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Abstract: Vitreoretinal microsurgery is among the most technically challenging of the  minimally 

invasive surgical techniques. Exceptional precision is required to operate on micron scale targets 

presented by the retina while also maneuvering in a tightly constrained and fragile workspace. 

These challenges are compounded by inherent limitations of the unassisted human hand with 

regard to dexterity, tremor and precision in positioning instruments. The limited human ability 

to visually resolve targets on the single-digit micron scale is a further limitation. The inherent 

attributes of robotic approaches therefore, provide logical, strategic and promising solutions to 

the numerous challenges associated with retinal microsurgery. Robotic retinal surgery is a rapidly 

emerging technology that has witnessed an exponential growth in capabilities and applications 

over the last decade. There is now a worldwide movement toward evaluating robotic systems 

in an expanding number of clinical applications. Coincident with this expanding application is 

growth in the number of laboratories committed to “robotic medicine”. Recent technological 

advances in conventional retina surgery have also led to tremendous progress in the surgeon’s 

capabilities, enhanced outcomes, a reduction of patient discomfort, limited hospitalization and 

improved safety. The emergence of robotic technology into this rapidly advancing domain is 

expected to further enhance important aspects of the retinal surgery experience for the patients, 

surgeons and society.

Keywords: robotic eye surgery, vitrectomy, retina, robotic assistance, minimally invasive 

surgery, precision

Introduction to robotics in surgery
Rapid development and incorporation of computerized technology into surgical systems 

have occurred over the last 3 decades.1 The word “robot” was originally used to describe 

the mass-produced “workers” assembled from artificially synthesized organic material 

in Karel Čapek’s 1920 play “Rossum’s Universal Robots”.2 Derived from the Czech 

“robota”, meaning “forced labor”, the term was subsequently popularized by Isaac 

Asimov,3 whose first fundamental rule of robotics – “a robot may not injure a human 

being or, through inaction, allow a human being to come to harm”. These rules now 

belie the increasing utility in medicine and surgery of modern day robotic systems and 

is prescient in defining a fundamental challenge in implementing the human–computer–

machine interface, which enhances surgical capability while reducing surgical risk.

At present, robotic surgery is rapidly evolving, especially in the area of minimally 

invasive surgery (MIS); yet even during a time of well-publicized translation into 

human application, there remain many challenges to routine incorporation into clini-
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cal practice. Vitreoretinal microsurgery remains among the 

most technically challenging MIS. This work is performed 

with exceedingly high precision in a very limited workspace, 

such that robotics becomes a promising solution to the human 

limitations and physical challenges associated with retinal 

microsurgery.4,5 Yet the practical role, high impact indications 

and the means by which to strategically and cost effectively 

incorporate robotics into procedures currently performed 

with high levels of expertise have begun to be understood.

The first report of a robotic device in surgical practice was 

in 1988 when the Unimation Puma 200 robot was used to 

perform a computed tomography-guided brain tumor biopsy.6 

This was soon followed by development and clinical trial of 

the first dedicated surgical robot, RoboDoc, which was used 

to perform total hip arthroplasty by the team of Paul, Barger 

and Taylor.7,8 Many of the key advances throughout this 

period were led by the US Military with the goal of arriving 

at a telepresence model of care delivery that would allow 

remotely controlled robotic surgery on wounded soldiers.9 The 

first use of a tele-operated surgical robot came in April 1997 

in Brussels, where Jacques Himpens and Guy Cardiere used 

the da Vinci system (Intuitive Surgical Inc., Sunnyvale, CA, 

USA) to perform laparoscopic cholecystectomy.10 In response 

to this trend, hundreds of robotic systems have been sold 

worldwide with an increasing number of laboratories com-

mitting research effort to robotic medicine.11,12

Ocular surgery is not unique in its requirement for a 

highly dexterous, steady and precise surgical approach. 

Other current similar applications include, but are not limited 

to, the brain, nerves, heart and small blood vessels. In such 

procedures, 150- to 200- μm critical movements are routinely 

required.13 Therefore, MIS is coupled with an increasing 

demand on surgeons’ manual dexterity that robotically 

assisted instruments may be able to assist.14,15 As a result of 

recent technological advances in robotic surgery, progress 

has been made to reduce patient trauma, shorten hospitaliza-

tions, improve procedure safety and enhance both precision 

and effectiveness. However, the field of medical robotics is 

only now emerging as relevant and broadly applicable, and 

many unanswered questions remain.

Introduction to robots in retinal 
surgery and human limitations
Experimental models of robotic assistance in eye surgery 

were first introduced in the 1980s by Spitznas16 and Guer-

rouad and Vidal.17 This followed the breakthrough develop-

ment of a handheld motor-driven vitreous cutter, suction and 

infusion system in the early 1970s by Machemer.18,19 This 

system went on to revolutionize the surgical management of a 

number of common vitreoretinal diseases that had previously 

been deemed untreatable, e.g., complex retinal detachment, 

macular hole, epiretinal membrane and nonclearing vitreous 

hemorrhage.

There are limitations of unassisted human hands in 

terms of dexterity, tremor and precision in positioning 

instruments in an organ as small as the eye. The expanding 

scope of intraocular microsurgical interventions facilitated 

by modern iterations of vitrectomy machine systems has 

been fundamentally plateaued by the physiological limits of 

human hands.20,21 The eye is a small and closed space that is 

not tolerant to errors of instrument position that might oth-

erwise be tolerable in general surgery. Further complicating 

retinal surgery, are instrument manipulations involving retina 

typically occur beneath the level of human tactile perception 

and at the limits of visual resolution. Moreover, the retina 

does not regenerate; hence, it is critical to avoid injury.22,23

Tremor
Chief among the challenges faced by “ultra-microsurgeons” 

is physiological hand tremor, a normal motion that accom-

panies all postures and movements24,25 that are typically 

involuntary, approximately rhythmic and sinusoidal in char-

acter. Pragmatically, surgery on the macula poses the highest 

demand on retinal surgeons requiring precision instrument 

control and meticulous error avoidance. Requirements to 

manually remove a transparent membrane, approximately 

10 μm thick, from the surface of the critical and fragile 

macula, using only intraocular (endo) forceps and forces 

that are beneath the ability of a human to detect remain a 

rare surgical skill. Therefore, specially designed robots are a 

natural fit and are being evaluated to address these and other 

amenable human skills and limitations.26–29

Various robotic systems now suppress tremor in real 

time during MIS, including tele-operated systems in the 

present use and the Johns Hopkins “steady-hand” system 

based on a cooperative control scheme between the surgeon 

and the robot.30,31 Tremor data recorded during a standard 

epiretinal membrane removal operation using this type of 

robot, demonstrated that the root mean square amplitude of 

tremor at the instrument tip was 182 μm.32 In a similar study 

at the same center, mean tremor amplitude at the instrument 

tip during retinal surgery was 24, 22 and 20 μm along the 

x, y and z axes, respectively;33 equivalent to a peak-to-peak 

vector magnitude of ~100 μm.33

From an anatomical perspective, a further point of 

reference by which to define the current limits of retinal 
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 microsurgery precision is the caliber of retinal vessels 

(113±19 μm at the disk border34 from where they taper to 

the retinal periphery). Although there are many treatment 

options for retinal vein occlusions, all remain unsatisfactory 

in that they treat manifest complications of occlusion rather 

than the occlusion. The safety and efficacy of direct treat-

ment of occlusion have not yet been tested by large studies. 

Vitrectomy combined with intravenous thrombolysis is a 

possible strategy now enabled by robotics.

While retinal vein cannulation with maintenance of 

cannulation and successful infusion has been achieved 

clinically, it is technically beyond human limitations for most 

surgeons to perform this procedure consistently and safely. 

Moreover, challenges in identifying the optimal timing for 

intervention as well as the best drug for delivery collectively 

limit the feasibility of the procedure.35–37 Robotic solutions 

aim to decrease vascular trauma by assisting the surgeon to 

position and maintain the needle in the vein for infusion. 

One augmenting strategy has been the development of the 

force-sensing microneedle, a tool developed to measure the 

forces required to puncture the retinal veins, limit potential 

movement of the tissue and hold the cannulation device 

securely inside the vessel.37–39

Force sensor
Forces applied to the retina during surgery are typically 

beneath the surgeon’s ability to detect; therefore, force-

sensing instruments have emerged as an innovative technol-

ogy. Their development and translational testing have further 

created an awareness of their potential and of novel needs not 

previously appreciated in vitreoretinal surgery. The integra-

tion of force sensing in microsurgical tools has a number 

of benefits, including but not limited to enhanced safety, 

instrument response to forces and the potential to create a 

record of forces applied during a procedure.40 To this end, a 

range of force-sensing instruments have been developed at 

Johns Hopkins University with varying degrees of freedom 

(DOF) and increasing robustness.

With force-sensing instruments, the forces applied 

to the instrument at its point of contact with the eye wall 

(sclerotomy) influence the forces measured at the tool tip. 

The concept of remote center of motion (RCM) in robot-

ics postulates that there are only three rotational DOF at 

the scleral entry point and one translational DOF along the 

instrument axis, while all lateral translations are prohibited by 

mechanical constraints at point of entry through the relatively 

rigid eye wall.41–43 Of note is that each DOF has a significant 

effect on the motion accuracy of the tool during tracking and 

has the potential to improve motion accuracy and safety in 

performing robot-assisted tasks.44,45

In this context, Gonenc et al40 presented the conceptual 

design and optimization of three DOF force-sensing micro-

forceps as the present generation of force-sensing tools. Four 

fiber Bragg grating (FBG) strain sensors were integrated 

along the tool shaft to measure tool tip forces, and the active 

segments were located close to the distal end in order to sense 

only the tip forces. Simulations revealed that the optimal 

design targets have been achieved based on grasping force, 

actuation force and various feasibility criteria. This work 

has led to the next step of Johns Hopkins University’s force-

sensing instruments, a family of forceps that can measure 

the force directly at the tool tip inside the eye (Figure 1).

As force feedback is often entirely absent during manipu-

lations of micron scale tissues involved in vitreoretinal sur-

gery, excessive tissue manipulation resulting from the lack 

of feedback may result in iatrogenic retinal trauma during 

surgery.40,46 Experimental studies in rabbits have shown that 

a measured tool-to-tissue force of only 7 mN can induce a 

retinal tear in rabbit retina while surgeons can feel <20% of 

events performed at forces on this order of magnitude.47,48 

Both, the forces detected by force sensing at the tip of the 

surgical instrument and those detected at the point of tool 

interaction with the sclera provide important intraoperative 

information.49,50 During membrane peeling, for instance, the 

experimentally measured forces at the tool tip, assisted by 

robotic technology, were able to limit the final applied forces 

on the retina to those programmed in advance.

Theoretically, this technology will prevent future iatro-

genic retinal injuries due to excessive albeit imperceptible 

forces applied during surgery.51 Furthermore, a recent study 

described the development of a revolutionary robot-assisted 

system that minimized the forces applied on the sclera and 

optimized target illumination, without increasing the risk for 

macular light toxicity.52 A novel forcep that automatically 

releases tissue when force limits are met is in development.

Optical coherence tomography (OCT)
OCT technology has evolved over the last 2 decades from 

time domain to spectral domain and, most recently, to 

swept-source OCT. The applicability of such multimodal 

digital images for retinal study has improved in-clinic 

diagnostic accuracy.53 Recently, OCT has been applied 

as a distance sensor for intraoperative tool control and 

has been studied as a promising image guidance modal-

ity for real-time forward viewing during MIS.54,55 The 

early application of spectral domain technology for this 
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purpose has evolved to include swept-source OCT. Smart 

micromanipulation-aided robotic-surgical tool is a newly 

developed microsurgical  platform that couples swept-source 

common path OCT with the shaft of a surgical micro instru-

ment. Utilizing distance sensing  information to drive a 

compensating piezoelectric micro motor, undesirable hand 

tremor is canceled.56–60

A significant reduction in surgeon hand tremor, together 

with an enhanced ability to accurately and precisely approach 

a surgical target, was achieved by incorporation of OCT sens-

ing into microsurgical tools. Improvement in micron-scale 

maneuvers, reduction in the freehand surgical risks and inno-

vation of microsurgical training methods have all emerged 

as possible.56,60 Lack of proximity sensing is considered an 

important factor that contributes to surgical risk and may 

reduce the likelihood of achieving surgical goals. During 

freehand microsurgery, this issue is not solvable given human 

physiological limits. It is however, solved by real-time OCT 

scanning, producing images of local anatomy and allowing 

real-time and continuous calculation of the distance of the 

instrument from the retinal surface and also the depth of tool 

penetration into the retina.61

Training process and telemedicine
The recent technological advances have dramatically 

affected training of surgeons worldwide, especially facili-

tating the standardization of complex procedures through 

 tele-mentoring systems and systematic guidance during 

surgery.62,63 In recent years, several virtual reality robotic 

systems have been developed for application in training, 

preoperative planning and assistance in performing surgery. 

Moreover, virtual simulations are a new technology that 

enables training under uniform conditions before entering 

clinical practice and provides assessment and acquisition of 

skills for specific surgical procedures.64,65 With an increased 

number of ophthalmologists adhering to the use of virtual 

simulators, surgical training is becoming more efficient, more 

realistic and more critically standardized.66

Vitreoretinal surgery with robotic 
assistance
Ophthalmic robots can be broadly classified into three main 

categories: assistive handheld instruments, comanipulation 

platforms, and tele-manipulation systems. Handheld instru-

ments have some advantages, such as requiring fewer DOFs 

and possessing a smaller footprint, which makes it mechani-

cally simpler and significantly less expensive to produce and 

implement into clinical application. Moreover, the intuitive 

feel of a handheld micro instrument is maintained and motion 

control of the tool remains in the surgeon’s hands. These 

attributes not only contribute to surgeon acceptance, but 

also may enhance safety and control for the robot, since the 

surgeon can respond quickly and finish the procedure in the 

traditional way in case of robotic failure, unexpected patient 

Figure 1 Conceptual design of three-DOF force-sensing micro-forceps compatible with the steady-hand robot, which will replace the previously developed two-DOF version.
Note: © 2013 IEEE. Reprinted, with permission, from Gonenc B, Handa J, Gehlbach P, Taylor RH, Iordachita I. Design of 3-DOF force sensing micro-forceps for robot 
assisted vitreoretinal surgery. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:5686–5689.40

Abbreviations: DOF, degrees of freedom; FBG, fiber Bragg grating.
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movement or they are able to simply perform the portions 

of the surgery that are more efficiently executed freehand.41,67 

When working through a cooperative-assisted robot, the sur-

geon and the machine share control of a tool through a force 

sensor. The system “feels” the force exerted by the physician 

on the tool and processes this information in various modes 

specific to its programming to provide smooth, tremor-free, 

precise, positional control and force scaling to the effector-

tool motion.68 Finally, in order to improve the quality of the 

retinal surgical procedures, tele-operated systems have been 

developed and implemented with the benefits of motion scal-

ing, force feedback and better ergonomics.69

The first published report of robotic-assisted eye surgery 

was the Stereo-Taxical Micro-Manipulator for Ocular Sur-

gery robot developed by Guerrouad and Vidal17 in 1989 at the 

Automatical Center of Lille in France. The system consisted 

of a “carrier” with x, y and z DOF and a “wrist” with four 

DOFs, permitting the device to work in spherical coordinates. 

Subsequent  developments saw the introduction of direct 

current motors for smoother instrument manipulation,70 fol-

lowed by integration of computer systems to control up to 

six DOFs  mathematically. Rather than relying on physical 

constraints, allowing manipulation of an end effector by a 

multidimensional surgeon-operated joystick connected to its 

computer controller.71

In the early 1990s, Hunter et al72 developed a remote 

tele-operated system for use in a virtual operative training 

environment. It is comprised of a force-reflecting master and 

slave micro motion robot that the surgeon could manipulate 

remotely while wearing a virtual reality headset to control 

the orientation of a stereo camera system. This allowed the 

operator to experience simulated visual and mechanical 

sensations during surgery.72 The emerging tele-manipulation 

model comprising master and slave components was used 

in a collaboration between Steve Charles and the National 

Aeronautics and Space Administration (NASA) jet propul-

sion laboratory.73 The robot-assisted microsurgery device 

comprised of an arm with six tendon-driven joints measuring 

2.5 cm in diameter and was 25 cm in length. In mock surgery 

testing, it was able to remove a 0.015-inch diameter particle 

from a simulated eyeball.73

In addition to motion scaling, a key feature of tele-

manipulation systems is the RCM. To eliminate unwanted 

rotational eye movements during intraocular instrument 

manipulation, the fulcrum point, or RCM, of all x and y axes 

motion is positioned at a point in space beyond the tip of 

the “slave” instrument manipulator. This coincides in three 

dimensions with the sclerotomy through which instruments 

enter and exit the eye during retina surgery. The RCM thereby 

reduces unwanted forces being applied to the eye wall during 

instrument manipulation that would interfere with precision 

tracking and intraocular movement of the instrument tip. 

This application can be actualized using software, hardware 

or both.

In 1998, an Australian group led by Constable published 

on the efficacy of a robotic system in animal eyes that was 

capable of rotating about a laser-guided entry point. Four 

different procedures were performed: 1) drug delivery, 

2) oxygen measurement, 3) micro cutting using standard 

endo-scissors (Grieshaber, Kennesaw, GA, USA) and 4) 

drainage device implantation.74 Perhaps, most significantly, 

they were able to place a drug-filled glass pipette into a single 

retinal artery and deliver a controlled dose of the drug into 

the vessel without significant trauma. This was made pos-

sible by the robot’s ultra-fine spatial resolution of 0.5 μm.74 

A master/slave tele-operated system has also been developed 

by the University of Tokyo,75,76 which was used to perform 

microcannulation of a 70- μm diameter retinal vessel in an 

ex vivo porcine eye using a 30- μm glass micropipette.4

In a departure from the bulkier tele-operated systems 

that impose a physical separation between control input 

and manipulator output, Riviere et al77 designed a freehand 

active tremor-cancellation system called Micron, capable of 

motion sensing, filtering of erroneous motion and actuation 

of compensatory tip deflections. The handheld device kept 

instrument size and weight as close as possible to those of 

existing passive instruments. The more natural feel of this 

system was one of its key advantages, although unlike a tele-

operated system, precise motion scaling was not possible.

Micron consisted of a motion-sensing module mounted 

to the back end of the steady-hand instrument handle that 

detected translation and rotation movements in six DOFs 

and used a dynamic sinusoidal model to cancel erroneous 

motion by estimating the time-varying frequency, amplitude 

and phase of surgeon tremor. This required sampling at a 

frequency >12 Hz to accommodate physiological tremor 

(typically between 8 and 12 Hz).78 Stacked piezoelectric 

actuators were used to effect tremor cancelation in the 

instrument. Experimental results showed that the prototype 

affected a statistically significant reduction in position error 

for both trained surgeons and nonsurgeons.79 Application in 

intraocular surgery has proven a challenge given the external 

guidance system in early generation systems.

U-Xuan Tan et al80 pursued a similar strategy in the 

development of a cost-effective, 3D-printed, handheld 

micromanipulator. The unique feature of this device was its 
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use of flexures rather than pin and ball joints that facilitated 

a monolithic construction. This was not only conducive to 

3D printing, but also potentially advantageous with respect to 

sterilization and long-term maintenance. Moreover, in order 

to address both controlled tremor-free motion and limitation 

of applied forces to the retina, Gonenc et al67 developed 

a system for membrane peeling that combined the active 

tremor-canceling handheld micromanipulator, Micron, with 

a force-sensing motorized micro- forcep. Three FBGs were 

incorporated onto the tip module to provide two-DOF force 

sensing capability with a resolution of 0.3 mN (Figure 2).

The design of retinal microsurgery robots has not been 

restricted to single-arm devices. Wei et al81,82 presented plans 

for a two-armed 16-DOF hybrid robotic system comprising 

a frame attached to the patient’s head to which two identical 

hybrid robotic arms would rigidly attach. Movement of each 

insertion arm was restricted at the insertion point to the veloc-

ity of the eye surface at that point, plus any velocity along 

the z-axis of the instrument, i.e., employing the concept of 

RCM for each arm.

Eye Robot 2 is a novel augmented cooperative control 

method developed at the Johns Hopkins Hospital22,30,83 that 

incorporates both a significantly improved manipulator and 

an integrated microforce sensing tool (Figure 3). A series of 

experiments have been performed on the inner shell mem-

brane of raw chicken eggs with the aim of identifying and 

controlling the forces associated with peeling operations. 

In the steady-hand robot approach, both surgeon and robot 

“hold” the instrument with the latter superimposing motion 

control and high-resolution sensing on operator-initiated 

movements.

In addition to filtering surgeon tremor, an attractive fea-

ture of this device is its force scaling or micro force-guided 

cooperative control. This function aims to ameliorate one of 

the key difficulties of retinal surgery, which is the detection 

of exceedingly small forces – below the threshold of tactile 

detection84 – applied to intraocular tissues. Overlaid robotic 

augmentation prevents excessive forces from being gener-

ated at the instrument tip where sensors provide “real-time” 

feedback to the device. Under experimental conditions with 

a maximum force load set at 7 mN, the operator was guided 

in peeling tape or egg membrane following a gradient of 

force toward a local minimum resistance.83 Interestingly, 

this resulted in a peeling angle of ~45° that corresponded to 

the greatest mechanical advantage.

A novel approach under development by Kummer et al85 is 

the use of an array of electromagnets to magnetically control 

untethered intraocular microbots. Proof of principle has been 

demonstrated for this system by its control of NdFeB perma-

nent magnet cubes with an 800 μm (±100 μm) cube edge and 

a ~1.2- mm long 30-gage, glued-on needle tip. This punctur-

ing element was placed in a silicone oil suspension covering a 

chicken chorioallantoic membrane, and using camera feedback, 

it was possible to puncture larger blood vessels (~220 μm outer 

diameter) of the chorioallantoic membrane under magnetic 

guidance.85 Magnetic control has been used in other fields of 

medicine, including a navigation system for endocardial cath-

eter ablation and gastrointestinal capsule endoscopy.86

A tele-operated system developed by researchers from 

the Eindhoven University of Technology has been used to 

relieve experimental retinal vein occlusion by direct intralu-

minal injection of ocriplasmin into a porcine model.87,88 The 

Preceyes master/slave layout facilitates motion scaling and 

tremor filtering and has a standby function89 that could also 

be used to deliver slow injections into anatomical locations 

demanding supreme precision such as into the subretinal 

space for retinal gene therapy. It also features an integrated 

z-axis virtual boundary that can be set by the operator to 

limit the amplitude of advancements in that plane directed by 

operator input. This serves as both a precision and safety fea-

ture of the device. Together, the system represents precision 

improvement of 10–20 times compared to the human hand.89

Robotic augmentation in ophthalmic surgery has not 

been restricted to the retina; it has also been explored in 

Figure 2 Left, motorized force-sensing micro-forceps magnified image. Right, (a) 
Force-sensing micro-forceps integrated with a handheld micromanipulator (Micron). 
(b) Two-DOF force-sensing micro-forceps for the steady-hand robot. (c) 23-gage 
disposable forceps (Alcon Laboratories, Inc., Fort Worth, TX, USA).
Note: © 2014 IEEE. Reprinted, with permission, from Gonenc B, Feldman E, 
Gehlbach P, Handa J, Taylor RH, Iordachita I. Towards robot-assisted vitreoretinal 
surgery: force-sensing microforceps integrated with a handheld micromanipulator. 
Paper presented at: 2014 IEEE International Conference on Robotics and 
Automation (ICRA); May 31, 2014–June 7, 2014; 2014.66

Abbreviations: DOF, degree of freedom; FBG, fiber Bragg grating.

Hand-held
micromanipulator

a b c

Linear
micromotor

FBGsM
ot

or
iz

ed
 fo

rc
e-

se
ns

in
g 

m
ic

ro
-fo

rc
ep

s

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Robotic Surgery: Research and Reviews 2018:5 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

7

Robot-assisted vitreoretinal surgery

the  anterior segment. Using a dual instrument tele-operated 

master/slave system called Intraocular Robotic Interventional 

and Surgical System, Rahimy et al90 were able to create a 

continuous curvilinear anterior capsulorhexis with removal 

of cortical lens material from the capsular bag in porcine 

eyes. This was in addition to the system performing a pars 

plana vitrectomy and inducing a posterior vitreous detach-

ment. They were also able to demonstrate micro cannulation 

of porcine retinal vessels without traumatizing surrounding 

tissue.90 Bimanual tele-operated penetrating keratoplasty 

has been performed in porcine eyes and cadaveric human 

eyes using three arms of a da Vinci surgical robot (Intuitive 

Surgical Inc.).91 Mechanical trephination, cardinal sutures, 

continuous 10/0 nylon sutures and suture adjustments were 

all managed using this robotic system.

Present limitations, challenges and 
future directions
A rapidly growing body of evidence is emerging that robotic 

devices, strategically applied may provide a higher level of 

surgical capability than is possible using freehand proce-

dures. This observation strongly supports the premise that 

research in the field should be continued and suggests that 

the return on such investments of time and resources will be 

rewarded. As part of the emergence and relative infancy of 

the field, it is also expected that a number of well-defined, 

as well as yet undiscovered risks and complications remain 

to be addressed. The points of maximum impact in surgical 

care have not yet been fully defined and there will be aspects 

of freehand microsurgery for which robotic implementation 

is cost prohibitive or is simply not advantageous. Moreover, 

identifying these points of high value in implementation 

will be of great utility in creating surgeon, payer and patient 

acceptance.92,93 Questions relating to comparative efficacy, 

cost, safety and relevant use remain unanswered at this time, 

given the lack of long-term comparative studies available 

to date.94,95

In this context, a recent study directed at understanding 

surgeon perception of importance of various aspects of vit-

reoretinal surgical systems found that precision and safety 

remain very important as has been previously reported in the 

literature. High importance was also ascribed to mechanism 

stability, excellent visualization, collision avoidance and 

compatibility with the surgical environment. These attributes 

were valued relatively higher than positioning control and 

cost of the device, as is the case with robotic technology.96

There are already several surgical procedures for which 

robotic intervention has been considered as the new gold 

standard.97 Recent advances in robot-assisted vitreoretinal 

surgery reflect innovative engineering developments in the 

field, including but not limited to, tools that are progressively 

smaller in diameter, high-speed cutters, better  visualization 

Figure 3 Eye Robot 2 is an intermediate design toward a stable and fully capable microsurgery research platform for the evaluation and development of robot-assisted 
microsurgical procedures. A close-up view of its end effector is shown.83

Note: © 2010 IEEE. Reprinted, with permission, from Uneri A, Balicki MA, Handa J, Gehlbach P, Taylor RH, Iordachita I. New steady-hand eye robot with micro-force sensing 
for vitreoretinal surgery. Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2010;2010(26–29):814–819.83

Abbreviation: RCM, remote center of motion.
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systems and wide-field illumination probes. The rapid 

advances in instrumentation and mechanization in this very 

challenging field have positioned it as an ideal point of entry 

for novel robotic systems.98 This is made most apparent in 

recent news reports of the Preceyes team performing the 

world’s first robotic intraocular surgery. At the time of writ-

ing, this clinical trial involved 12 patients. In the initial study, 

the robot was used for membrane peeling, and in the second 

part, robot-assisted with subretinal injection in preparation 

for retinal gene therapy.99

Conclusion
Robotics technology has begun to have a significant impact 

on many surgical specialties. An increasing number of robotic 

systems and task-specific applications are now being sold 

worldwide. Against this backdrop, the small but highly techni-

cal field of robotic retinal surgery is rapidly evolving and has 

witnessed an exponential growth in technological develop-

ment and capabilities over the last three decades. With the 

emergence of relevant capabilities including, but not limited 

to, tremor cancelation, enhanced dexterity, haptic feedback, 

micron-scale distance sensing and sensor-servo functions and 

others. Robotics has become among the most promising trends 

in advancing the field of retinal microsurgery. Currently, there 

is a broad lack of clinical experience among potential users, 

and medical robotics is still associated with real challenges to 

implementation, including but not limited to learning curves, 

costs, risks and complications. However, given the emerg-

ing advantages of robotic medicine, continuous support and 

investment in the field are warranted.
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