intolerance, increased 

adiposity and hepatic steatosis, as compared to WT mice.141

Finally, NOD2-increased expression has been observed 

in patients with active Vogt–Koyanagi–Harada disease, a rare 

granulomatous inflammatory disease that affects pigmented 

structures, promoting proinflammatory cytokine production 

and Th1 and Th17 cells stimulation.142

NOD2 and cancer
NOD2 has been associated to cancer development. Data 

from animal models indicate that NOD2 deficiency leads 

to dysbiosis resulting in increased risk of colitis and colitis 

associated colorectal cancer.143 A recent study in NOD2- or 

RIP2-deficient mice shows an increased epithelial dysplasia 

following dextran sulfate sodium-induced colitis, suggesting 

a NOD2-protective role in cancer development via regulation 

of gut bacterial equilibrium.55

Emerging evidence in human studies implies that several 

NOD2 polymorphisms may influence individual susceptibil-

ity to cancer.143,144 However, the results are still inconclusive 

due to confounding genetic, bacterial and environmental 

factors that may alter variant allele penetrance or the differ-

ences in sample size, geographic variation and genotyping 

methods. In general, NOD2 gene polymorphisms are associ-

ated with altered risk of gastric, colorectal, breast, ovarian, 

prostate, testicular, lung, laryngeal, liver, gallbladder, biliary 

tract, pancreatic, small bowel, kidney, urinary bladder cancer, 

skin cancer, non-thyroid endocrine tumors, lymphoma and 

leukemia.145 In particular, the three most common NOD2 

polymorphisms, rs2066844 C/T (R702W), rs2066845 C/G 

(G908R) and rs2066847 (3020insC), have been associated 

with increased risk of gastrointestinal cancer.146 Furthermore, 

NOD2 has also been involved in the development of gastric 

cancer induced by Helicobacter pylori.144

Conclusion
The involvement of NOD2 in the pathogenesis of several 

genetic diseases indicates that this protein is a key regulator 

of immune and inflammatory responses. Extensive studies 

have evidenced a fundamental role of NOD2 in maintaining 

the equilibrium between bacteria, epithelia and innate immune 

response of the host. This protective function is lost in case of 

NOD2 mutations, resulting in exacerbated inflammation and 

the onset of various diseases. On the other hand, inappropriate 

activation of WT NOD2 is reported in many chronic inflam-

matory diseases, resulting in continuous production of proin-

flammatory mediators, but the exact mechanism underlying 

this NOD2 dysregulation is not yet well established. Recent 

literature has shifted the interest from genetic to epigenetic 

control and to interactions with other innate immune pathways 

such as autophagy and ER stress. Many questions remain 

unanswered, including the relation between NOD2 mutations 

and microbiota and the understanding of the processes by 

which mutations in the NOD2 could be associated with the 

susceptibility to inflammation and development of diseases. 

When the exact mechanism of regulation and functions of 

NOD2 will be unraveled, it could lead to the development of 

more effective therapies for inflammatory disorders.

Disclosure
The authors report no conflicts of interest in this work.

References
1. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. 

Cell. 2010;140(6):805–20.
2. Proell M, Riedl SJ, Fritz JH, Rojas AM, Schwarzenbacher R. The 

Nod-like receptor (NLR) family: a tale of similarities and differences. 
PLoS One. 2008;3(4):e2119.

3. Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen 
recognition. Int Immunol. 2009;21(4):317–337.

4. Feerick CL, McKernan DP. Understanding the regulation of pattern 
recognition receptors in inflammatory diseases – a ‘Nod’ in the right 
direction. Immunology. 2017;150(3):237–247.

5. Philpott DJ, Sorbara MT, Robertson SJ, Croitoru K, Girardin SE. NOD 
proteins: regulators of inflammation in health and disease. Nat Rev 
Immunol. 2014;14(1):9–23.

6. Hugot JP, Chamaillard M, Zouali H, et al. Association of NOD2 leucine 
rich repeat variants with susceptibility to Crohn’s disease. Nature. 
2001;411(6837):599–603.

7. Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in 
NOD2 associated with susceptibility to Crohn’s disease. Nature. 
2001;411(6837):603–606.

8. Dugan J, Griffiths E, Snow P et al. Blau syndrome-associated Nod2 
mutation alters expression of full length NOD2 and limits responses to 
muramyl dipeptide in knock-in mice. J Immunol. 2015;194(1):349–357.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Journal of Inflammation Research 2018:11 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

57

NOD2 and inflammation

9. Kanazawa N, Okafuji I, Kambe N, et al. Early-onset sarcoidosis and 
CARD15 mutations with constitutive nuclear factor-kappaB activation: 
common genetic etiology with Blau syndrome. Blood. 2005;105(3): 
1195–1197.

10. Tattoli I, Carneiro LA, Jéhanno M, et al. NLRX1 is a mitochondrial 
NOD-like receptor that amplifies NF-kappaB and JNK pathways 
by inducing reactive oxygen species production. EMBO Rep. 
2008;9(3):293–300.

11. Moore CB, Bergstralh DT, Duncan JA et al. NLRX1 is a regulator of 
mitochondrial antiviral immunity. Nature. 2008;451(7178):573–577.

12. Boyle JP, Parkhouse R, Monie TP. Insights into the molecular basis 
of the NOD2 signalling pathway. Open Biol. 2014;4(12):140178.

13. Sidiq T, Yoshihama S, Downs I, Kobayashi KS. Nod2: a critical 
regulator of ileal microbiota and Crohn’s disease. Front Immunol. 
2016;7:367. eCollection 2016.

14. Nigro G, Rossi R, Commere PH, Jay P, Sansonetti PJ. The cytosolic 
bacterial peptidoglycan sensor Nod2 affords stem cell protection and 
links microbes to gut epithelial regeneration. Cell Host Microbe. 
2014;15(6):792–798.

15. Philpott DJ, Girardin SE. Nod-like receptors: sentinels at host mem-
branes. Curr Opin Immunol. 2010;22(4):428–434.

16. Hofmann K, Bucher P, Tschopp J. The CARD domain: a new apoptotic 
signaling motif. Trends Biochem Sci. 1997;22(5):155–166.

17. Girardin SE, Boneca IG, Viala J, et al. Nod2 is a general sensor of 
peptidoglycan through muramyl dipeptide (MDP) detection. J Biol 
Chem. 2003;278(11):8869–8872.

18. Kobayashi KS, Chamaillard M, Ogura Y, et al. Nod2-dependent regula-
tion of innate and adaptive immunity in the intestinal tract. Science. 
2005;307(5710):731–734.

19. Park JH, Kim YG, McDonald C, et al. RICK/RIP2 mediates innate 
immune responses induced through Nod1 and Nod2 but not TLRs.  
J Immunol. 2007;178(4):2380–2386.

20. Rahighi S, Ikeda F, Kawasaki M, et al. Specific recognition of linear 
ubiquitin chains by NEMO is important for NF-kappaB activation. 
Cell. 2009;136(6):1098–1109.

21. Jiang X, Chen ZJ. The role of ubiquitylation in immune defence and 
pathogen evasion. Nat Rev Immunol. 2011;12(1):35–48.

22. Karin M. The Regulation of AP-1 Activity by Mitogen-activated Pro-
tein Kinases. J Biol Chem. 1995;270(28):16483–16486.

23. Hsu LC, Ali SR, McGillivray S, et al. A NOD2-NALP1 complex medi-
ates caspase-1-dependent IL-1beta secretion in response to Bacillus 
anthracis infection and muramyl dipeptide. Proc Natl Acad Sci U S A. 
2008;105(22):7803–7808.

24. Meinzer U, Barreau F, Esmiol-Welterlin S, et al. Yersinia pseudotu-
berculosis effector YopJ subverts the Nod2/RICK/TAK1 pathway and 
activates caspase-1 to induce intestinal barrier dysfunction. Cell Host 
Microbe. 2012;11(4):337–351.

25. Travassos LH, Carneiro LA, Ramjeet M, et al. Nod1 and Nod2 direct 
autophagy by recruiting ATG16L1 to the plasma membrane at the site 
of bacterial entry. Nat. Immunol. 2010;11(1):55–62.

26. Warner N, Burberry A, Franchi L, et al. A genome-wide siRNA screen 
reveals positive and negative regulators of the NOD2 and NF-κB 
signaling pathways. Sci Signal. 2013;6(258):rs3.

27. Richmond AL, Kabi A, Homer CR, et al. The nucleotide synthesis 
enzyme CAD inhibits NOD2 antibacterial function in human intestinal 
epithelial cells. Gastroenterology. 2012;142(7):1483–1492.

28. Lecat A, Di Valentin E, Somja J, et al. The c-Jun N-terminal kinase 
(JNK)-binding protein (JNKBP1) acts as a negative regulator of 
NOD2 protein signaling by inhibiting its oligomerization process.  
J Biol Chem. 2012;287(35):29213–29226.

29. Lipinski S, Grabe N, Jacobs G, et al. RNAi screening identifies media-
tors of NOD2 signaling: implications for spatial specificity of MDP 
recognition. Proc Natl Acad Sci USA. 2012;109(52):21426–21431.

30. Lee KH, Biswas A, Liu YJ, Kobayashi KS. Proteasomal degradation 
of Nod2 protein mediates tolerance to bacterial cell wall components. 
J Biol Chem. 2012;287(47):39800–39811.

31. Watanabe T, Asano N, Meng G, et al. NOD2 downregulates colonic 
inflammation by IRF4-mediated inhibition of K63-linked polyubiquiti-
nation of RICK and TRAF6. Mucosal Immunol. 2014;7(6):1312–1325.

32. Mohanan V, Grimes CL. The molecular chaperone HSP70 binds to 
and stabilizes NOD2, an important protein involved in Crohn disease. 
J Biol Chem. 2014;289(27):18987–18998.

33. Tigno-Aranjuez JT, Abbott DW. Ubiquitination and phosphorylation 
in the regulation of NOD2 signaling and NOD2-mediated disease. 
Biochim Biophys Acta. 2012;1823(11):2022–2028.

34. Yang S, Wang B, Humphries F, et al. Pellino3 ubiquitinates RIP2 and 
mediates Nod2-induced signaling and protective effects in colitis. Nat 
Immunol. 2013;14(9):927–936.

35. Damgaard RB, Nachbur U, Yabal M, et al. The ubiquitin ligase XIAP 
recruits LUBAC for NOD2 signaling in inflammation and innate 
immunity. Mol Cell. 2012;46(6):746–758.

36. Chirieleison SM, Marsh RA, Kumar P, Rathkey JK, Dubyak GR, 
Abbott DW. Nucleotide-binding oligomerization domain (NOD) 
signaling defects and cell death susceptibility cannot be uncoupled in 
X-linked inhibitor of apoptosis (XIAP)-driven inflammatory disease. 
J Biol Chem. 2017;292(23):9666–9679.

37. Zurek B, Schoultz I, Neerincx A, et al. TRIM27 negatively regulates 
NOD2 by ubiquitination and proteasomal degradation. PLoS One. 
2012;7(7):e41255.

38. Bist P, Cheong WS, Ng A, et al. E3 Ubiquitin ligase ZNRF4 negatively 
regulates NOD2 signalling and induces tolerance to MDP. Nat Com-
mun. 2017;8:15865.

39. Fiil BK, Damgaard RB, Wagner SA, et al. OTULIN restricts Met1-
linked ubiquitination to control innate immune signaling. Mol Cell. 
2013;50(6):818–830.

40. Yan R, Liu Z. LRRK2 enhances Nod1/2-mediated inflammatory 
cytokine production by promoting Rip2 phosphorylation. Protein 
Cell. 2017;8(1):55–66.

41. Stevens C, Henderson P, Nimmo ER, et al. The intermediate filament 
protein, vimentin, is a regulator of NOD2 activity. Gut. 2013;62(5), 
695–707.

42. Pierdomenico M, Cesi V, Cucchiara S, et al. NOD2 is regulated by Mir-
320 in physiological conditions but this control is altered in inflamed 
tissues of patients with inflammatory bowel disease. Inflamm Bowel 
Dis. 2016;22(2):315–326.

43. Chuang AY, Chuang JC, Zhai Z, Wu F, Kwon JH. NOD2 expression is 
regulated by microRNAs in colonic epithelial HCT116 cells. Inflamm 
Bowel Dis. 2014;20(1):126–35.

44. Strober W, Asano N, Fuss I, Kitani A, Watanabe T. Cellular and molecu-
lar mechanisms underlying NOD2 risk-associated polymorphisms in 
Crohn’s disease. Immunol Rev. 2014;260(1):249–260.

45. Miceli-Richard C, Lesage S, Rybojad M, et al. CARD15 mutations 
in Blau syndrome. Nat Genet. 2001;29(1):19–20.

46. Yao Q. Nucleotide-binding oligomerization domain contain-
ing 2: structure, function, and diseases. Semin Arthritis Rheum. 
2013;43(1):125–130.

47. Caso F, Galozzi P, Costa L, Sfriso P, Cantarini L, Punzi L. Autoinflam-
matory granulomatous diseases: from Blau syndrome and early-onset 
sarcoidosis to NOD2-mediated disease and Crohn’s disease. RMD 
Open. 2015;1(1):e000097.

48. Blander JM, Longman RS, Iliev ID, Sonnenberg GF, Artis D. Regu-
lation of inflammation by microbiota interactions with the host. Nat 
Immunol. 2017;18(8):851–860.

49. Balasubramanian I, Gao N. From sensing to shaping microbiota: insights 
into the role of NOD2 in intestinal homeostasis and progression of 
Crohn’s disease. Am J Physiol Gastrointest Liver Physiol. 2017;313(1): 
G7–G13.

50. Rehman A, Sina C, Gavrilova O, et al. Nod2 is essential for temporal 
development of intestinal microbial communities. Gut. 2011;60(10): 
1354–1362.

51. Al Nabhani Z, Dietrich G, Hugot JP, Barreau F. Nod2: the intestinal 
gate keeper. PLoS Pathog. 2017;13(3):e1006177.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Journal of Inflammation Research 2018:11submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

58

Negroni et al

52. Biswas A, Petnicki-Ocwieja T, Kobayashi KS. Nod2: a key regulator 
linking microbiota to intestinal mucosal immunity. J Mol Med (Berl). 
2012;90(1):15–24.

53. Ramanan D, Tang MS, Bowcutt R, Loke P, Cadwell K. Bacterial sen-
sor Nod2 prevents inflammation of the small intestine by restricting 
the expansion of the commensal Bacteroides vulgatus. Immunity. 
2014;41(2):311–324.

54. Jiang W, Wang X, Zeng B, et al. Recognition of gut microbiota by 
NOD2 is essential for the homeostasis of intestinal intraepithelial 
lymphocytes. J Exp Med. 2013;210(11):2465–2476.

55. Couturier-Maillard A, Secher T, Rehman A, et al. NOD2-mediated 
dysbiosis predisposes mice to transmissible colitis and colorectal 
cancer. J Clin Invest. 2013;123(2):700–711.

56. Ogura Y, Lala S, Xin W, et al. Expression of NOD2 in Paneth cells: a 
possible link to Crohn’s ileitis. Gut. 2003;52(11):1591–1597.

57. Petnicki-Ocwieja T, Hrncir T, Liu YJ, et al. Nod2 is required for the 
regulation of commensal microbiota in the intestine. Proc Natl Acad 
Sci USA. 2009;106(37):15813–15818.

58. Robertson SJ, Zhou JY, Geddes K, et al. Nod1 and Nod2 signaling 
does not alter the composition of intestinal bacterial communities at 
homeostasis. Gut Microbes. 2013;4(3):222–231.

59. Robertson SJ, Geddes K, Maisonneuve C, Streutker CJ, Philpott DJ. 
Resilience of the intestinal microbiota following pathogenic bacterial 
infection is independent of innate immunity mediated by NOD1 or 
NOD2. Microbes Infect. 2016;18(7–8):460–471.

60. Shanahan MT, Carroll IM, Grossniklaus E, et al. Mouse Paneth cell 
antimicrobial function is independent of Nod2. Gut. 2014;63(6): 
903–910.

61. Bereswill S, Grundmann U, Alutis ME, Fischer A, Heimesaat MM. 
Campylobacter jejuni infection of conventionally colonized mice 
lacking nucleotide-oligomerization-domain-2. Gut Pathog. 2017;9:5.

62. Caruso R, Warner N, Inohara N, Núñez G. NOD1 and NOD2: 
signaling, host defense, and inflammatory disease. Immunity. 
2014;41(6):898–908.

63. Hruz P, Zinkernagelb AS, Jenikovaa G, et al. NOD2 contributes to 
cutaneous defense against Staphylococcus aureus through α-toxin-
dependent innate immune activation. Proc Natl Acad Sci USA. 
2009;106(31):12873–12878.

64. Kim YG, Kamada N, Shaw MH, et al. The NOD2 sensor pro-
motes intestinal pathogen eradication via the chemokine CCL2-
dependent recruitment of inflammatory monocytes. Immunity. 
2011;34(5):769–780.

65. Geddes K, Rubino S, Streutker C, et al. NOD1 and NOD2 regula-
tion of inflammation in the salmonella colitis model. Infect. Immun. 
2010;78(12):5107–5115.

66. Geddes K, Rubino SJ, Magalhaes JG, et al. Identification of an innate 
T helper type 17 response to intestinal bacterial pathogens. Nat Med. 
2011;17(7):837–844.

67. Lecat,A, Piette J, Legrand-Poels S. The protein Nod2: an innate recep-
tor more complex than previously assumed. Biochem Pharmacol. 
2010;80(12):2021–2031.

68. Subramanian K, Bergman P, Henriques-Normark B. Vitamin D pro-
motes pneumococcal killing and modulates inflammatory responses 
in primary human neutrophils. J Innate Immun. 2017;9(4):375–386.

69. Liu J, Xiang J, Li X, et al. NF-κΒ activation is critical for bacterial 
lipoprotein tolerance-enhanced bactericidal activity in macrophages 
during microbial infection. Sci Rep. 2017;7:40418.

70. Lipinski S, Till A, Sina C, et al. DUOX2-derived reactive oxygen 
species are effectors of NOD2-mediated antibacterial responses. Cell 
Sci. 2009;122(Pt 19):3522–3530.

71. Beynon V, Cotofana S, Brand S, et al. NOD2/CARD15 genotype 
influences MDP-induced cytokine release and basal IL-12p40 levels 
in primary isolated peripheral blood monocytes. Inflamm Bowel Dis. 
2008;14(8):1033–1040.

72. Fritz JH, Girardin SE, Fitting C, et al. Synergistic stimulation of human 
monocytes and dendritic cells by Toll-like receptor 4 and NOD1- and 
NOD2-activating agonists. Eur J Immunol. 2005;35(8):2459–2470.

73. Coulombe F, Fiola S, Akira S, Cormier Y, Gosselin J. Muramyl 
dipeptide induces NOD2-dependent Ly6Chigh monocyte recruitment 
to the lungs and protects against influenza virus infection. PLoS One. 
2012;7(5):e36734.

74. Kapoor A, Fan YH, Arav-Boger R. Bacterial muramyl dipeptide (MDP) 
restricts human cytomegalovirus replication via an IFN-β-dependent 
pathway. Sci Rep. 2016;6:20295.

75. Sabbah A, Chang TH, Harnack R, et al. Activation of innate immune 
antiviral responses by Nod2. Nat. Immunol. 2009;10(10):1073–1080.

76. Bansal K, Balaji KN. Intracellular pathogen sensor NOD2 pro-
grams macrophages to trigger Notch1 activation. J Biol Chem. 
2011;286(7):5823–5835.

77. Magalhaes JG, Rubino SJ, Travassos LH, et al. Nucleotide oligo-
merization domain-containing proteins instruct T cell helper type 
2 immunity through stromal activation. Proc Natl Acad Sci U S A. 
2011;108(36):14896–14901.

78. Tada H, Aiba S, Shibata K, Ohteki T, Takada H. Synergistic effect of 
Nod1 and Nod2 agonists with toll-like receptor agonists on human 
dendritic cells to generate interleukin-12 and T helper type 1 cells. 
Infect Immun. 2005;73(12):7967–7976.

79. Jeong YJ, Kang MJ, Lee SJ, et al. Nod2 and Rip2 contribute to 
innate immune responses in mouse neutrophils. Immunology. 
2014;143(2):269–276.

80. Brain O, Owens BM, Pichulik T, et al. The intracellular sensor NOD2 
induces microRNA-29 expression in human dendritic cells to limit 
IL-23 release. Immunity. 2013;39(3):521–536.

81. Van Beelen AJ, Zelinkova Z, Taanman-Kueter EW, et al. Stimulation 
of the intracellular bacterial sensor NOD2 programs dendritic cells 
to promote interleukin-17 production in human memory T Cells. 
Immunity. 2007;27(4):660–669.

82. Kawai T, Akira S. Innate immune recognition of viral infection. Nat 
Immunol. 2006;7(2):131–137.

83. Keestra-Gounder AM, Tsolis RM. NOD1 and NOD2: beyond pepti-
doglycan sensing. Trends Immunol. 2017;38(10):758–767.

84. Kapoor A, Forman M, Arav-Boger R. Activation of nucleotide oligo-
merization domain 2 (NOD2) by human cytomegalovirus initiates 
innate immune responses and restricts virus replication. PLoS One. 
2014;9(3):e92704.

85. Jones M, Cunningham ME, Wing P, et al. SB 9200, a novel agonist 
of innate immunity, shows potent antiviral activity against resistant 
HCV variants. J Med Virol. 2017;89(9):1620–1628.

86. Wathelet MG, Lin CH, Parekh BS, Ronco LV, Howley PM, Maniatis T. 
Virus infection induces the assembly of coordinately activated transcription 
factors on the IFN-beta enhancer in vivo. Mol Cell. 1998;1(4):507–518.

87. Dugan JW, Albor A, David L, et al. Nucleotide oligomerization 
domain-2 interacts with 2′-5′-oligoadenylate synthetase type 2 
and enhances RNase-L function in THP-1 cells. Mol Immunol. 
2009;47(2–3):560–566.

88. Sorbara MT, Ellison LK, Ramjeet M, et al. The protein ATG16L1 
suppresses inflammatory cytokines induced by the intracellular sen-
sors Nod1 and Nod2 in an autophagy-independent manner. Immunity. 
2013;39(5):858–873.

89. Negroni A, Colantoni E, Vitali R, et al. NOD2 induces autophagy 
to control AIEC bacteria infectiveness in intestinal epithelial cells. 
Inflamm Res. 2016;65(10):803–813.

90. Műzes G, Tulassay Z, Sipos F. Interplay of autophagy and innate 
immunity in Crohn’s disease: a key immunobiologic feature. World J 
Gastroenterol. 2013;19(28):4447–4454.

91. Homer CR, Richmond AL, Rebert NA, Achkar JP, McDonald C. 
ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial 
pathway implicated in Crohn’s disease pathogenesis. Gastroenterology. 
2010;139(5):1630–1641.

92. Cadwell K. Crohn’s disease susceptibility gene interactions, a NOD to 
the newcomer ATG16L1. Gastroenterology. 2010;139(5):1448–1450.

93. Salem M, Ammitzboell M, Nys K, Seidelin JB, Nielsen OH. ATG16L1: 
a multifunctional susceptibility factor in Crohn disease. Autophagy. 
2015;11(4):585–594.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ohteki%20T%5BAuthor%5D&cauthor=true&cauthor_uid=16299289
https://www.ncbi.nlm.nih.gov/pubmed/?term=Takada%20H%5BAuthor%5D&cauthor=true&cauthor_uid=16299289


Journal of Inflammation Research 2018:11 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

59

NOD2 and inflammation

94. Nguyen HT, Lapaquette P, Bringer MA, Darfeuille-Michaud A. 
Autophagy and Crohn’s disease. J Innate Immun. 2013;5(5):434–443.

95. Cooney R, Baker J, Brain O, et al. NOD2 stimulation induces 
autophagy in dendritic cells influencing bacterial handling and antigen 
presentation. Nat Med. 2010;16(1):90–97.

96. Anand PK, Tait SW, Lamkanfi M, et al. TLR2 and RIP2 pathways 
mediate autophagy of Listeria monocytogenes via extracellular 
signal-regulated kinase (ERK) activation. J Biol Chem. 2011; 
286(50):42981–42991.

97. Homer CR, Kabi A, Marina-García N, et al. A dual role for receptor-
interacting protein kinase 2 (RIP2) kinase activity in nucleotide-
binding oligomerization domain 2 (NOD2)-dependent autophagy.  
J Biol Chem. 2012;287(30):25565–25576.

98. Urano F, Wang X, Bertolotti A, et al. Coupling of stress in the ER to 
activation of JNK protein kinases by transmembrane protein kinase 
IRE1. Science. 2000;287(5453):664–666.

99. Byndloss MX, Keestra-Gounder AM, Bäumler AJ, Tsolis RM. NOD1 
and NOD2: new functions linking endoplasmic reticulum stress and 
inflammation. DNA Cell Biol. 2016;35(7):311–313.

100. Keestra-Gounder AM, Byndloss MX, Seyffert N, et al. NOD1 
and NOD2 signalling links ER stress with inflammation. Nature. 
2016;532(7599):394–397.

101. Caruso R, Núñez G. Innate immunity: ER stress recruits NOD1 
and NOD2 for delivery of inflammation. Curr Biol. 2016;26(12): 
R508–R511.

102. Kaser A, Blumberg RS. Endoplasmic reticulum stress and intestinal 
inflammation. Mucosal Immunol. 2010;3(1):11–16.

103. Hosomi S, Kaser A, Blumberg RS. Role of endoplasmic reticulum 
stress and autophagy as interlinking pathways in the pathogen-
esis of inflammatory bowel disease. Curr Opin Gastroenterol. 
2015;31(1):81–88.

104. Adolph TE, Tomczak MF, Niederreiter L, et al. Paneth cells as a site of 
origin for intestinal inflammation. Nature. 2013;503(7475):272–276.

105. Fritz T, Niederreiter L, Adolph T, Blumberg RS, Kaser A. 
Crohn’s disease: NOD2, autophagy and ER stress converge. Gut. 
2011;60(11):1580–1588.

106. Hoefkens E, Nys K, John JM, et al. Genetic association and func-
tional role of Crohn disease risk alleles involved in microbial sens-
ing, autophagy, and endoplasmic reticulum (ER) stress. Autophagy. 
2013;9(12):2046–2055.

107. Kaser A, Lee AH, Franke A, et al. XBP1 links ER stress to intestinal 
inflammation and confers genetic risk for human inflammatory bowel 
disease. Cell. 2008;134(5):743–756.

108. Montane J, Cadavez L, Novials A. Stress and the inflammatory process: 
a major cause of pancreatic cell death in type 2 diabetes. Diabetes 
Metab Syndr Obes. 2014;7:25–34.

109. Kim DH, Cheon JH. Pathogenesis of inflammatory bowel disease 
and recent advances in biologic therapies. Immune Netw. 2017;17(1): 
25–40.

110. Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions 
have shaped the genetic architecture of inflammatory bowel disease. 
Nature. 2012;491(7422):119–24.

111. Kim YG, Shaw MH, Warner N, et al. Cutting edge: Crohn’s disease-
associated Nod2 mutation limits production of proinflammatory 
cytokines to protect the host from Enterococcus faecalis induced 
lethality. J Immunol. 2011;187(6):2849–2852.

112. Salem M, Seidelin JB, Eickhardt S, Alhede M, Rogler G, Nielsen 
OH. Species-specific engagement of human nucleotide oligomeriza-
tion domain 2 (NOD)2 and Toll-like receptor (TLR) signalling upon 
intracellular bacterial infection: role of Crohn’s associated NOD2 gene 
variants. Clin Exp Immunol. 2015;179(3):426–434.

113. Hugot JP, Zaccaria I, Cavanaugh J, et al; IBD International Genetics 
Consortium. Prevalence of CARD15/NOD2 mutations in Caucasian 
healthy people. Am J Gastroenterol. 2007;102(6):1259–1267.

114. Pauleau AL, Murray PJ. Role of nod2 in the response of macrophages 
to toll-like receptor agonists. Mol Cell Biol. 2003;23(21):7531–7539.

115. Amendola A, Butera A, Sanchez M, Strober W, Boirivant M. Nod2 
deficiency is associated with an increased mucosal immune regula-
tory response to commensal microorganisms. Mucosal Immunol. 
2014;7(2):391–404.

116. Lesage S, Zouali H, Cézard JP, et al. CARD15/NOD2 mutational 
analysis and genotype-phenotype correlation in 612 patients 
with inflammatory bowel disease. Am J Hum Genet. 2002;70(4): 
845–857.

117. Hampe J, Grebe J, Nikolaus S, et al. Association of NOD2 (CARD 
15) genotype with clinical course of Crohn’s disease: a cohort study. 
Lancet. 2002;359(9318):1661–1665.

118. Wehkamp J, Harder J, Weichenthal M, et al. NOD2 (CARD15) muta-
tions in Crohn’s disease are associated with diminished mucosal 
a-defensin expression. Gut. 2004;53(11):1658–1664.

119. Wehkamp J, Salzman NH, Porter E, et al. Reduced Paneth cell 
a-defensins in ileal Crohn’s disease. Proc Natl Acad Sci U S A. 
2005;102(50):18129–18134.

120. Simms LA, Doecke JD, Walsh MD, Huang N, Fowler EV, Radford-
Smith GL. Reduced a-defensin expression is associated with inflam-
mation and not NOD2 mutation status in ileal Crohn’s disease. Gut. 
2008;57(7):903–110.

121. Cadwell K, Liu JY, Brown SL, et al. A key role for autophagy and the 
autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. 
Nature. 2008;456(7219):259–263.

122. Wolfkamp SC, Verseyden C, Vogels EW, et al. ATG16L1 and NOD2 
polymorphisms enhance phagocytosis in monocytes of Crohn’s disease 
patients. World J Gastroenterol. 2014;20(10):2664–2672.

123. Tromp G, Kuivaniemi H, Raphael S, et al. Genetic linkage of familial 
granulomatous inflammatory arthritis, skin rash, and uveitis to chromo-
some 16. Am J Hum Genet. 1996;59(5):1097–1107.

124. Blau EB. Familial granulomatous arthritis, iritis, and rash. J Pediatr. 
1985;107(5):689–693.

125. Wouters CH, Maes A, Foley KP, Bertin J, Rose CD. Blau syndrome, 
the prototypic auto-inflammatory granulomatous disease. Pediatr 
Rheumatol Online J. 2014;12:33.

126. Hasler P. Gabay C. Rheumatoid arthritis: from basic findings and 
clinical manifestations to future therapies. Semin Immunopathol. 
2017;39(4):339–341.

127. Kim HW, Kwon YJ, Park BW, Song JJ, Park YB, Park MC. Differ-
ential expressions of NOD-like receptors and their associations with 
inflammatory responses in rheumatoid arthritis. Clin Exp Rheumatol. 
2017;35(4):630–637.

128. Yuan H, Zelkha S, Burkatovskaya M, Gupte R, Leeman SE, Amar 
S. Pivotal role of NOD2 in inflammatory processes affecting ath-
erosclerosis and periodontal bone loss. Proc Natl Acad Sci U S A. 
2013;110(52):E5059–E5068.

129. Liu HQ, Zhang XY, Edfeldt K, et al. NOD2-mediated innate immune 
signaling regulates the eicosanoids in atherosclerosis. Arterioscler 
Thromb Vasc Biol. 2013;33(9):2193–2201.

130. Johansson ME, Zhang XY, Edfeldt K, et al. Innate immune receptor 
NOD2 promotes vascular inflammation and formation of lipid-
rich necrotic cores in hypercholesterolemic mice, Eur J Immunol. 
2014;44(10):3081–3092.

131. Zeidan MJ, Saadoun D, Garrido M, Klatzmann D, Six A, Cacoub P. 
Behçet’s disease physiopathology: a contemporary review. Auto Immun 
Highlights. 2016;7(1):4.

132. Hamzaoui K, Abid H, Berraies A, Ammar J, Hamzaoui A. NOD2 is 
highly expressed in Behcet disease with pulmonary manifestations. 
J Inflamm (Lond). 2012;9(1):3.

133. Liu Y, Yang H, Liu LX, et al. NOD2 contributes to myocardial isch-
emia/reperfusion injury by regulating cardiomyocyte apoptosis and 
inflammation. Life Sci. 2016;149:10–17.

134. Nagata E, Oho T. Invasive Streptococcus mutans induces inflammatory 
cytokine production in human aortic endothelial cells via regulation of 
intracellular toll-like receptor 2 and nucleotide-binding oligomeriza-
tion domain 2. Mol Oral Microbiol. 2017;32(2):131–141.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com
https://www.ncbi.nlm.nih.gov/pubmed/?term=IBD%20International%20Genetics%20Consortium%5BCorporate%20Author%5D
https://www.ncbi.nlm.nih.gov/pubmed/?term=IBD%20International%20Genetics%20Consortium%5BCorporate%20Author%5D
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ammar%20J%5BAuthor%5D&cauthor=true&cauthor_uid=22330585
https://www.ncbi.nlm.nih.gov/pubmed/?term=Hamzaoui%20A%5BAuthor%5D&cauthor=true&cauthor_uid=22330585


Journal of Inflammation Research 2018:11submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

Journal of Inflammation Research

Publish your work in this journal

Submit your manuscript here: https://www.dovepress.com/journal-of-inflammation-research-journal

The Journal of Inflammation Research is an international, peer-reviewed 
open access journal that welcomes laboratory and clinical findings on 
the molecular basis, cell biology and pharmacology of inflammation 
including original research, reviews, symposium reports, hypothesis for-
mation and commentaries on: acute/chronic inflammation; mediators of 

inflammation; cellular processes; molecular mechanisms; pharmacology 
and novel anti-inflammatory drugs; clinical conditions involving inflam-
mation. The manuscript management system is completely online and 
includes a very quick and fair peer-review system. Visit http://www.dove 
press.com/testimonials.php to read real quotes from published authors.

Dovepress

60

Negroni et al

135. Yao Q, Su LC, Tomecki KJ, Zhou L, Jayakar B, Shen B. Dermatitis as a 
characteristic phenotype of a new autoinflammatory disease associated 
with NOD2 mutations. J Am Acad Dermatol. 2013;68(4):624–631.

136. Macaluso F, Nothnagel M, Parwez Q, et al. Polymorphisms in 
NACHT-LRR (NLR) genes in atopic dermatitis. Exp Dermatol. 
2007;16(8):692–698.

137. Wong CK, Chu IM, Hon KL, Tsang MS, Lam CW. Aberrant expres-
sion of bacterial pattern recognition receptor NOD2 of basophils 
and microbicidal peptides in atopic dermatitis. Molecules. 2016; 
21(4):471.

138. Jiao D, Wong CK, Qiu HN, et al. NOD2 and TLR2 ligands trigger 
the activation of basophils and eosinophils by interacting with der-
mal fibroblasts in atopic dermatitis-like skin inflammation. Cell Mol 
Immunol. 2016;13(4):535–550.

139. Rodriguez-Nunez I, Caluag T, Kirby K, Rudick CN, Dziarski R, 
Gupta D. Nod2 and Nod2-regulated microbiota protect BALB/c 
mice from diet-induced obesity and metabolic dysfunction. Sci Rep. 
2017;7(1):548.

140. Denou, E. Lolmède K, Garidou L, et al. Defective NOD2 peptidoglycan 
sensing promotes diet-induced inflammation, dysbiosis, and insulin 
resistance. EMBO Mol Med. 2015;7(3):259–274.

141. Prajapati B, Jena PK, Rajput P, Purandhar K, Seshadri S. Understand-
ing and modulating the toll like receptors (TLRs) and NOD like 
receptors (NLRs) cross talk in type 2 diabetes. Curr Diabetes Rev. 
2014;10(3):190–200.

142. Deng B, Ye Z, Li L, et al. Higher expression of NOD1 and NOD2 
is associated with Vogt-Koyanagi-Harada (VKH) Syndrome but not 
Behcet’s disease (BD). Curr Mol Med. 2016;16(4):424–435.

143. Branquinho D, Freire P, Sofia C. NOD2 mutations and colorectal cancer 
– Where do we stand? World J Gastrointest Surg. 2016;8(4):284–293.

144. Castaño-Rodríguez N, Kaakoush NO, Mitchell HM. Pattern- 
recognition receptors and gastric cancer. Front Immunol. 2014;5:336.

145. Kutikhin AG. Role of NOD1/CARD4 and NOD2/CARD15 gene poly-
morphisms in cancer etiology. Hum Immunol. 2011;72(10):955–968.

146. Liu J, He C, Xu Q, Xing C, Yuan Y. NOD2 polymorphisms associ-
ated with cancer risk: a meta-analysis. PLoS One. 2014;9(2):e89340.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com
https://www.ncbi.nlm.nih.gov/pubmed/?term=Zhou%20L%5BAuthor%5D&cauthor=true&cauthor_uid=23102769
https://www.ncbi.nlm.nih.gov/pubmed/?term=Jayakar%20B%5BAuthor%5D&cauthor=true&cauthor_uid=23102769
https://www.ncbi.nlm.nih.gov/pubmed/?term=Shen%20B%5BAuthor%5D&cauthor=true&cauthor_uid=23102769

	_GoBack

	Publication Info 4: 


