REVIEW

1121

rs11614913 polymorphism in miRNA-196a2 and cancer risk: an updated meta-analysis

Yuhan Liu^{1,*} Anbang He^{1,2,*} Baoer Liu¹ Yucheng Zhong¹ Xinhui Liao¹ Jiangeng Yang¹ Jieqing Chen¹ Jianting Wu¹ Hongbing Mei¹

¹Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China; ²Department of Urology, Peking University First Hospital, The Institute of Urology, Peking University, National Urological Cancer Centre, Beijing, China

*These authors contributed equally to this work

Correspondence: Hongbing Mei Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Sungang Road 3002, Futian District, Shenzhen 518000, China Email hbmei68@163.com

Abstract: Several epidemiological studies have reported that polymorphisms in microRNA-196a2 (miR-196a2) were associated with various cancers. However, the results remained unverified and were inconsistent in different cancers. Therefore, we carried out an updated meta-analysis to elaborate the effects of rs11614913 polymorphism on cancer susceptibility. A total of 84 articles with 35,802 cases and 41,541 controls were included to evaluate the association between the miR-196a2 rs11614913 and cancer risk by pooled odds ratios (ORs) and 95% confidence intervals (CIs). The results showed that miR-196a2 rs11614913 polymorphism is associated with cancer susceptibility, especially in lung cancer (homozygote comparison, OR = 0.840, 95% CI =0.734-0.961; recessive model, OR =0.858, 95% CI =0.771-0.955), hepatocellular carcinoma (allelic contrast, OR = 0.894, 95% CI = 0.800–0.998; homozygote comparison, OR = 0.900, 95% CI =0.813-0.997; recessive model, OR =0.800, 95% CI =0.678-0.944), and head and neck cancer (allelic contrast, OR =1.076, 95% CI =1.006-1.152; homozygote comparison, OR =1.214, 95% CI =1.043-1.413). In addition, significant association was found among Asian populations (allele model, OR =0.847, 95% CI =0.899-0.997, P=0.038; homozygote model, OR =0.878, 95% CI =0.788-0.977, P=0.017; recessive model, OR =0.895, 95% CI =0.824-0.972, P=0.008) but not in Caucasians. The updated meta-analysis confirmed the previous results that miR-196a2 rs11614913 polymorphism may serve as a risk factor for patients with cancers.

Keywords: miR-196a2, polymorphisms, cancer risk, meta-analysis

Introduction

The rising morbidity and mortality of cancer has drawn extensive attention worldwide, and finding possible risk factors of tumorigenesis has been a priority task for researchers. Recently, an increasing number of studies have focused on associations between miRNA polymorphisms and cancer susceptibility, which indicated that accumulation of genetic variants may be involved in cancer development, including oral cancer,¹ lung cancer,^{2,3} gastric cancer,⁴ breast cancer,⁵ glioma,⁶ non-small cell lung cancer,⁷ hepatocellular carcinoma,^{8,9} gallbladder cancer,¹⁰ and head and neck cancer (HNC).¹¹ As the molecular mechanism of cancer remains unclear, further exploration of more accurate cancer treatments and prognosis would be of great importance.

MiRNAs are a class of small non-coding RNAs with 18–25 nucleotides in length, which play as oncogenes or anti-oncogenes in the pathogenesis of tumor by targeting multiple genes.^{12–14} Studies have shown that almost 10%–30% of all human gene expressions have been regulated by mature miRNAs.¹⁵ MiRNAs could modulate related genes implicated in cellular processes, including cell differentiation, growth, apoptosis, and immune response.^{16–18}

Hsa-microRNA-196a2 (miR-196a2), initially discovered by Lagos-Quintana et al,¹⁹ has been proven to play important roles in various cancers.^{20,21} Single nucleotide

OncoTargets and Therapy 2018:11 1121-1139

Commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

polymorphisms (SNPs) provide new sources of genetic variation, which contribute to potential molecular mechanisms of cancer development.²² SNPs or mutations in miRNA sequence may transform miRNA expression and/or maturation, related to miRNA function by activating the transcription of the primary transcript, pri-miRNA and pre-miRNA processing, and miRNA-mRNA interactions.23 MiR-196a2 rs11614913, as a definitional miRNA polymorphism,²⁴⁻²⁶ is crucially associated with cancer risk.^{23,27} It is located in the 3'-untranslated region of the miR-196a2 precursor.²⁸ Hoffman et al⁵ also showed that miR-196a2 rs11614913 not only influenced the transcription level of mature miR-196a, but also had a biological effect on target gene production. This updated meta-analysis was performed to explore the association between the hsa-miR-196a2 polymorphism and cancer risk and to further estimate the overall cancer risk by pooling all available data.

Materials and methods Publication search

Two investigators (LYH, HAB) carried out a systematic review on PubMed, Cochrane Library, and Web of Science, by using ("microRNA-196a2" or "miR-196a2", or "miR-196-a-2" or "miR-196-2" or "miR-196-a" or "rs11614913"), and ("cancer" or "tumor" or "carcinoma" or "neoplasm" or "malignancy"), and ("polymorphism" or "variation" or "susceptibility") as the search terms in order to identify potentially eligible studies. We based our dates for literature retrieval from January 2008 to September 2017.

Inclusion and exclusion criteria

Relevant studies had to meet the following inclusion criteria: 1) full-text article; 2) evaluation of a link between miRNA polymorphisms and cancer risks; 3) sufficient data for estimating the odds ratio (OR) with 95% CI and a *P*-value. Studies containing two or more case-control groups were considered as two or more independent studies. Studies that were, 1) review, letters, and comment articles; 2) not for cancer risk; and 3) duplicate samples or publications, were excluded.

Assessment of study quality

The quality of the study was determined by the Newcastle– Ottawa Scale for cohort studies.

Data extraction

Data extraction from the eligible studies were performed independently by two authors (LYH, HAB), based on the

inclusion and exclusion criteria. For each publication, the following data were recorded: first author, date of publication, country of origin, ethnicity, type of tumor, source of control groups, total numbers of cases and controls, and genotyping method.

Statistical analysis

The departure of frequencies of miR-196a2 rs11614913 polymorphisms was assessed under the Hardy-Weinberg equilibrium (HWE) for each publication by adopting the goodness-of-fit test (chi-square or Fisher exact test). The association between the miR-196a2 rs11614913 polymorphisms and the risk of cancer was evaluated by calculating pooled OR together with corresponding 95% CI based on the method published by Woolf.²⁹ Also, a P-value<0.05 was considered statistically significant. In addition, we used stratified metaregression analyses to explore major causes of heterogeneity among the articles. We respectively examined the association between genetic mutants and cancer risk in allelic contrast (T vs C), homozygote comparisons (TT vs CC), heterozygote comparisons (TC vs CC), recessive model (TT vs TC+CC), and dominant model (TT+TC vs CC). Subgroup analyses were performed by ethnicity (Asian and Caucasian), tumor types (if one tumor type contained less than three individual studies, it was combined into "other cancer" subgroups), and source of control (hospital based and population based).

Q tests³⁰ and *P* tests³¹ were carried out to test the heterogeneity. *P* values describe the percentage of total variation across studies that are due to heterogeneity rather than chance. *P*=0% prompts no heterogeneity observed, with 25% identified as low, 50% as moderate, and 75% as high. If *P* was \geq 50% or if the *P*-value of heterogeneity was <0.05, indicating significant heterogeneity among these articles, a randomeffect model was used;³² otherwise, a fixed-effect mode was used.³³ Sensitivity analyses were conducted to estimate the stability of the meta-analysis result. We adopted Egger's test to assess potential publication bias by visual inspection of the Funnel plot. A *P*-value <0.05 was regarded as an indication of potential publication bias.³⁴ All statistical analyses were performed with the Stata software package version 12.0 (Stata Corporation, College Station, TX, USA).

Results

Study identification

Overall, 84 articles,^{1–11,26,27,35–100} which were relevant to the search terms, were selected based on the inclusion criteria from PubMed, Cochrane, and Web of Science (Figure 1). These studies with a total of 35,802 cases and 41,541 controls

Figure I The flow diagram of the included and excluded studies.

were subjected to further checking. In the present metaanalysis, we excluded 73 articles (36 articles were metaanalysis, 22 articles did not express concern about cancer risk, 11 articles lacked detailed allele frequency data or OR calculation, and four articles were incomplete text). The included study characteristics are provided in Table 1.

In total, there were studies on hepatocellular carcinoma (n=14), breast cancer (n=14), colorectal cancer (n=10), gastric cancer (n=10), lung cancer (n=9), esophageal squamous cell carcinoma (ESCC; n=6), HNC (n=5), bladder cancer (n=2), prostate cancer (n=2), oral squamous cell carcinoma (n=2), epithelial ovarian cancer (n=2), renal cell cancer (n=1), glioma (n=1), pancreatic cancer (n=1), cervical cancer (n=1), nasopharyngeal carcinoma (n=1), gallbladder cancer (n=1), acute lymphoblastic leukemia (n=1), and non-Hodgkin lymphoma (n=1). There were 64 studies of Asians and 18 studies of Caucasians.

Among the genotyping methods used in these studies, 57 studies used polymerase chain reaction (including polymerase chain reaction restriction fragment length polymorphism and polymerase chain reaction-ligation detection reaction), 16 studies used Taqman SNP genotyping assay, and others used MassARRAY and DNA sequencing. The controls of 42 studies mainly came from a hospital-based healthy population matched for gender and age, and 42 studies had population-based controls (PB). The distribution of genotypes in the controls of all of the studies was in agreement with HWE (P > 0.05).

Quantitative synthesis

In this meta-analysis, we analyzed the hsa-miR-196a2 rs11614913 polymorphism in 84 comparisons with 35,802 cases and 41,541 controls. All the studies were pooled into the meta-analysis, and the results showed that the hsa-miR-196a2 rs11614913 polymorphism was significantly associated with the risk of cancer in the following genetic models: TT vs CC: OR =0.900, 95% CI =0.813–0.987, P=0.043; TT vs TC+CC: OR =0.918, 95% CI=0.851–0.989, P=0.025.

Then, we performed the subgroup analysis of different specific cancer types, genotypes, control sources, and ethnicities (Table 2). In the different cancer types, close association between rs11614913 and cancer risk was found for lung cancer (homozygote comparison, OR =0.840, 95% CI =0.734–0.961, *P*=0.011; recessive model, OR =0.858, 95% CI =0.771–0.955, *P*=0.005), hepatocellular carcinoma (allelic contrast, OR =0.894, 95% CI =0.800–0.998, *P*=0.047; homozygote comparison, OR =0.800, 95% CI =0.678–0.944, *P*=0.039; recessive model, OR =0.800, 95% CI =0.678–0.944, *P*=0.008), and HNC (allelic contrast, OR =1.076, 95% CI =1.006–1.152, *P*=0.033; homozygote comparison, OR =1.214, 95% CI =1.043–1.413, *P*=0.012; Figures 2 and 3). However, the association between rs11614913 and

Author	Year	Country	Ethnicity	Cancer			Case	9		Con	trol		HWE
				type	method	control	тт	ст	сс	тт	СТ	сс	
Hu et al ⁷	2008	China	Asian	LC	PCR	РВ	152	264	140	32	52	23	0.827
Hu et al ³⁵	2009	China	Asian	BRC	PCR-RFLP	PB	287	483	239	358	517	218	0.207
Tian et al ³	2009	China	Asian	LC	PCR-RFLP	PB	293	512	253	307	519	209	0.700
Hoffman et al⁵	2009	USA	Caucasian	BRC	TaqMan	НВ	71	229	166	36	209	181	0.583
Catucci et al ³⁶	2010	Italy	Caucasian	BRC	TaqMan	PB	244	842	776	377	1,246	1,116	0.326
Wang et al ³⁸	2010	China	Asian	ESCC	PCR	PB	48	262	148		250	128	0.600
Okubo et al ⁸³	2010	Japan	Asian	GC	Gel Pictures	НВ	166	281	105	372	592	216	0.466
Peng et al⁴	2010	China	Asian	GC	PCR-RFLP	PB	43	94	76	50	107	56	0.936
Srivastava et al ¹⁰	2010	India	Asian	GLC	PCR-RFLP	PB	121	97	21	121	94	15	0.566
Dou et al ⁶	2010	China	Asian	Glioma	PCR-LDR	HB	189	343		208	305	143	0.119
Li et al ⁹	2010	China	Asian	HCC	PCR-RFLP	НВ	82	150	78	78	102	42	0.402
Akkiz et al ⁸	2010	Turkey	Caucasian	HCC	PCR-RFLP	HB	22	86	77	40	87	58	0.492
Liu et al ¹¹	2010	USA	Caucasian	HNC	PCR-RFLP	PB	194	565	350	202	545	383	0.737
Kim et al ¹¹⁰	2010	Korea	Asian	LC	PCR-RFLP	НВ	162	305	187	185	300	155	0.126
Catucci et al ³⁶	2010	Germany	Caucasian	BRC	MassARRAY	PB	216	696	584	157	512	432	0.711
Christensen et al ³⁷	2010	USA	Caucasian	HNC	AppliedBiosystems	PB	0	302	182	0	367	188	NA
Mittal et al ⁴¹	2011	India	Asian	BLC	PCR-RFLP	РВ	5	131	76	14	127	109	0.003
edlinski et al⁴0	2011	Australia	Caucasian	BRC	PCR	PB	33	86	68	31	82	58	0.830
Zhan et al ⁴²	2011	China	Asian	CRC	PCR-RFLP	НВ	56	128	68	163	267	113	0.849
Zhou et al43	2011	China	Asian	CSCC	PCR-RFLP	PB	57	123	46	82	169	58	0.077
Vinci et al ¹¹¹	2011	Italy	Caucasian	LC	TaqMan	РВ	12	54	35	10	61	58	0.267
Hong et al ²	2011	Korea	Asian	LC	TaqMan	НВ	96	224	86	134	198	96	0.163
George et al ³⁹	2011	Italy	Caucasian	PC	PCR-RFLP	РВ	3	101	55	10	114	106	0.002
Linhares et al ⁴⁵	2012	Brazil	Mix	BRC	TaqMan	HB	117	177	94	96	165	127	0.005
Chen et al ⁴⁴	2012	China	Asian	CRC	PCR-LDR	HB	35	64	27	107	206	94	0.788
Min et al ²⁴	2012	Korea	Asian	CRC	PCR-RFLP	HB	125	201	120	148	254	100	0.633
Zhu et al ⁴⁷	2012	China	Asian	CRC	TagMan	НВ	130	303	140	172	295	121	0.790
Hezova et al ²⁵	2012	Czech	Caucasian	CRC	TaqMan	НВ	26	89	82	22	103	87	0.291
Zhang et al ¹⁰⁰	2012	China	Asian	CRC	PCR-RFLP	PB	172	204	79	185	197	81	0.026
Ahn et al ⁴⁸	2013	Korea	Asian	GC	PCR-RFLP	PB	119	242	100	128	232	87	0.322
Yoon et al ⁴⁶	2013	Korea	Asian	LC	TagMan	PB	99	186	101	24	32	15	0.480
Zhang et al ¹⁰⁴	2012	China	Asian	BRC	PCR-RFLP	PB	133	93	17	148	89	11	0.893
Chu et al ⁸⁷	2012	China	Asian	HNC	PCR-RFLP	НВ	136	277	57	132	206	87	0.690
Vinci et al ¹¹³	2012	Italy	Caucasian	CRC	HRMA	НВ	12	86	62	11	84	83	0.070
Lv et al ⁵¹	2013	China	Asian	CRC	PCR-RFLP	PB	114	223	10	91	331	109	0.000
Umar et al ¹¹²	2013	India	Asian	ESCC	PCR-RFLP	НВ	22	121	146	16	122	171	0.330
Wei et al ¹¹⁴	2013	China	Asian	ESCC	SNPscanTM	HB	106	196	65	113	170	87	0.141
Toraih et al ⁹⁸	2016	Egypt	Caucasian	OSCC	PCR	PB	32	93	84	10	35	55	0.221
Wang et al ⁵³	2013	China	Asian	GC	TagMan	НВ	226	371	152	232	448	220	0.898
Zhang et al ⁵⁵	2013	China	Asian	HCC	MassARRAY	НВ	294	488	214	328	502	165	0.245
Han et al ⁴⁹	2013	China	Asian	HCC	PCR	PB	305	505	207	304	485	220	0.310
Tong et al ⁶⁵	2013	China	Asian	ALL	TagMan	НВ	159	308	103	237	307	129	0.434
Pavlakis et al ⁹³	2013	Greece	Caucasian	PCC	PCR-RFLP	НВ	48	33	12	50	58	14	0.647
Pu et al ⁸⁴	2014	China	Asian	GC	PCR-RFLP	HB	25	95	39	86	324	101	0.000
Bansal et al ⁵⁶	2014	India	Asian	BRC	PCR-RFLP	PB	12	41	68	21	59	85	0.042
Kupcinskas et al ⁶²	2014	Lithuania	Caucasian	CRC	PCR	HB	27	87	79	54	174	199	0.104
Qu et al ⁶⁴	2014	China	Asian	ESCC	PCR	PB	48	207	126	82	211	133	0.918
Wang et al ⁶⁶	2014	China	Asian	ESCC	PCR-LDR	PB	162	307	128	154	298	145	0.970
Dikeakos et al ⁵⁸	2014	Greece	Caucasian	GC	PCR-RFLP	НВ	15	46	102	172	229	79	0.850
Qi et al ⁸⁶	2014	China	Asian	HCC	PCR	НВ	60	209	45	121	214	71	0.156
Chu et al ⁵⁷	2014	China	Asian	НСС	PCR-RFLP	НВ	66	81	41	100	167	70	0.986
Parlayan et al ¹¹⁵	2014	Japan	Asian	LC	TagMan	НВ	38	81	29	146	270	108	0.410
Li et al ⁶³	2014	China	Asian	NPC	TaqMan	НВ	322	489	209	270	518	218	0.301
Du et al ^{59,60}	2014	China	Asian	RCC	PCR	НВ	121	189	43	109	179	74	0.974
Omrani et al ⁸⁵	2014	Iran	Asian	BRC	PCR-RFLP	PB	0	25	78	0	18	218	NA
Kou et al ⁹¹	2014	China	Asian	HCC	PCR	НВ	37	150	84	103	304	125	0.001
Roy et al ⁹⁴	2014	India	Asian	HNC	AppliedBiosystems	НВ	46	187	218	38	168	242	0.250
						. 16			210				ntinued

(Continued)

Table I (Continued)

Author	Year	Country	Ethnicity	Cancer	Genotyping	Source of	Case	e		Con	trol		HWE
				type	method	control	тт	ст	сс	тт	СТ	сс	
Li et al ⁶³	2014	China	Asian	HNC	AppliedBiosystems	РВ	322	489	209	270	518	218	0.300
Deng et al ⁶⁷	2015	China	Asian	BLC	PCR-RFLP	PB	52	66	41	76	166	56	0.040
Qi et al ⁷²	2015	China	Asian	BRC	PCR	PB	168	119	34	185	88	17	0.141
Dikaiakos et al ⁶⁸	2015	Greece	Caucasian	CRC	PCR-RFLP	PB	69	69	19	117	149	33	0.156
Li et al ⁶⁹	2015	China	Asian	HCC	PCR	НВ	51	131	84	30	123	113	0.689
Li et al ⁶⁹	2015	China	Asian	NHL	PCR-RFLP	PB	111	146	61	144	134	42	0.225
Nikolic et al ⁷¹	2015	Serbia	Caucasian	PC	PCR-RFLP	PB	40	161	150	41	147	121	0.728
He et al ⁹⁰	2015	China	Asian	BRC	MassARRAY	НВ	134	223	93	136	233	81	0.990
Sushma et al ⁹⁷	2015	India	Asian	OSCC	PCR-RFLP	PB	68	10	22	81	15	6	0.212
Sodhi et al ⁹⁵	2015	India	Asian	LC	PCR-RFLP	PB	19	161	70	8	146	101	0.000
Jiang et al ²⁶	2016	China	Asian	GC	PCR	НВ	300	423	166	290	487	198	0.804
Dai et al ⁷⁴	2016	China	Asian	BRC	MassARRAY	НВ	98	265	197	144	284	155	0.540
Zhao et al ⁸²	2016	China	Asian	BRC	TaqMan	PB	33	50	31	25	61	28	0.449
Song et al ⁷⁹	2016	China	Asian	OC	PCR	PB	111	247	121	142	203	86	0.385
Shen et al ⁷⁸	2016	China	Asian	ESCC	SNaPshot	PB	407	698	295	672	1,121	392	0.043
Li et al ⁷⁵	2016	China	Asian	GC	PCR	НВ	75	83	24	92	79	11	0.265
Li et al ⁷⁶	2016	China	Asian	HCC	PCR	HB	20	64	25	35	52	18	0.861
Xu et al ⁸⁰	2016	China	Asian	HCC	PCR-RFLP	НВ	56	128	68	163	267	113	0.849
Qiu and Liu ⁷⁷	2016	China	Asian	HCC	PCR	PB	61	141	68	70	121	46	0.626
Jiang et al ²⁶	2016	China	Asian	HCC	TaqMan	PB	159	308	103	237	307	129	0.099
Yin et al ⁸¹	2016	China	Asian	LC	TaqMan	PB	149	298	128	178	297	133	0.664
Zhang et al ⁹⁹	2016	China	Asian	HCC	PCR-RFLP	НВ	65	85	25	122	138	42	0.770
Sun et al ⁹⁶	2016	China	Asian	OC	PCR	НВ	39	66	29	77	116	34	0.360
Toraih et al ⁹⁸	2016	Egypt	Caucasian	HCC	PCR	PB	П	31	23	17	53	80	0.082
Morales et al ⁹²	2016	Chile	Mix	BRC	TaqMan	НВ	57	191	192	114	351	342	0.121
Gu and Tu ⁸⁸	2016	China	Asian	GC	PCR	HB	51	96	39	31	98	57	0.310
Hashemi et al ⁸⁹	2016	Iran	Asian	GC	PCR-RFLP	PB	17	88	64	12	93	77	0.021

Abbreviations: ALL, acute lymphoblastic leukemia; BLC, bladder cancer; BRC, breast cancer; CRC, colorectal cancer; CSCC, cervical cancer; ESCC, esophageal squamous cell carcinoma; GC, gastric cancer; GLC, gallbladder cancer; HB, hospital based; HCC, hepatocellular carcinoma; HNC, head and neck cancer; HRMA, high-resolution melting analysis; HWE, Hardy–Weinberg equilibrium of controls; LC, lung cancer; NHL, non-Hodgkin lymphoma; NPC, nasopharyngeal carcinoma; NA, not available; OC, ovarian cancer; OSCC, oral squamous cell carcinomas; PB, population based; PC, prostate cancer; PCC, pancreatic cancer; PCR, polymerase chain reaction; PCR-LDR, polymerase chain reaction-ligation detection reaction; PCR-RFLP, polymerase chain reaction restriction fragment length polymorphism; RCC, renal cell carcinoma.

breast cancer, ESCC, gastric cancer (GC), or colorectal cancer (CRC) is not statistically significant.

In ethnic subgroup analysis, a strong association was found between rs11614913 and cancer risk in the allelic contrast (T vs C: OR =0.847, 95% CI =0.899-0.997, P=0.038), the homozygote comparison (TT vs CC: OR =0.878, 95% CI =0.788-0.977, P=0.017), and the recessive model (OR =0.895, 95% CI =0.824–0.972, P=0.008) among Asians, whereas negative results were obtained for Caucasians in all genetic models. Additionally, decreased risk was observed in the polymerase chain reaction (PCR) method for the homozygote comparison (TT vs CC: OR =0.849, 95% CI =0.732-0.986, P=0.032) and the recessive model (TT vs TC+CC: OR =0.880, 95% CI =0.800-0.969, P=0.009), and no significant association of cancer risk was found in Taqman and other methods.

Test of heterogeneity

Among the studies of rs11614913, we found heterogeneity in overall comparisons and subgroup analysis. Moreover, the heterogeneity we evaluated for all genetic models by ethnicity, cancer type, source of controls, as well HWE status was significant. However, we found that heterogeneity could not be explained by the variable ethnicity, cancer type, source of controls, and HWE status (data not shown).

Sensitivity analysis

Sensitivity analysis was conducted to assess the effect by excluding a single study in turn. Sensitivity analysis of the rs11614913 polymorphism in an allelic comparison is presented in Table S1. Overall, we found that no individual study had an influence on the pooled OR. The results demonstrated that the pooled ORs were not materially altered, suggesting the stability of our meta-analysis.

Publication bias

The publication bias of the present meta-analysis was assessed by Begg's funnel plot and Egger's test. The funnel plot for the rs11614913 polymorphism in the allelic comparison is presented

rs 6 49 3	n ^a	Case/	T vs C				TT vs CC				TC vs CC			
		control	OR (95% CI)	P-value	H-4	1², %	OR (95% CI)	P-value	P-H	1², %	OR (95% CI)	P-value	P-H	12,%
(A)														
Fotal .	8 :	35,802/41,541	0.958 (0.911–1.008)	0.096	0.000	81.30	0.900 (0.813–0.987)	0.043	0.000	78.80	1.005 (0.935–1.079)	0.902	0.000	71.60
Genotyping method	nethoc													
PCR	57	19,301/22,204	0.939 (0.871–1.012)	0.100	0.000	84.50	0.849 (0.732–0.986)	0.032	0.000	81.70	0.987 (0.883–1.102)	0.812	0.000	77.40
Taqman Ethnicity	9	8,565/10,286	1.021 (0.940–1.110)	0.618	0.000	67.40	I.059 (0.894–I.253)	0.507	0.000	65.70	1.053 (0.977–1.134)	0.174	0.410	3.70
Acian	77	(50 5/755 BC	10 847 /0 889_0 997	0.028	0000	77.00	0 878 /0 788 /0 977/	2100	0000	76.00		0759		06 77
Caucasian	5 🗠	7.321/8.414	0.997 (0.842–1.181)	120.0	0.000	90.30	0.974 (0.714–1.329)	0.870	0.000	86.10	0.963 (0.785–1.180)	0.714	0.000	83.90
Cancer type		х. х									~			
BRC	4	7.760/8.811	0.972 (0.869–1.088)	0.626	0.000	79.70	0.972 (0.869–1.088)	0.341	0.000	72.80	0.979 (0.854–1.121)	0.754	0.001	61.50
CRC	0	2 906/4 150	1 051 (0 867-1 276)	0611	0000	86 50		0431	0000	87.60	1 121 (0832-1510)	0454	0000	81.10
	2. 4	3 497/4 376	0.944 (0.816-1.091)	0.435	0001	76.80	0 944 (0 816-1 091)	0 385	0000	87.40	1 050 (0 878-1 255)	0 594	0.040	57.20
	5 9	2,772/E 7E2			0000			200.0	0000	01.50		0 1 5 2		07.00
	2 2	007,0/07/,0		1470	00000	00.07		0/7/0	00000	01.17			0.000	00.10
	<u>t</u> .	700/0/07/4		2 t 0 0	0.00 1000	00.27		4000 0100	0.000	00.07	0.701 (0.030-1.147)	010.0		
	0 0	3,234/3,264	(201-000-1) 0/01	0.033	C87.0	20.40	1.214 (1.043-1.413)	710.0	0.380	01.07	(164.1–224.0) /61.1	407.0 0 0 0 1	0.003	i, i
ب د	٨	2,/86/3,191	(860.1–468.0) د۲.۷	0.354	770.0	02.55	0.840 (0.734–0.961)	0.011	670.0	48.10	0.447 (0.889–1.118)	0.961	0.056	47.20
Design	!													
PB	42	20,691/21,533	0.968 (0.907–1.033)	0.324	0.000	77.20	0.899 (0.777–1.017)	0.087	0.000	74.70	1.018 (0.928–1.117)	0.703	0.000	66.60
HB	42	15,111/20,008	0.945 (0.873–1.024)	0.167	0.000	84.50	0.906 (0.813–0.997)	0.211	0.000	81.90	0.987 (0.882–1.104)	0.822	0.000	75.90
rs 6 49 3		n ^a	TT vs TC+CC					F	TT+TC vs C	с С				
			OR (95% CI)	ď	P-value	H-4	Н Р,%	OR	OR (95% CI)	-	P-value	H-4		12, %
(B)														
Total		84	0.918 (0.851–0.989)	0.1	0.025	0.000	00 75.80	0.97	0.974 (0.901–1.052)	I.052)	0.498	0.000		78.40
Genotyping method	nethoc	_												
PCR		57	0.880 (0.800–0.9690)	0.6	0.009	0.000	-	0.94	0.949 (0.842–1.069)	I.069)	0.386	0.000		82.80
Faqman		16	1.000 (0.858–1.166)	0.9	0.996	0.000	00 71.90	1.0 <u>(</u>	1.063 (0.969–1.165)	I.I65)	0.195	0.095		34.10
Ethnicity														
Asian		64	0.895 (0.824–0.972)	0.0	0.008	0.000	00 76.50	0.97	0.972 (0.8396–1.005)	-I.005)	0.493	0.000		72.90
Caucasian		17	1.015 (0.820–1.256)	3.0	0.894	0.000	00 75.30	0.96	0.966 (0.766–1.219)	1.219)	0.772	0.000		89.30
Cancer type														
BRC		4	0.943 (0.815–1.091)	0.4	0.429	0.001	01 64.40	0.96	0.967 (0.830–1.126)	I.I26)	0.663	0.000		73.30
CRC		01	1.066 (0.823–1.381)	0.6	0.628	0.000	00 79.00		1.130 (0.826–1.546)	I.546)	0.444	0.000		84.70
ESCC		9	0.813 (0.610–1.085)	0.1	0.160	0.000	00 81.30)0.I	1.000 (0.822–1.216)	1.216)	0.997	0.008		67.80
CC		01	0.910 (0.697–1.189)	4.0	0.489	0.000	00 83.90	0.76	0.763 (0.507–1.148)	I. 148)	0.194	0.000		92.90
HCC			0.800 (0.678–0.944)	0.1	0.008	0.000		0.9	0.919 (0.776–1.089)	(089)	0.332	0.000		66.20
HNC			1.205 (0.799–1.817)	0.0	0.375	0.000			I. I 56 (0.950–I.406)	1.406)	0.148	0.011		69.10
Ľ		6	0.858 (0.771–0.955)	0.6	0.005	0.158		0.9	0.997 (0.834–1.191)	(191)	0.973	0.019		56.20
Design			~											
PB -		42	0.924 (0.826–1.034)	0.1	0.170	0.000	00 78.10	36.0	0.988 (0.897-1.087)	I.087)	0.800	0.000		72.40
HB			0.912 (0.823–1.010)	0.0	0.078	0.000		0.95	0.955 (0.843–1.081)	(180.)	0.465	0.000		82.70

submit your manuscript | www.dovepress.com

Dovepress

in Table S2. No evidence of publication bias was noted in Begg's funnel plot (T vs C [*P*-value for Begg's test =0.660], TT vs CC [*P*-value for Begg's test =0.971, Figure 4], TC vs CC [*P*-value for Begg's test =0.951], TT vs TC+CC [*P*-value for Begg's test =0.908, Figure 4], TC+TT vs CC [*P*-value for Begg's test =0.592]) and Egger's test (allele contrast [*P*=0.923], homozygous model [*P*=0.822], heterozygous model [*P*=0.761], recessive model [*P*=0.899], and dominant model [*P*=0.401]). The quality of included studies is presented in Table 3.

Discussion

MiRNAs are reported as critical posttranscriptional regulators in gene expression and are involved in various diseases. The associations between miR-196a2 rs11614913 polymorphism and susceptibility to different cancers are widely explored. Guo et al¹⁰¹ found that the C allele had the effect of increasing cancer risk in gastric cancer, and Ma et al¹⁰² found that TT could decrease the risk of colorectal cancer. Moreover, Wang et al¹⁰³ and Zhang et al¹⁰⁴ showed that the rs11614913 polymorphism has no association with the risk of hepatocellular carcinoma. However, the regulatory effects of miRNA in carcinogenesis remain unclear. Therefore, we performed this updated meta-analysis to explore the molecular mechanisms of the genetic associations between miRNA and SNPs with cancer risk.

MiR-196a2 is composed of two distinct mature miRNAs (miR-196a-3P and miR-196a-5P), which are processed from the same stem loop;¹⁰⁵ thus, the potential targets of miR-196a could be influenced by its altered expression patterns. SNPs in miRNAs could potentially affect the processing or target selection of miRNAs,^{106,107} which is identified as a key factor in oncogenesis, and contributes to regulate the translation or degradation of messenger RNA (mRNA).²³ Hoffman et al⁵ found that the expression of mature miR-196a2 was increased 9.3-fold in cells transfected with pre-miR-196a2-C but upregulated only by 4.4-fold with pre-miR-196a2-T, and that the C allele of rs11614913 increased mature miR-196a2 levels in lung cancer⁷ and CRC⁴² tissues. Xu et al¹⁰⁸ have shown that miR-196a2 rs11614913 CC is associated with significantly increased expression of mature miR-196a

Table 3	Methodological	quality of the i	included studies	according to the	e Newcastle–Ottawa scale
		quanty 01 0101			

Author	Adequacy	Representativeness	Selection	Definition	Comparability	Ascertainment	Same	Non-
	of case	of the cases	of controls	of controls	of cases/	of exposure	method of	response
	definition				controls		ascertainment	rate
Hu et al ⁷	*	*	*	*	**	*	*	NA
Hu et al ³⁵	*	*	NA	*	**	*	*	NA
Tian et al³	*	*	NA	*	*	*	*	NA
Hoffman et al⁵	*	*	*	*	*	*	*	NA
Catucci et al ³⁶	*	*	NA	*	**	NA	*	NA
Wang et al ³⁸	*	*	NA	*	**	*	*	NA
Okubo et al ⁸³	*	*	*	*	**	*	*	NA
Peng et al⁴	*	*	NA	*	**	NA	*	NA
Srivastava et al ¹⁰	*	*	NA	*	**	*	*	NA
Dou et al ⁶	*	*	NA	NA	*	NA	*	NA
Li et al ⁹	*	*	*	*	**	NA	*	NA
Akkiz et al ⁸	*	*	NA	*	**	NA	*	NA
Liu et al''	*	*	NA	*	*	*	*	NA
Kim et al ¹¹⁰	*	*	NA	NA	*	*	*	NA
Catucci et al ³⁶	*	*	*	*	**	*	*	NA
Christensen et al ³⁷	*	*	NA	*	**	*	*	NA
Mittal et al⁴	*	*	NA	*	**	*	*	NA
Jedlinski et al ⁴⁰	*	*	*	*	**	NA	*	NA
Zhan et al ⁴²	*	*	NA	*	*	NA	*	NA
Zhou et al ⁴³	*	*	NA	*	**	NA	*	NA
Vinci et al'''	*	*	NA	*	**	*	*	NA
Hong et al ²	*	*	NA	*	*	*	*	NA
George et al ³⁹	*	*	NA	*	**	*	*	NA
Linhares et al45	*	*	NA	*	**	*	*	NA
Chen et al44	*	*	NA	*	**	NA	*	NA
Min et al ²⁴	*	*	NA	*	**	*	*	NA
Zhu et al47	*	*	NA	*	**	*	*	NA
Hezova et al ²⁵	*	*	NA	*	**	NA	*	NA

(Continued)

Author	Adequacy of case	Representativeness of the cases		Definition of controls		Ascertainment	Same method of	Non-
	of case definition	of the cases	of controls	of controls	of cases/ controls	of exposure	ascertainment	response rate
Zhang et al ¹⁰⁰	*	*	*	*	**	*	*	NA
Ahn et al ⁴⁸	*	*	NA	*	**	*	*	NA
Yoon et al ⁴⁶	*	*	NA	*	**	*	*	NA
Zhang et al ¹⁰⁴	*	*	*	*	**	NA	*	NA
Chu et al ⁸⁷	*	*		*	**		*	
Vinci et al ¹¹³	*	*	NA *	*	**	NA NA	*	
Vinci et al ⁵¹	*	*	*	*	**	NA	*	
	*	*			**	NA *	*	NA
Umar et al ¹¹²	*	*	NA	NA *	**	*	*	NA
Wei et al ¹¹⁴			NA			*		NA
Toraih et al ⁹⁸	*	*	NA	*	**		*	NA
Wang et al ⁵³	*	*	NA	*	**	NA	*	NA
Zhang et al⁵⁵	*	*	NA	NA	**	NA	*	NA
Han et al ⁴⁹	*	*	*	*	**	*	*	NA
Tong et al ⁶⁵	*	*	NA	*	**	*	*	NA
Pavlakis et al ⁹³	*	*	NA	*	**	*	*	NA
Pu et al ⁸⁴	*	*	*	*	**	NA	*	NA
Bansal et al⁵	*	*	NA	*	**	*	*	NA
Kupcinskas et al ⁶²	*	*	*	*	**	*	*	NA
Qu et al ⁶⁴	*	*	NA	NA	**	*	*	NA
Wang et al ⁶⁶	*	*	NA	*	**	*	*	NA
Dikeakos et al ⁵⁸	*	*	NA	*	**	*	*	NA
Qi et al ⁸⁶	*	*	NA	*	**	NA	*	NA
Chu et al⁵ ⁷	*	*	*	*	*	*	*	NA
Parlayan et al ¹¹⁵	*	*	*	*	**	*	*	NA
Li et al ⁶³	*	*	NA	*	**	*	*	NA
Du et al ^{59,60}	*	*	NA	*	*	NA	*	NA
Omrani et al ⁸⁵	*	*	NA	*	**	*	*	
	*	*	INA *	*	**	*	*	
Kou et al ⁹¹	*	*		*	**	*	*	NA
Roy et al ⁹⁴ Li et al ⁶³	*	*		*	**		*	
Deng et al ⁶⁷	*	*	NA *	*	**	NA NA	*	NA NA
Qi et al ⁷²	*	*	NA	*	**	NA	*	NA
Dikaiakos et al ⁶⁸	*	*	*	*	*	*	*	NA
Li et al ⁶⁹	*	*	NA	NA	**	*	*	NA
Li et al ⁶⁹	*	*	NA	NA	**	*	*	NA
Nikolic et al ⁷¹	*	*	*	*	**	*	*	NA
He et al ⁹⁰	*	*	NA	NA	**	NA	*	NA
Sushma et al ⁹⁷	*	*	NA	*	**	*	*	NA
Sodhi et al ⁹⁵	*	*	*	*	**	*	*	NA
Jiang et al ²⁶	*	*	NA	*	**	*	*	NA
Dai et al ⁷⁴	*	*	NA	*	**	NA	*	NA
Zhao et al ⁸²	*	*	NA	*	**	*	*	NA
Song et al ⁷⁹	*	*	*	*	*	NA	*	NA
Shen et al ⁷⁸	*	*	NA	*	**	*	*	NA
Li et al ⁷⁵	*	*	NA	*	**	NA	*	NA
Li et al ⁷⁶	*	*	NA	*	*	*	*	NA
Xu et al ⁸⁰	*	*	NA	NA	*	*	*	NA
Qiu and Liu ⁷⁷	*	*	*	*	*	*	*	NA
Jiang et al ²⁶	*	*	*	*	**	*	*	NA
Yin et al ⁸¹	*	*	NA	*	*	*	*	NA
Zhang et al ⁹⁹	*	*	*	*	**	NA	*	NA
Sun et al ⁹⁶	*	*	*	*	*	*	*	
Toraih et al ⁹⁸	*	*				NA *	*	
Morales et al ⁹²	*	*		*	**	*	*	
Gu and Tu ⁸⁸								
Hashemi et al ⁸⁹	*	* Juality choices with a "*" A	NA	*	**	*	*	NA

Notes: This table identified "high"quality choices with a "*". A study can be awarded a maximum of one "*" for each numbered item within the selection and exposure categories. A maximum of two "**" can be given for comparability.

Abbreviation: NA, not available.

Table 3 (Continued)

LC Hue tal ⁷ Tian et al ³ Kim (2010) Vinci (2011) Hong et al ⁶ Van et al ⁴⁶ Parlayan (2014) Subtotal (<i>l</i> =48.1%, <i>p</i> =0.052) BRC Hue tal ³⁵ Hoffman et al ⁶ Catucci et al ³⁶ Catucci et	$\begin{array}{c} 0.78 & (0.44-1.40) \\ 0.79 & (0.62-1.01) \\ 0.73 & (0.54-0.98) \\ 1.99 & (0.78-5.08) \\ 0.80 & (0.54-1.18) \\ 0.61 & (0.30-1.24) \\ 0.97 & (0.56-1.67) \\ 3.43 & (1.42-8.27) \\ 0.87 & (0.63-1.20) \\ 0.88 & (0.72-1.09) \\ \hline \end{array}$	1.11 1.52 0.70 1.39 0.95 1.17 0.76 1.49 10.69 1.60 1.30 1.66 1.60
Tian et al ¹⁰ Vinci (2011) Hong et al ⁶ Van et al ¹⁰ Pariayan (2014) Sodhi et al ¹⁰ Subtotal (<i>l</i> ² =48.1%, <i>p</i> =0.052) BRC Hu et al ¹⁵ Catucci et al ¹⁶ Catucci et al ¹⁶	0.79 (0.62-1.01) 0.73 (0.54-0.80) 1.99 (0.78-5.08) 0.80 (0.54-1.18) 0.61 (0.30-1.24) 0.97 (0.56-1.67) 3.43 (1.42-8.27) 0.87 (0.63-1.20) 0.88 (0.72-1.09) 0.73 (0.57-0.93) 2.15 (1.37-3.38) 0.93 (0.77-1.12) 1.02 (0.80-1.29) 0.91 (0.50-1.66) 1.65 (1.13-2.41)	1.59 1.52 0.70 1.39 0.95 1.17 0.76 1.49 10.69 1.60 1.30 1.66
Kim (2010) Vinci (2011) Hong et al ⁶⁴ Parlaspan (2014) Subtotal (<i>l</i> ² =48.1%, <i>p</i> =0.052) BRC Holfman et al ⁸⁵ Holfman et al ⁸⁵ Catucci et al ⁹⁸ Catucci et al ⁹⁸ Catucci et al ⁹⁸ Catucci et al ⁹⁶ Catucci	0.73 (0.54-0.88) 1.99 (0.78-5.08) 0.80 (0.54-1.18) 0.61 (0.30-1.24) 0.97 (0.56-1.67) 3.43 (1.42-8.27) 0.87 (0.63-1.20) 0.88 (0.72-1.09) 0.73 (0.57-0.93) 2.15 (1.37-3.38) 0.93 (0.77-1.12) 1.02 (0.80-1.29) 0.91 (0.50-1.68) 1.65 (1.13-2.41)	1.52 0.70 1.39 0.95 1.17 0.76 1.49 10.69 1.60 1.30 1.66
Vinci (2011) Hong et al ⁴⁶ Yoon et al ⁴⁶ Yoon et al ⁴⁶ Aratyan (2014) Sochi et al ⁴⁷ Subtotal (<i>l</i> ² =48.1%, <i>p</i> =0.052) BRC Hu et al ³⁵ Hu et al ³⁵ Catucci et al ³⁶ Catucci et al ³⁶ C	$\begin{array}{c} 1.99 \ (0.78-5.08) \\ 0.80 \ (0.54-1.18) \\ 0.61 \ (0.30-1.24) \\ 0.97 \ (0.56-1.67) \\ 3.43 \ (1.42-8.27) \\ 0.87 \ (0.63-1.20) \\ 0.88 \ (0.72-1.09) \\ \end{array}$	0.70 1.39 0.95 1.17 0.76 1.49 10.69 1.60 1.30 1.66
Hong et al ² Von et al ⁴⁰ Parlayan (2014) Solchi et al ⁴⁰ Vin et al ⁴⁰ BRC Hu et al ⁵⁵ Hoffman et al ⁴⁰ Catucci et al ⁵⁰ Catucci e	0.80 (0.54–1.18) 0.61 (0.30–1.24) 0.97 (0.56–1.67) 3.43 (1.42–8.27) 0.87 (0.63–1.20) 0.88 (0.72–1.09) 0.73 (0.57–0.93) 2.15 (1.37–3.38) 0.93 (0.77–1.12) 1.02 (0.80–1.29) 0.91 (0.50–1.69) 1.65 (1.13–2.41)	1.39 0.95 1.17 0.76 1.49 10.69 1.60 1.30 1.66
Yoon et al ⁴⁶ 2arlayan (2014) Sodh et al ⁸⁷ Subtotal (<i>I</i> ² =48.1%, <i>p</i> =0.052) BRC 1u et al ³⁵ 1u et al ³⁵ Catrucci et al ³⁶ Catrucci	0.61 (0.30–1.24) 0.97 (0.56–1.67) 3.43 (1.42–8.27) 0.87 (0.63–1.20) 0.88 (0.72–1.09) 0.73 (0.57–0.93) 2.15 (1.37–3.38) 0.93 (0.77–1.12) 1.02 (0.80–1.29) 0.91 (0.50–1.66) 1.65 (1.13–2.41)	1.17 0.76 1.49 10.69 1.60 1.30 1.66
Parlayan (2014) South et al ¹⁶ Subtotal (<i>I</i> ² =48.1%, <i>p</i> =0.052) BRC Hu et al ³⁵ Satucci et al ³⁶ Catucci et al ³⁶	3.43 (1.42-8.27) 0.87 (0.63-1.20) 0.88 (0.72-1.09) 0.73 (0.57-0.93) 2.15 (1.37-3.38) 0.93 (0.77-1.12) 1.02 (0.80-1.29) 0.91 (0.50-1.66) 1.65 (1.13-2.41)	1.17 0.76 1.49 10.69 1.60 1.30 1.66
Sodhi et al ⁸⁵ fin et al ⁸⁵ Subtotal (<i>l</i> ² =48.1%, <i>p</i> =0.052) BRC 1u et al ¹⁵ Catucci et al ³⁶ Catucci et al ³⁶ Ledlinski et al ⁴⁶ Ledlinski	3.43 (1.42-8.27) 0.87 (0.63-1.20) 0.88 (0.72-1.09) 0.73 (0.57-0.93) 2.15 (1.37-3.38) 0.93 (0.77-1.12) 1.02 (0.80-1.29) 0.91 (0.50-1.66) 1.65 (1.13-2.41)	0.76 1.49 10.69 1.60 1.30 1.66
Subtotal (I ² =48.1%, p=0.052) RC I'u et al ³⁵ I'u offman et al ⁶ Catucci et al ³⁶ Jedlinski et al ⁴⁰ Jedlinski et al ⁴⁰ Jedlinski et al ⁴⁰ John et al ¹⁶ John et	0.88 (0.72–1.09) 0.73 (0.57–0.93) 2.15 (1.37–3.38) 0.93 (0.77–1.12) 1.02 (0.80–1.29) 0.91 (0.50–1.66) 1.65 (1.13–2.41)	10.69 1.60 1.30 1.66
BRC Hu et al ³⁶ Loffman et al ⁸ Catucci et al ³⁶ Catucci et al	0.73 (0.57–0.93) 2.15 (1.37–3.38) 0.93 (0.77–1.12) 1.02 (0.80–1.29) 0.91 (0.50–1.66) 1.65 (1.13–2.41)	1.60 1.30 1.66
Huet al ⁵⁵ doffman et al ⁵⁶ doffman et al ⁵⁶ doffman et al ⁵⁶ doltaria et al ⁵⁶ doltaria et al ⁵⁰ dol	2.15 (1.37–3.38) 0.93 (0.77–1.12) 1.02 (0.80–1.29) 0.91 (0.50–1.66) 1.65 (1.13–2.41)	1.30 1.66
Hu et al ³⁵ doffman et al ³⁵ aducci et al ³⁶ aducci et	2.15 (1.37–3.38) 0.93 (0.77–1.12) 1.02 (0.80–1.29) 0.91 (0.50–1.66) 1.65 (1.13–2.41)	1.30 1.66
Ioffman et al ¹⁹ Catucci et al ¹⁰ Catucci et a	2.15 (1.37–3.38) 0.93 (0.77–1.12) 1.02 (0.80–1.29) 0.91 (0.50–1.66) 1.65 (1.13–2.41)	1.30 1.66
Jatucci et al ⁸⁶	0.93 (0.77–1.12) 1.02 (0.80–1.29) 0.91 (0.50–1.66) 1.65 (1.13–2.41)	1.66
Jatucci et al ⁸⁶ Jedlinski et al ⁴⁶ Zhang et al ⁴⁶ Jansal et al ⁶⁶	1.02 (0.80–1.29) 0.91 (0.50–1.66) 1.65 (1.13–2.41)	
ledlinski et al ⁴⁶	0.91 (0.50–1.66) 1.65 (1.13–2.41)	1 60
inhares et al ⁴⁵	1.65 (1.13-2.41)	
Zhang et al ¹⁰⁴ Bansal et al ⁵⁶ Jet al ⁷²	1.65 (1.13–2.41) 0.58 (0.26–1.29)	1.09
Bansal et al ⁵⁶ Di et al ⁷²	0.58 (0.26–1.29)	1.41
Qi et al ⁷²		0.85
	0.71 (0.33–1.55)	0.87
	0.45 (0.24-0.84)	1.06
te et al	0.86 (0.59-1.26)	1.41
Dai et al ⁷⁴	0.54 (0.38-0.75)	1.48
Zhao et al ⁸²	1.19 (0.58-2.47)	0.92
Morales et al ⁹²	0.89 (0.62-1.28)	1.43
Dmrani et al ⁸⁵	(Excluded)	0.00
Subtotal (I ² =72.8%, p=0.000)	0.91 (0.74–1.11)	16.66
	. ,	
ESCC		
Nang et al ³⁸ I	0.37 (0.25-0.57)	1.36
Jmar (2013)	1.61 (0.82–3.18)	0.98
Nei (2013)	1.26 (0.83-1.90)	1.35
Qu et al ⁶⁴	0.62 (0.40-0.95)	1.33
Nang et al ⁶⁶	1.19 (0.86–1.65)	1.49
Shen et al ⁷⁸	0.80 (0.66-0.98)	1.65
Subtotal (/2=82.4%, p=0.000)	0.85 (0.60-1.22)	8.16
GC		
Dkubo et al ⁸³	0.92 (0.68-1.23)	1.53
Peng et al ⁴	0.63 (0.37–1.08)	1.18
Ahn (2012)	0.81 (0.55–1.18)	1.41
Vang et al ⁵³	1.41 (1.07–1.86)	1.55
Pu et al ⁸⁴	0.75 (0.42–1.34)	1.12
	0.07 (0.04–0.12)	1.08
liang et al ²⁶	1.23 (0.95–1.60)	1.06
	0.37 (0.17–0.81)	0.87
	2.40 (1.31-4.40)	1.08 0.83
	1.70 (0.76–3.83)	
Subtotal (/2=91.5%, p=0.000)	0.77 (0.48–1.23)	12.22
Dthers		
Srivastava et al ¹⁰	0.71 (0.35-1.45)	0.95
Dou et al ⁶	1.17 (0.85–1.43)	1.50
Vittal et al ⁴¹	0.51 (0.18–1.48)	0.60
Zhou et al ⁴³	0.88 (0.52–1.47)	1.21
George et al ³⁹	0.58 (0.15–2.19)	0.44
	2.10 (0.95-4.60)	0.85
Fong (2013)	0.84 (0.61–1.17)	1.48
Pavlakis et al ⁹³	1.12 (0.47–2.66)	0.77
i et al ⁶³	1.24 (0.97–1.60)	1.59
Du et al ⁵⁹	1.91 (1.21–3.02)	1.30
	0.93 (0.55–1.60)	1.18
i et al ⁶⁹	0.53 (0.33–0.84)	1.28
Vikolic et al ⁷¹	0.79 (0.48–1.29)	1.24
Sushma et al ⁹⁷	0.23 (0.09-0.60)	0.69
Song et al ⁷⁹	0.56 (0.38–0.81)	1.42
Sun et al ⁹⁶	0.59 (0.32–1.11)	1.05
Subtotal (/2=68.3%, p=0.000)	0.86 (0.68–1.08)	17.54
Subicial (1 -00.5 %, p=0.000)	0.00 (0.00-1.00)	17.54
ICC		
.i et al ⁹ →	0.57 (0.35-0.92)	1.25
Akkz (2010)	0.41 (0.22–0.77)	1.06
	0.69 (0.53–0.89)	1.58
Han et al ⁴⁹	1.07 (0.83–1.37)	1.58
	0.78 (0.49 1.27)	1.39
	0.78 (0.48–1.27) 1.13 (0.69–1.85)	
		1.24
Kou et al ⁹¹	0.53 (0.34-0.85)	1.28
	2.29 (1.34–3.89)	1.18
Li et al ⁸⁶	0.41 (0.18-0.93)	0.82
Ku et al ⁸⁰	0.57 (0.37-0.88)	1.34
Qiu and Liu ⁷⁷	0.59 (0.35-0.98)	1.22
liang et al ²⁶	0.84 (0.61-1.17)	1.48
Chang et al ⁹⁹	0.90 (0.50-1.60)	1.12
oraih et al ⁹⁸	2.25 (0.93-5.47)	0.75
Subtotal (/2=70.5%, p=0.000)	0.79 (0.63–0.99)	17.16
INC		
iu et al ¹¹	1.05 (0.82-1.34)	1.59
Chu et al ⁸⁷	1.57 (1.04-2.37)	1.36
Roy et al ⁹⁴	1.34 (0.84–2.14)	1.28
i et al ⁶³	1.24 (0.97-1.60)	1.59
Christensen et al ³⁷	(Excluded)	0.00
Subtotal (I ² =2.5%, p=0.380)	1.22 (1.04-1.42)	5.82
		0.02
RC		
Than et al ⁴²	0.57 (0.37-0.88)	1.34
Chen et al ⁴⁴	1.14 (0.64–2.02)	1.13
	0.70 (0.49–1.01)	1.13
	0.65 (0.47–0.91)	1.47
lezova et al ²⁵	1.25 (0.66–2.38)	1.47
Zhang et al ¹⁰⁰	0.95 (0.66–1.38)	1.42
/inci (2013)	1.46 (0.60–3.53)	0.76
	13.65 (6.76-27.60)	0.95
Kupcinskas et al ⁶²	1.26 (0.74–2.14)	1.19
	1.02 (0.54–1.94)	1.04
Subtotal (/2=87.6%, p=0.000)	1.19 (0.77–1.86)	11.76
	0.00 /0.04 4.00	400
Overall (I ² =78.8%, p=0.000)	0.90 (0.81–1.00)	100

Figure 2 Forest plots of the association between miR-196a2 rs11614913 polymorphism and cancer risk in different cancer types for homozygote comparison (TT vs CC). Note: Weights are from random effects analysis.

Abbreviations: BRC, breast cancer; CRC, colorectal cancer; ESCC, esophageal squamous cell carcinoma; GC, gastric cancer; HCC, hepatocellular carcinoma; HNC, head and neck cancer; LC, lung cancer; miR-196a2, microRNA-196a2; OR, odds ratio.

itudy ID	OR (95% CI)	% we
C Iu et al ⁷	- 0.88 (0.56–1.39)	1.10
ian et al ³ (im (2010)	0.91 (0.75–1.10) 0.81 (0.63–1.04)	1.65 1.54
finci (2011)	◆ 1.60 (0.66−3.88)	0.52
long et al ²	0.68 (0.50-0.92)	1.41
oon et al ⁴⁶	- 0.68 (0.39–1.16) 0.89 (0.59–1.35)	0.94
arlayan (2014) odhi et al ⁹⁶	• 0.89 (0.59–1.35) • 2.54 (1.09–5.91)	1.18 0.55
n et al ⁸¹	0.84 (0.65–1.09)	1.52
ubtotal (/2=32.5%, p=0.158)	0.86 (0.75–0.99)	10.43
RC		
u et al ³⁵	0.82 (0.68–0.98) 1.95 (1.27–2.98)	1.66 1.16
atucci et al ³⁶	0.94 (0.79–1.12)	1.68
atucci et al ³⁶	1.01 (0.81–1.27)	1.59
dlinski et al ⁴⁰	0.97 (0.56–1.66)	0.94
nhares et al ⁴⁵	1.31 (0.96–1.80) 0.82 (0.57–1.17)	1.39 1.30
Insal et al ⁵⁶	0.75 (0.36–1.60)	0.65
et al ⁹⁰	0.62 (0.45–0.86)	1.37 1.46
	0.98 (0.74–1.30) 0.65 (0.48–0.86)	1.40
ao et al ⁸²	1.45 (0.80–2.64)	0.85
orales et al ⁹²	0.90 (0.64–1.27)	1.34
mrani et al ⁸⁵ Jototal (J ² =64.4%, p=0.001)	(Excluded) 0.94 (0.81–1.09)	0.00 16.85
SCC		
/ang et al ³⁸	0.40 (0.28-0.58)	1.28
mar (2013) /ei (2013)	◆ 1.51 (0.78–2.93) 0.93 (0.67, 1.27)	0.76 1.39
u et al ⁶⁴	0.92 (0.67–1.27) 0.60 (0.41–0.89)	1.39
ang et al66	- 1.07 (0.83–1.39)	1.52
hen et al ⁷⁸ ubtotal (/²=81.3%, p=0.000)	0.92 (0.80–1.07) 0.81 (0.61–1.08)	1.72 7.91
	0.01 (0.01-1.08)	1.91
C kubo et al ⁸³	0.93 (0.75–1.16)	1.59
Veng et al ⁴	0.82 (0.52–1.31)	1.09
hn (2012)	0.87 (0.65–1.16)	1.44
/ang et al ⁸³ u et al ⁸⁴	1.24 (1.00–1.54) 0.92 (0.57–1.50)	1.60 1.04
ikeakos et al ⁵⁸	0.18 (0.10-0.32)	0.91
ang et al ²⁶	1.20 (0.99–1.46)	1.64
et al ⁷⁵ u and Tu ⁸⁸	0.69 (0.45–1.04) 1.89 (1.14–3.12)	1.18 1.01
ashemi et al ⁸⁹	1.58 (0.73–3.42)	0.63
ubtotal (/2=83.9%, p=0.000)	0.91 (0.70–1.19)	12.14
thers		1.00
rivastava et al ¹⁰	· 0.92 (0.64–1.33) 0.90 (0.71–1.14)	1.29 1.56
fittal et al41	0.41 (0.14–1.15)	0.41
hou et al ⁴³	- 0.93 (0.63–1.38)	1.23
eorge et al ³⁹	● 0.42 (0.11−1.56) 1.63 (0.77−3.46)	0.28 0.65
iong (2013)	0.71 (0.56–0.91)	1.55
aviakis et al ⁹³	1.54 (0.89–2.65)	0.94
i et al ⁶³	1.26 (1.04–1.52) 1.21 (0.88–1.66)	1.65 1.40
Deng et al ⁶⁷	1.42 (0.93–2.16)	1.17
i et al ⁶⁹	0.66 (0.48–0.90)	1.39
likolic et al ⁹¹	- 0.84 (0.53–1.34) 0.55 (0.29–1.04)	1.08 0.79
ong et al ⁷⁹	0.61 (0.46–0.82)	1.44
un et al%	0.80 (0.50–1.27) 0.90 (0.76–1.06)	1.09
ubtotal (<i>I</i> ² =67.1%, <i>p</i> =0.000)	0.30 (0.70-1.00)	17.91
CC I I I I I I I I I I I I I I I I I I	0.66 (0.46-0.96)	1.27
kkz (2010)	0.49 (0.28-0.86)	0.90
hang et al ⁵⁵	0.85 (0.70–1.03)	1.65 1.65
an et al ⁴⁹	0.99 (0.82–1.20) 0.56 (0.39–0.79)	1.65
hu et al ⁵⁷	1.28 (0.88–1.87)	1.25
ou et al ⁹¹	0.66 (0.44–0.99)	1.20
et al ⁶⁹ et al ⁷⁵	1.87 (1.15–3.04) 0.45 (0.24–0.85)	1.04 0.80
u et al ⁸⁰	0.67 (0.47-0.94)	1.32
iu and Liu ⁷⁷ ang et al ²⁶	0.70 (0.47–1.04) 0.71 (0.56–0.91)	1.21 1.55
ang et al ⁹⁹	0.71 (0.56–0.91) 0.87 (0.59–1.28)	1.55
oraih et al ⁹⁸	1.59 (0.70–3.62)	0.58
ubtotal (/2=67.4%, p=0.000)	0.80 (0.68–0.94)	16.99
		1.00
u et al ¹¹	0.97 (0.78–1.21) 0.90 (0.68–1.20)	1.60 1.46
oy et al ⁹⁴	1.23 (0.78–1.92)	1.11
et al ⁶³	1.91 (1.59–2.29)	1.67
hristensen et al ³⁷ ubtotal (l ² =90.1%, p=0.000)	(Excluded) 1.20 (0.80–1.82)	0.00 5.83
RC		
han et al ⁴²	0.67 (0.47-0.94)	1.32
hen et al44	1.08 (0.69–1.69)	1.12
in et al ²⁴	0.93 (0.70–1.23) 0.71 (0.54–0.92)	1.47 1.50
ezova et al ²⁵	1.31 (0.72–2.40)	0.84
hang et al ¹⁰⁰	0.91 (0.70–1.19)	1.50
inci (2013) v et al ⁵¹	1.23 (0.53–2.87) 2.37 (1.72–3.25)	0.55 1.39
upcinskas et al62	1.12 (0.68–1.85)	1.02
ikaiakos et ales	1.22 (0.82–1.80)	1.23
ubtotal (/2=79.0%, p=0.000)	1.07 (0.82–1.38)	11.94
verall (/²=75.8%, p=0.000)	0.92 (0.85–0.99)	100

Figure 3 Forest plots of the association between miR-196a2 rs11614913 polymorphism and cancer risk in different cancer types for recessive model (TT vs TC+CC). Note: Weights are from random effects analysis.

Abbreviations: BRC, breast cancer; CRC, colorectal cancer; ESCC, esophageal squamous cell carcinoma; GC, gastric cancer; HCC, hepatocellular carcinoma; HNC, head and neck cancer; LC, lung cancer; miR-196a2, microRNA-196a2; OR, odds ratio.

Figure 4 Begg's funnel plot for publication bias of miR-196a2 rs11614913 polymorphism and cancer risk by homozygote comparison and recessive model. Notes: Each point represents a separate study for the indicated association. LogES represents natural logarithm of OR. Horizontal line means magnitude of the effect. Funnel plot with pseudo 95% confidence limits was used. Abbreviations: miR-196a2, microRNA-196a2; OR, odds ratio.

(lower cycle threshold corresponding to a higher expression) in cardiac tissue specimens of congenital heart disease, and the increased miR-196a expression could further decrease mRNA target of HOXB8. These results indicated that the rs11614913 polymorphism may affect the processing of the pre-miRNA to its mature form.

Several meta-analyses have been performed to analyse the SNP of this miRNA that is associated with the cancer risk.^{104,109} In our present work, we screened out all the studies published to date and included more papers and cancer types than the previously published meta-analyses. For example, Kang et al¹⁰⁹ conducted a meta-analysis encompassing the rs11614913 polymorphism in miR-196a2 and cancer risks, which suggested that the rs11614913 polymorphism may contribute to decreased susceptibility to liver cancer (allele model, homozygous model, dominant model, and heterozygous model) and lung cancer (allele model, homozygous model, and recessive model); however, this was not duplicated in our meta-analysis. In this study, we concluded that the rs11614913 polymorphism conferred a decreased susceptibility to lung cancer (homozygote comparison, recessive model) and hepatocellular carcinoma (allelic contrast, homozygote comparison, recessive model) or an increased susceptibility to HNC (allelic contrast, homozygote comparison). Our study had a larger sample size than the previous ones, which might influence the results. In addition, the previous meta-analyses did not evaluate the quality of the included studies.

According to the procedure of seeking for the source of heterogeneity, we performed subgroup studies according

to cancer type, ethnicity, and source of control. A strong association was found between rs11614913 and cancer risk in lung cancers, hepatocellular carcinoma, and HNC, but not in breast cancer, gastric cancer, ESCC, or CRC, which was not similar to the findings of previous studies.^{101–103,109} The present meta-analysis showed that homozygote TT had the effect of decreasing the risk of lung cancer or hepatocellular carcinoma compared with that of CC homozygote or C allele carriers. We conducted another subgroup analysis by population to determine the association between these miRNA polymorphisms and tumorigenesis. The results suggested that individuals with alterative T allele could decrease cancer susceptibility in Asians but not in Caucasians, indicating that the difference of ethnic background and the living environment may also be a risk factor.

To determine the hsa-miR-196a2 rs11614913 polymorphism, PCR, Taqman, and other methods have been adopted. We found that the hsa-miR-196a2 rs11614913 polymorphism significantly decreased cancer risk in homozygous models and the recessive model when using the PCR method, but this result was not shown when selecting Taqman and other methods. Therefore, more effort may be necessary for further progress in SNP analysis. We found sources of heterogeneity in the studies from cancer type and ethnicity suggesting cancer and population playing important roles. When detecting the source of control, we observed significant associations in population-based and hospital-based controls. This may be due to the included studies matching age, gender, and residential area to control selection bias. Nevertheless, several defects of this meta-analysis should be emphasized. Firstly, although we strictly screened articles and precisely extracted the data, the differences in the selection of subjects could not be eliminated. Secondly, in our meta-analysis, only Asian and Caucasian ethnicities were included, and the impact of the differences in racial descent should not be ignored. Thirdly, potential language bias could not be avoided due to limitation of studies published in English or Chinese. Therefore, it is not possible to avoid potential publication bias in this meta-analysis.

In summary, miR-196a2 rs11614913 polymorphism may contribute to the development of cancer, especially in lung cancer, hepatocellular carcinoma, and HNC. It might be useful as a candidate marker for the diagnosis of these cancers, and could also be a potential protective factor for cancer risks in Asians. Furthermore, more significant studies and investigations with larger populations focusing on cancer types or ethnicities should be performed to confirm the results.

Acknowledgments

This review was supported by Health Care 3F Project of Shenzhen (Peking University First Hospital-The Second People's Hospital of Shenzhen, Academician Yinglu Guo's Team), the Shenzhen Key Medical Discipline Fund, Special Support Funds of Shenzhen for Introduced High-Level Medical Team, Shenzhen Foundation of Science and Technology (JCYJ20150330102720182), and Shenzhen Health and Family Planning Commission Scientific Research Project (201506026, 201601025, and 201606019).

Disclosure

The authors report no conflicts of interest in this work.

References

- Liu CJ, Tsai MM, Tu HF, Lui MT, Cheng HW, Lin SC. miR-196a overexpression and miR-196a2 gene polymorphism are prognostic predictors of oral carcinomas. *Ann Surg Oncol.* 2013;20(Suppl 3):S406–S414.
- Hong YS, Kang HJ, Kwak JY, et al. Association between microRNA196a2 rs11614913 genotypes and the risk of non-small cell lung cancer in Korean population. *J Prev Med Public Health*. 2011;44(3):125–130.
- Tian T, Shu Y, Chen J, et al. A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese. *Cancer Epidemiol, Biomarkers & Prev.* 2009;18(4):1183–1187.
- Peng S, Kuang Z, Sheng C, Zhang Y, Xu H, Cheng Q. Association of microRNA-196a-2 gene polymorphism with gastric cancer risk in a Chinese population. *Dig Dis Sci.* 2010;55(8):2288–2293.
- Hoffman AE, Zheng T, Yi C, et al. microRNA miR-196a-2 and breast cancer: a genetic and epigenetic association study and functional analysis. *Cancer Res.* 2009;69(14):5970–5977.
- 6. Dou T, Wu Q, Chen X, et al. A polymorphism of microRNA196a genome region was associated with decreased risk of glioma in Chinese population. *J Cancer Res Clin Oncol.* 2010;136(12):1853–1859.

- Hu Z, Chen J, Tian T, et al. Genetic variants of miRNA sequences and nonsmall cell lung cancer survival. J Clin Invest. 2008;118(7):2600–2608.
- Akkiz H, Bayram S, Bekar A, Akgollu E, Ulger Y. A functional polymorphism in pre-microRNA-196a-2 contributes to the susceptibility of hepatocellular carcinoma in a Turkish population: a case-control study. *J Viral Hepat.* 2011;18(7):e399–e407.
- Li XD, Li ZG, Song XX, Liu CF. A variant in microRNA-196a2 is associated with susceptibility to hepatocellular carcinoma in Chinese patients with cirrhosis. *Pathology*. 2010;42(7):669–673.
- Srivastava K, Srivastava A, Mittal B. Common genetic variants in premicroRNAs and risk of gallbladder cancer in North Indian population. *J Hum Genet*. 2010;55(8):495–499.
- Liu Z, Li G, Wei S, et al. Genetic variants in selected pre-microRNA genes and the risk of squamous cell carcinoma of the head and neck. *Cancer*. 2010;116(20):4753–4760.
- Cho WC. MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy. *Int J Biochem Cell Biol*. 2010;42(8): 1273–1281.
- Esquela-Kerscher A, Slack FJ. Oncomirs microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259–269.
- Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. *Nature*. 2005;435(7043):834–838.
- 15. Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E. Phylogenetic shadowing and computational identification of human microRNA genes. *Cell*. 2005;120(1):21–24.
- Lopez-Cima MF, Gonzalez-Arriaga P, Garcia-Castro L, et al. Polymorphisms in XPC, XPD, XRCC1, and XRCC3 DNA repair genes and lung cancer risk in a population of northern Spain. *BMC Cancer*. 2007;7:162.
- Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–297.
- Ruan K, Fang X, Ouyang G. MicroRNAs: novel regulators in the hallmarks of human cancer. *Cancer Lett.* 2009;285(2):116–126.
- Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T. New microRNAs from mouse and human. *RNA*. 2003;9(2):175–179.
- Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R. Control of translation and mRNA degradation by miRNAs and siRNAs. *Genes Dev.* 2006;20(5):515–524.
- Ambros V. The functions of animal microRNAs. *Nature*. 2004; 431(7006):350–355.
- 22. Chen K, Song F, Calin GA, Wei Q, Hao X, Zhang W. Polymorphisms in microRNA targets: a gold mine for molecular epidemiology. *Carcinogenesis*. 2008;29(7):1306–1311.
- Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA networks: the implications for cancer research. *Nature Rev Cancer*. 2010;10(6):389–402.
- Min KT, Kim JW, Jeon YJ, et al. Association of the miR-146aC>G, 149C>T, 196a2C>T, and 499A>G polymorphisms with colorectal cancer in the Korean population. *Mol Carcinog*. 2012;51(Suppl 1): E65–E73.
- Hezova R, Kovarikova A, Bienertova-Vasku J, et al. Evaluation of SNPs in miR-196-a2, miR-27a and miR-146a as risk factors of colorectal cancer. *World J Gastroenterol*. 2012;18(22):2827–2831.
- Jiang J, Jia ZF, Cao DH, Wu YH, Sun ZW, Cao XY. Association of the miR-146a rs2910164 polymorphism with gastric cancer susceptibility and prognosis. *Future Oncol.* 2016;12(19):2215–2226.
- 27. Hu Y, Yu CY, Wang JL, Guan J, Chen HY, Fang JY. MicroRNA sequence polymorphisms and the risk of different types of cancer. *Sci Rep.* 2014;4:3648.
- Johnnidis JB, Harris MH, Wheeler RT, et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. *Nature*. 2008;451(7182):1125–1129.
- 29. Woolf B. On estimating the relation between blood group and disease. *Ann Hum Genet.* 1955;19(4):251–253.
- Liu Y, Zhan Y, Chen Z, et al. Directing cellular information flow via CRISPR signal conductors. *Nat Methods*. 2016;13(11):938–944.
- Vangel MG, Rukhin AL. Maximum likelihood analysis for heteroscedastic one-way random effects ANOVA in interlaboratory studies. *Biometrics*. 1999;55(1):129–136.

- DerSimonian R, Kacker R. Random-effects model for meta-analysis of clinical trials: an update. *Contemp Clin Trials*. 2007;28(2):105–114.
- Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22(4):719–748.
- Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. *BMJ*. 1997;315(7109):629–634.
- Hu Z, Liang J, Wang Z, et al. Common genetic variants in premicroRNAs were associated with increased risk of breast cancer in Chinese women. *Hum Mutat.* 2009;30(1):79–84.
- Catucci I, Yang R, Verderio P, et al. Evaluation of SNPs in miR-146a, miR196a2 and miR-499 as low-penetrance alleles in German and Italian familial breast cancer cases. *Hum Mutat.* 2010;31(1):E1052–E1057.
- Christensen BC, Avissar-Whiting M, Ouellet LG, et al. Mature microRNA sequence polymorphism in MIR196A2 is associated with risk and prognosis of head and neck cancer. *Clin Cancer Res.* 2010; 16(14):3713–3720.
- Wang K, Guo H, Hu H, et al. A functional variation in pre-microRNA-196a is associated with susceptibility of esophageal squamous cell carcinoma risk in Chinese Han. *Biomarkers*. 2010;15(7):614–618.
- George GP, Gangwar R, Mandal RK, Sankhwar SN, Mittal RD. Genetic variation in microRNA genes and prostate cancer risk in North Indian population. *Mol Biol Rep.* 2011;38(3):1609–1615.
- Jedlinski DJ, Gabrovska PN, Weinstein SR, Smith RA, Griffiths LR. Single nucleotide polymorphism in hsa-mir-196a-2 and breast cancer risk: a case control study. *Twin Res Hum Genet*. 2011;14(5):417–421.
- Mittal RD, Gangwar R, George GP, Mittal T, Kapoor R. Investigative role of pre-microRNAs in bladder cancer patients: a case-control study in North India. *DNA Cell Biol.* 2011;30(6):401–406.
- 42. Zhan JF, Chen LH, Chen ZX, et al. A functional variant in microRNA-196a2 is associated with susceptibility of colorectal cancer in a Chinese population. *Archiv Med Res.* 2011;42(2):144–148.
- Zhou B, Wang K, Wang Y, et al. Common genetic polymorphisms in pre-microRNAs and risk of cervical squamous cell carcinoma. *Mol Carcinog.* 2011;50(7):499–505.
- 44. Chen H, Sun LY, Chen LL, Zheng HQ, Zhang QF. A variant in microRNA-196a2 is not associated with susceptibility to and progression of colorectal cancer in Chinese. *Int Med J.* 2012;42(6):e115–e119.
- 45. Linhares JJ, Azevedo M Jr, Siufi AA, et al. Evaluation of single nucleotide polymorphisms in microRNAs (hsa-miR-196a2 rs11614913 C/T) from Brazilian women with breast cancer. *BMC Med Genet*. 2012;13:119.
- 46. Yoon KA, Yoon H, Park S, et al. The prognostic impact of microRNA sequence polymorphisms on the recurrence of patients with completely resected non-small cell lung cancer. *J Thorac Cardiovasc Surg.* 2012; 144(4):794–807.
- Zhu L, Chu H, Gu D, et al. A functional polymorphism in miRNA-196a2 is associated with colorectal cancer risk in a Chinese population. *DNA Cell Biol.* 2012;31(3):350–354.
- Ahn DH, Rah H, Choi Y-K, et al. Association of the miR-146aC>G, miR-149T>C, miR-196a2T>C, and miR-499A>G polymorphisms with gastric cancer risk and survival in the Korean population. *Mol Carcinog*. 2013;52(Suppl 1):39–51.
- 49. Han Y, Pu R, Han X, et al. Associations of pri-miR-34b/c and premiR-196a2 polymorphisms and their multiplicative interactions with hepatitis B virus mutations with hepatocellular carcinoma risk. *PLoS One*. 2013;8(3):e58564.
- Hong MJ, Choi YY, Jang JA, et al. Association between genetic variants in pre-microRNAs and survival of early-stage NSCLC. *J Thorac Oncol.* 2013;8(6):703–710.
- Lv M, Dong W, Li L, et al. Association between genetic variants in pre-miRNA and colorectal cancer risk in a Chinese population. *J Cancer Res Clin Oncol.* 2013;139(8):1405–1410.
- Song X, Sturgis EM, Liu J, et al. MicroRNA variants increase the risk of HPV-associated squamous cell carcinoma of the oropharynx in never smokers. *PLoS One.* 2013;8(2):e56622.
- Wang S, Tao G, Wu D, et al. A functional polymorphism in MIR196A2 is associated with risk and prognosis of gastric cancer. *Mol Carcinog*. 2013;52(Suppl 1):E87–E95.

- Yuan Z, Zeng X, Yang D, Wang W, Liu Z. Effects of common polymorphism rs11614913 in Hsa-miR-196a2 on lung cancer risk. *PLoS One*. 2013;8(4):e61047.
- 55. Zhang J, Wang R, Ma Y-Y, et al. Association between single nucleotide polymorphisms in miRNA196a-2 and miRNA146a and susceptibility to hepatocellular carcinoma in a Chinese population. *Asian Pac J Cancer Prev.* 2013;14(11):6427–6431.
- Bansal C, Sharma KL, Misra S, Srivastava AN, Mittal B, Singh US. Common genetic variants in pre-microRNAs and risk of breast cancer in the North Indian population. *Ecancermedicalscience*. 2014;8:473.
- Chu YH, Hsieh MJ, Chiou HL, et al. MicroRNA gene polymorphisms and environmental factors increase patient susceptibility to hepatocellular carcinoma. *PLoS One*. 2014;9(2):e89930.
- 58. Dikeakos P, Theodoropoulos G, Rizos S, Tzanakis N, Zografos G, Gazouli M. Association of the miR-146aC>G, miR-149T>C, and miR-196a2T>C polymorphisms with gastric cancer risk and survival in the Greek population. *Mol Biol Rep.* 2014;41(2):1075–1080.
- Du M, Lu D, Wang Q, et al. Genetic variations in microRNAs and the risk and survival of renal cell cancer. *Carcinogenesis*. 2014;35(7): 1629–1635.
- Du W, Ma X-L, Zhao C, et al. Associations of single nucleotide polymorphisms in miR-146a, miR-196a, miR-149 and miR-499 with colorectal cancer susceptibility. *Asian Pac J Cancer Prev.* 2014;15(2):1047–1055.
- Fan X, Wu Z. Effects of four single nucleotide polymorphisms in microRNA-coding genes on lung cancer risk. *Tumour Biol*. 2014;35(11): 10815–10824.
- Kupcinskas J, Bruzaite I, Juzenas S, et al. Lack of association between miR-27a, miR-146a, miR-196a-2, miR-492 and miR-608 gene polymorphisms and colorectal cancer. *Sci Rep.* 2014;4:5993.
- Li P, Yan H, Zhang H, et al. A functional polymorphism in MIR196A2 is associated with risk and progression of nasopharyngeal carcinoma in the Chinese population. *Genet Test Mol Biomarkers*. 2014;18(3): 149–155.
- 64. Qu Y, Qu H, Luo M, et al. MicroRNAs related polymorphisms and genetic susceptibility to esophageal squamous cell carcinoma. *Mol Genet Genom*. 2014;289(6):1123–1130.
- Tong N, Xu B, Shi D, et al. Hsa-miR-196a2 polymorphism increases the risk of acute lymphoblastic leukemia in Chinese children. *Mutat Res.* 2014;759:16–21.
- Wang N, Li Y, Zhou RM, et al. Hsa-miR-196a2 functional SNP is associated with the risk of ESCC in individuals under 60 years old. *Biomarkers*. 2014;19(1):43–48.
- Deng S, Wang W, Li X, Zhang P. Common genetic polymorphisms in pre-microRNAs and risk of bladder cancer. *World J Surg Oncol.* 2015;13:297.
- Dikaiakos P, Gazouli M, Rizos S, Zografos G, Theodoropoulos GE. Evaluation of genetic variants in miRNAs in patients with colorectal cancer. *Cancer Biom*. 2015;15(2):157–162.
- Li X, Li K, Wu Z. Association of four common SNPs in microRNA polymorphisms with the risk of hepatocellular carcinoma. *Int J Clin Exp Pathol.* 2015;8(8):9560–9566.
- Ni Q, Ji A, Yin J, Wang X, Liu X. Effects of two common polymorphisms rs2910164 in miR-146a and rs11614913 in miR-196a2 on gastric cancer susceptibility. *Gastroenterol Res Pract.* 2015;2015:764163.
- Nikolic Z, Savic Pavicevic D, Vucic N, et al. Assessment of association between genetic variants in microRNA genes hsa-miR-499, hsa-miR-196a2 and hsa-miR-27a and prostate cancer risk in Serbian population. *Exp Mol Pathol.* 2015;99(1):145–150.
- Qi P, Wang L, Zhou B, et al. Associations of miRNA polymorphisms and expression levels with breast cancer risk in the Chinese population. *Genet Mol Res.* 2015;14(2):6289–6296.
- 73. Wu Y, Hao X, Feng Z, Liu Y. Genetic polymorphisms in miRNAs and susceptibility to colorectal cancer. *Cell Biochem Biophys.* 2015; 71(1):271–278.
- 74. Dai ZM, Kang HF, Zhang WG, et al. The Associations of single nucleotide polymorphisms in miR196a2, miR-499, and miR-608 with breast cancer susceptibility: A STROBE-Compliant Observational Study. *Medicine*. 2016;95(7):e2826.

- Li J, Cheng G, Wang S. A single-nucleotide polymorphism of miR-196a2T>C rs11614913 is associated with hepatocellular carcinoma in the Chinese population. *Genet Test Mol Biomarkers*. 2016;20(4): 213–215.
- Li M, Li RJ, Bai H, et al. Association between the pre-miR-196a2 rs11614913 polymorphism and gastric cancer susceptibility in a Chinese population. *Genet Mol Res.* 2016;15(2).
- Qiu GP, Liu J. MicroRNA gene polymorphisms in evaluating therapeutic efficacy after transcatheter arterial chemoembolization for primary hepatocellular carcinoma. *Genet Test Mol Biomarkers*. 2016; 20(10):579–586.
- Shen F, Chen J, Guo S, et al. Genetic variants in miR-196a2 and miR-499 are associated with susceptibility to esophageal squamous cell carcinoma in Chinese Han population. *Tumour Biol.* 2016;37(4):4777–4784.
- Song ZS, Wu Y, Zhao HG, et al. Association between the rs11614913 variant of miRNA-196a-2 and the risk of epithelial ovarian cancer. *Oncol Lett.* 2016;11(1):194–200.
- Xu X, Ling Q, Wang J, et al. Donor miR-196a-2 polymorphism is associated with hepatocellular carcinoma recurrence after liver transplantation in a Han Chinese population. *Int J Cancer*. 2016;138(3):620–629.
- Yin Z, Cui Z, Ren Y, et al. Association between polymorphisms in pre-miRNA genes and risk of lung cancer in a Chinese non-smoking female population. *Lung Cancer*. 2016;94:15–21.
- Zhao H, Xu J, Zhao D, et al. Somatic mutation of the SNP rs11614913 and its association with increased MIR 196A2 expression in breast cancer. *DNA Cell Biol.* 2016;35(2):81–87.
- Okubo M, Tahara T, Shibata T, et al. Association between common genetic variants in pre-microRNAs and gastric cancer risk in Japanese population. *Helicobacter*. 2010;15(6):524–531.
- Pu JY, Dong W, Zhang L, Liang WB, Yang Y, Lv ML. No association between single nucleotide polymorphisms in pre-mirnas and the risk of gastric cancer in Chinese population. *Iran J Basic Med Sci.* 2014;17(2): 128–133.
- Omrani M, Hashemi M, Eskandari-Nasab E, et al. hsa-mir-499 rs3746444 gene polymorphism is associated with susceptibility to breast cancer in an Iranian population. *Biomark Med.* 2014;8(2):259–267.
- Qi JH, Wang J, Chen J, et al. High-resolution melting analysis reveals genetic polymorphisms in microRNAs confer hepatocellular carcinoma risk in Chinese patients. *BMC Cancer*. 2014;14:643.
- Chu YH, Tzeng SL, Lin CW, Chien MH, Chen MK, Yang SF. Impacts of microRNA gene polymorphisms on the susceptibility of environmental factors leading to carcinogenesis in oral cancer. *PLoS One*. 2012;7(6):e39777.
- Gu JY, Tu L. Investigating the role of polymorphisms in miR-146a, -149, and -196a2 in the development of gastric cancer. *Genet Mol Res.* 2016;15(2): gmr.15027839.
- Hashemi M, Moradi N, Ziaee SA, et al. Association between single nucleotide polymorphism in miR-499, miR-196a2, miR-146a and miR-149 and prostate cancer risk in a sample of Iranian population. *J Adv Res.* 2016;7(3):491–498.
- He B, Pan Y, Xu Y, et al. Associations of polymorphisms in microRNAs with female breast cancer risk in Chinese population. *Tumour Biol.* 2015;36(6):4575–4582.
- Kou JT, Fan H, Han D, et al. Association between four common microRNA polymorphisms and the risk of hepatocellular carcinoma and HBV infection. *Oncol Lett.* 2014;8(3):1255–1260.
- 92. Morales S, Gulppi F, Gonzalez-Hormazabal P, et al. Association of single nucleotide polymorphisms in Pre-miR-27a, Pre-miR-196a2, PremiR-423, miR-608 and Pre-miR-618 with breast cancer susceptibility in a South American population. *BMC Genet.* 2016;17(1):109.
- Pavlakis E, Papaconstantinou I, Gazouli M, et al. MicroRNA gene polymorphisms in pancreatic cancer. *Pancreatology*. 2013;13(3):273–278.
- Roy R, De Sarkar N, Ghose S, et al. Genetic variations at microRNA and processing genes and risk of oral cancer. *Tumour Biol*. 2014;35(4): 3409–3414.
- Sodhi KK, Bahl C, Singh N, Behera D, Sharma S. Functional genetic variants in pre-miR-146a and 196a2 genes are associated with risk of lung cancer in North Indians. *Future Oncol.* 2015;11(15):2159–2173.

- Sun XC, Zhang AC, Tong LL, et al. miR-146a and miR-196a2 polymorphisms in ovarian cancer risk. *Genet Mol Res.* 29 2016;15(3): gmr.15038468.
- Sushma PS, Jamil K, Kumar PU, Satyanarayana U, Ramakrishna M, Triveni B. Genetic variation in MicroRNAs and risk of oral squamous cell carcinoma in South Indian population. *Asian Pac J Cancer Prev.* 2015;16(17):7589–7594.
- Toraih EA, Fawz MS, Elgazzaz MG, Hussein MH, Shehata RH, Daoud HG. Combined genotype analyses of precursor miRNA196a2 and 499a variants with hepatic and renal cancer susceptibility a Preliminary Study. *Asian Pac J Cancer Prev.* 2016;17(7):3369–3375.
- Zhang LH, Hao BB, Zhang CY, Dai XZ, Zhang F. Contributions of polymorphisms in miR146a, miR196a, and miR499 to the development of hepatocellular carcinoma. *Genet Mol Res.* 2016;15(3).
- 100. Zhang M, Jin M, Yu Y, et al. Associations of miRNA polymorphisms and female physiological characteristics with breast cancer risk in Chinese population. *Eur J Cancer Care (Engl)*. 2012;21(2):274–280.
- 101. Guo J, Jin M, Zhang M, Chen K. A genetic variant in miR-196a2 increased digestive system cancer risks: a meta-analysis of 15 casecontrol studies. *PLoS One*. 2012;7(1):e30585.
- 102. Ma XP, Zhang T, Peng B, Yu L, Jiang de K. Association between microRNA polymorphisms and cancer risk based on the findings of 66 case-control studies. *PLoS One*. 2013;8(11):e79584.
- 103. Wang J, Wang Q, Liu H, et al. The association of miR-146a rs2910164 and miR-196a2 rs11614913 polymorphisms with cancer risk: a metaanalysis of 32 studies. *Mutagenesis*. 2012;27(6):779–788.
- Zhang H, Su YL, Yu H, Qian BY. Meta-analysis of the association between Mir-196a-2 polymorphism and cancer susceptibility. *Cancer Biol Med.* 2012;9(1):63–72.
- 105. Chen C, Zhang Y, Zhang L, Weakley SM, Yao Q. MicroRNA-196: critical roles and clinical applications in development and cancer. *J Cell Mol Med.* 2011;15(1):14–23.
- Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges. *Nature Rev Drug Discov*. 2010; 9(10):775–789.
- 107. Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. *Proc Natl Acad Sci U S A*. 2006;103(7):2257–2261.
- Xu J, Hu Z, Xu Z, et al. Functional variant in microRNA-196a2 contributes to the susceptibility of congenital heart disease in a Chinese population. *Hum Mut.* 2009;30(8):1231–1236.
- 109. Kang Z, Li Y, He X, et al. Quantitative assessment of the association between miR-196a2 rs11614913 polymorphism and cancer risk: evidence based on 45,816 subjects. *Tumour Biol.* 2014;35(7): 6271–6282.
- 110. Kim MJ, Yoo SS, Choi YY, Park JY. A functional polymorphism in the pre-microRNA-196a2 and the risk of lung cancer in a Korean population. *Lung cancer*. 2010;69(1):127–129.
- 111. Vinci S, Gelmini S, Pratesi N, et al. Genetic variants in miR-146a, miR-149, miR-196a2, miR-499 and their influence on relative expression in lung cancers. *Clinical chemistry and laboratory medicine*. 2011;49(12):2073–2080.
- 112. Umar M, Upadhyay R, Prakash G, Kumar S, Ghoshal UC, Mittal B. Evaluation of common genetic variants in pre-microRNA in susceptibility and prognosis of esophageal cancer. *Mol Carcinog.* 2013;52 Suppl 1:E10–18.
- Vinci S, Gelmini S, Mancini I, et al. Genetic and epigenetic factors in regulation of microRNA in colorectal cancers. *Methods*. 2013; 59(1):138–146.
- 114. Wei J, Zheng L, Liu S, et al. MiR-196a2 rs11614913 T > C polymorphism and risk of esophageal cancer in a Chinese population. *Human immunology*. 2013;74(9):1199–1205.
- 115. Parlayan C, Ikeda S, Sato N, Sawabe M, Muramatsu M, Arai T. Association analysis of single nucleotide polymorphisms in miR-146a and miR-196a2 on the prevalence of cancer in elderly Japanese: a case-control study. *Asian Pacific journal of cancer prevention: APJCP*. 2014;15(5): 2101–2107.

Supplementary materials

Table SI Details of the sensitivity analyses of the association between rs11614913 polymorphism and cancer risk for homozygous model (TT vs CC) and recessive model (TT vs TC+CC).

Comparison	Study omitted	Estimate	(95% Con	f Interval)		Kou et al ⁹¹	0.907
pa			<u>.</u>	Upper Cl		Roy et al ⁹⁴	0.896
						Li et al ⁶³	0.896
TT vs CC	Hu et al ⁷	0.902	0.814	0.999		Deng et al ⁶⁷	0.900
	Hu et al ³⁵	0.904	0.815	1.002		Qi et al ⁷²	0.907
	Tian et al ³	0.902	0.814	1.001		Dikaiakos et al ⁶⁸	0.899
	Hoffman et al⁵	0.890	0.805	0.985		Li et al ⁶⁹	0.890
	Catucci et al ³⁶	0.900	0.811	1.000		Li et al ⁶⁹	0.907
	Wang et al ³⁸	0.911	0.824	1.008		Nikolic et al ⁷¹	0.902
	Okubo et al ⁸³	0.900	0.812	0.998		He et al ⁹⁰	0.901
	Peng et al ⁴	0.904	0.816	1.002		Sushma et al ⁹⁷	0.909
	Srivastava et al ¹⁰	0.903	0.815	1.000		Sodhi et al ⁹⁵	0.891
	Dou et al ⁶	0.897	0.809	0.994		Jiang et al ²⁶	0.896
	Li et al ⁹	0.906	0.818	1.003		Toraih et al ⁹⁸	0.894
	Akkiz et al ⁸	0.908	0.820	1.005		Dai et al ⁷⁴	0.908
	Liu et al''	0.898	0.810	0.997		Zhao et al ⁸²	0.898
	Kim et al ¹⁰¹	0.904	0.815	1.002		Song et al ⁷⁹	0.907
	Catucci et al ³⁶	0.899	0.810	0.997		Shen et al ⁷⁸	0.902
	Christensen et al ³⁷	0.900	0.813	0.997		Li et al ⁷⁵	0.907
	Mittal et al⁴¹	0.904	0.816	1.001		Li et al ⁷⁶	0.906
	Jedlinski et al ⁴⁰	0.900	0.813	0.998		Xu et al ⁸⁰	0.906
	Zhan et al ⁴²	0.906	0.818	1.004		Qiu et al ⁷⁷	0.905
	Zhou et al ⁴³	0.901	0.813	0.998		Jiang et al ²⁶	0.901
	Vinci et al ¹⁰²	0.895	0.809	0.992		Yin et al ⁸¹	0.901
	Hong et al ²	0.902	0.814	1.000		Zhang et al ⁹⁹	0.901
	George et al ³⁹	0.902	0.815	0.999		Sun et al%	0.904
	Linhares et al45	0.893	0.806	0.988		Toraih et al ⁹⁸	0.894
	Chen et al44	0.898	0.811	0.995		Morales et al ⁹²	0.901
	Min et al ²⁴	0.904	0.815	1.002		Gu et al ⁸⁸	0.891
	Zhu et al⁴7	0.905	0.816	1.003		Hashemi et al ⁸⁹	0.896
	Hezova et al ²⁵	0.897	0.810	0.994		Combined ^{2–10,25,26,35–107}	0.900
	Zhang et al ¹⁰⁰	0.900	0.812	0.998	TT vs TC+CC		0.918
	Yoon et al ⁴⁶	0.904	0.816	1.001		Hu et al ³⁵	0.920
	Zhang et al ⁹⁹	0.904	0.816	1.001		Tian et al ³	0.918
	Chu et al ⁸⁷	0.894	0.807	0.990		Hoffman et al ⁵	0.910
	Vinci et al ¹⁰⁵	0.897	0.810	0.994		Catucci et al ³⁶	0.910
	Ahn et al ¹⁰³	0.902	0.814	1.000			
	Lv et al ⁵¹	0.878	0.798	0.965		Wang et al ³⁸ Okubo et al ⁸³	0.928
	Umar et al ¹⁰⁴	0.895	0.808	0.992			0.917
	Wei et al ¹⁰⁶	0.896	0.809	0.993		Peng et al ⁴	0.919
						Srivastava et al ¹⁰	0.918
	Wang et al ⁵³	0.894	0.807	0.990		Dou et al ⁶	0.918
	Zhang et al ⁵⁵	0.904	0.816	1.003		Li et al ⁹	0.922
	Han et al ⁴⁹	0.898	0.810	0.996		Akkiz et al ⁸	0.923
	Pavlakis et al ⁹³	0.899	0.812	0.996		Liu et al'	0.917
	Tong et al ⁶⁵	0.901	0.813	1.000		Kim et al ¹⁰¹	0.920
	Pu et al ⁸⁴	0.902	0.814	1.000		Catucci et al ³⁶ Christensen et al ³⁷	0.916
	Bansal et al ⁵⁶	0.902	0.815	1.000		Mittal et al ⁴¹	0.918 0.921
	Kupcinskas et al ⁶²	0.897	0.809	0.994		Jedlinski et al ⁴⁰	0.921
	Qu et al ⁶⁴	0.905	0.817	1.003		Zhan et al ⁴²	0.922
	Wang et al ⁶⁶	0.897	0.809	0.994		Zhou et al ⁴³	0.918
	Dikeakos et al ⁵⁸	0.925	0.843	1.015		Vinci et al ¹⁰²	0.915
	Qi et al ⁸⁶	0.902	0.814	1.000		Hong et al ²	0.922
	Chu et al ⁵⁷	0.898	0.810	0.995		George et al ³⁹	0.920

0.900

0.896

0.892

0.900

Estimate (95% Conf Interval)

0.812

0.808

0.806

0.813

0.819

0.809

0.808

0.812

0.819

0.812

0.805

0.819

0.814

0.813

0.821

0.806

0.808

0.807

0.820

0.811

0.819

0.813

0.820

0.819

0.818

0.817

0.813

0.813

0.813

0.817

0.808

0.812

0.805

0.809

0.813

0.851

0.852

0.850

0.844

0.849

0.862

0.850

0.852

0.850

0.850

0.854

0.856

0.849

0.852

0.849

0.851

0.854

0.850

0.854

0.850 0.849

0.854

0.853

Lower CI Upper CI

0.997

0.993

0.987

0.997

1.004

0.993

0.993

0.997

1.005

0.996

0.985

1.004

1.000

0.999

1.006

0.986

0.993

0.990

1.005

0.995

1.004

1.002

1.005

1.004

1.004

1.003

1.000

0.999

0.998

1.002

0.990

0.999

0.986

0.992

0.997

0.991

0.993

0.991

0.980

0.991

0.999

0.991

0.991

0.990

0.991

0.994

0.995

0.990

0.992

0.989

0.989

0.993

0.989

0.994 0.990

0.987

0.994

0.992 (Continued)

Table SI (Continued)

Comparison Study omitted

Parlayan et al¹⁰⁷

Omrani et al⁸⁵

Li et al⁶³

Du et al⁵⁹

Table SI (Continued)

Comparison	Study omitted	Estimate	(95% Con	f Interval)
			Lower Cl	Upper C
	Linhares et al ⁴⁵	0.913	0.847	0.985
	Chen et al ⁴⁴	0.916	0.849	0.988
	Min et al ²⁴	0.918	0.850	0.990
	Zhu et al ⁴⁷	0.921	0.854	0.994
	Hezova et al ²⁵	0.915	0.848	0.987
	Zhang et al ¹⁰⁰	0.918	0.850	0.991
	Yoon et al ⁴⁶	0.920	0.853	0.993
	Zhang et al ⁹⁹ Chu et al ⁸⁷	0.919 0.918	0.852 0.851	0.992 0.991
	Vinci et al ¹⁰⁵	0.919	0.851	0.991
	Ahn et al ¹⁰³	0.916	0.850	0.988
	Lv et al ⁵¹	0.905	0.842	0.974
	Umar et al ¹⁰⁴	0.914	0.848	0.986
	Wei et al ¹⁰⁶	0.918	0.850	0.990
	Wang et al ⁵³	0.913	0.846	0.985
	Zhang et al ⁵⁵	0.919	0.851	0.992
	Han et al ⁴⁹	0.917	0.849	0.990
	Pavlakis et al ⁹³	0.921	0.854	0.994
	Tong et al ⁶⁵	0.913	0.847	0.985
	Pu et al ⁸⁴ Bansal et al ⁵⁶	0.918 0.919	0.851 0.852	0.990 0.991
	Kupcinskas et al ⁶²	0.916	0.832	0.988
	Qu et al ⁶⁴	0.923	0.855	0.995
	Wang et al ⁶⁶	0.916	0.848	0.988
	Dikeakos et al ⁵⁸	0.931	0.866	1.001
	Qi et al ⁸⁶	0.924	0.857	0.996
	Chu et al ⁵⁷	0.914	0.847	0.986
	Parlayan et al ¹⁰⁷	0.918	0.851	0.990
	Li et al ⁶³	0.913	0.846	0.985
	Du et al ⁵⁹	0.914	0.847	0.986
	Omrani et al ⁸⁵	0.918	0.851	0.989
	Kou et al ⁹¹	0.921	0.854	0.994
	Roy et al ⁹⁴ Li et al ⁶³	0.915 0.906	0.848 0.845	0.987 0.971
	Deng et al ⁶⁷	0.913	0.845	0.985
	Qi et al ⁷²	0.923	0.856	0.995
	Dikaiakos et al ⁶⁸	0.914	0.848	0.987
	Li et al ⁶⁹	0.911	0.845	0.982
	Li et al ⁶⁹	0.922	0.855	0.995
	Nikolic et al ⁷¹	0.919	0.852	0.991
	He et al ⁹⁰	0.917	0.850	0.990
	Sushma et al ⁹⁷	0.921	0.855	0.994
	Sodhi et al ⁹⁵	0.913	0.847	0.984
	Jiang et al ²⁶	0.914	0.847	0.986
	Toraih et al ⁹⁸	0.914	0.848	0.986
	Dai et al ⁷⁴	0.922	0.855	0.995
	Zhao et al ⁸²	0.914	0.848	0.986
	Song et al ⁷⁹	0.923	0.856	0.995
	Shen et al ⁷⁸	0.918	0.849	0.992
	Li et al ⁷⁵	0.921	0.854	0.993
	Li et al ⁷⁶	0.923	0.856	0.995
	Xu et al ⁸⁰	0.922	0.854	0.994
	Qiu et al ⁷⁷	0.921	0.854	0.993
	Jiang et al ²⁶	0.921	0.854	0.994
	Yin et al ⁸¹	0.919	0.851	0.992
	Zhang et al ⁹⁹	0.918	0.851	0.991
	Sun et al%	0.919	0.852	0.992
	Toraih et al ⁹⁸	0.915	0.848	0.986
	Morales et al ⁹²	0.918	0.851	0.991
	Gu et al ⁸⁸	0.911	0.845	0.982
	Hashemi et al ⁸⁹	0.915	0.848	0.986
	Combined ^{2-10,25,26,35-107}	0.918	0.851	0.989

Table S2 P-values of Begg's and Egger's test for the polymorphism	
rs11614913	

Polymorphism	Comparison	Subgroup	Begg's test (P>z)	Egger's test (P>t)
rs 6 49 3	T vs C	Overall	0.660	0.923
		Taqman	0.368	0.723
		PCR	0.640	0.859
		Asian	0.946	0.854
		Caucasian	0.147	0.969
		НВ	0.509	0.386
		PB	0.251	0.579
	TT vs CC	Overall	0.971	0.822
		Taqman	0.719	0.606
		PCR	0.832	0.762
		Asian	0.578	0.758
		Caucasian	0.163	0.971
		НВ	0.721	0.489
		PB	0.666	0.880
	TC vs CC	Overall	0.951	0.761
		Taqman	0.418	0.289
		PCR	0.839	0.933
		Asian	0.991	0.546
		Caucasian	0.902	0.767
		НВ	0.721	0.601
		PB	0.965	0.453
	TT+TC vs CC	Overall	0.592	0.401
		Taqman	0.418	0.613
		PCR	0.734	0.598
		Asian	0.986	0.185
		Caucasian	0.300	0.770
		НВ	0.737	0.543
		PB	0.584	0.593
	TT vs TC+CC	Overall	0.908	0.899
		Taqman	0.719	0.440
		PCR	0.912	0.917
		Asian	0.795	0.688
		Caucasian	0.537	0.857
		НВ	0.673	0.503
		PB	0.914	0.508

Abbreviations: HB, hospital based; PB, population based; PCR, polymerase chain reaction.

References

- Liu CJ, Tsai MM, Tu HF, Lui MT, Cheng HW, Lin SC. miR-196a overexpression and miR-196a2 gene polymorphism are prognostic predictors of oral carcinomas. *Ann Surg Oncol.* 2013;20(Suppl 3): S406–S414.
- Hong YS, Kang HJ, Kwak JY, et al. Association between microR-NA196a2 rs11614913 genotypes and the risk of non-small cell lung cancer in Korean population. *J Prev Med Public Health*. 2011;44(3): 125–130.
- Tian T, Shu Y, Chen J, et al. A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese. *Cancer Epidemiology, Biomarkers & Prev.* 2009;18(4):1183–1187.
- Peng S, Kuang Z, Sheng C, Zhang Y, Xu H, Cheng Q. Association of microRNA-196a-2 gene polymorphism with gastric cancer risk in a Chinese population. *Dig Dis Sci.* 2010;55(8):2288–2293.
- Hoffman AE, Zheng T, Yi C, et al. microRNA miR-196a-2 and breast cancer: a genetic and epigenetic association study and functional analysis. *Cancer research*. 2009;69(14):5970–5977.

- Dou T, Wu Q, Chen X, et al. A polymorphism of microRNA196a genome region was associated with decreased risk of glioma in Chinese population. *J Cancer Res Clin Oncol.* 2010;136(12):1853–1859.
- Hu Z, Chen J, Tian T, et al. Genetic variants of miRNA sequences and non-small cell lung cancer survival. *J Clin Invest*. 2008;118(7): 2600–2608.
- Akkiz H, Bayram S, Bekar A, Akgollu E, Ulger Y. A functional polymorphism in pre-microRNA-196a-2 contributes to the susceptibility of hepatocellular carcinoma in a Turkish population: a case-control study. *J Viral Hepat.* 2011;18(7):e399–e407.
- Li XD, Li ZG, Song XX, Liu CF. A variant in microRNA-196a2 is associated with susceptibility to hepatocellular carcinoma in Chinese patients with cirrhosis. *Pathology*. 2010;42(7):669–673.
- Srivastava K, Srivastava A, Mittal B. Common genetic variants in premicroRNAs and risk of gallbladder cancer in North Indian population. *J Hum Genet*. 2010;55(8):495–499.
- Liu Z, Li G, Wei S, et al. Genetic variants in selected pre-microRNA genes and the risk of squamous cell carcinoma of the head and neck. *Cancer.* 15 2010;116(20):4753–4760.
- Cho WC. MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy. *Int J Biochem Cell Biol*. 2010;42(8): 1273–1281.
- Esquela-Kerscher A, Slack FJ. Oncomirs microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259–269.
- Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. *Nature*. 2005;435(7043):834–838.
- Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E. Phylogenetic shadowing and computational identification of human microRNA genes. *Cell*. 2005;120(1):21–24.
- Lopez-Cima MF, Gonzalez-Arriaga P, Garcia-Castro L, et al. Polymorphisms in XPC, XPD, XRCC1, and XRCC3 DNA repair genes and lung cancer risk in a population of northern Spain. *BMC cancer*. 2007;7:162.
- Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. *Cell*. 2004;116(2):281–297.
- Ruan K, Fang X, Ouyang G. MicroRNAs: novel regulators in the hallmarks of human cancer. *Cancer Lett.* 2009;285(2):116–126.
- Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T. New microRNAs from mouse and human. *RNA*. 2003;9(2):175–179.
- Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R. Control of translation and mRNA degradation by miRNAs and siRNAs. *Genes Dev.* 2006;20(5):515–524.
- Ambros V. The functions of animal microRNAs. *Nature*. 2004; 431(7006):350–355.
- 22. Chen K, Song F, Calin GA, Wei Q, Hao X, Zhang W. Polymorphisms in microRNA targets: a gold mine for molecular epidemiology. *Carcinogenesis*. 2008;29(7):1306–1311.
- Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA networks: the implications for cancer research. *Nature Rev Cancer*. 2010;10(6):389–402.
- Min KT, Kim JW, Jeon YJ, et al. Association of the miR-146aC>G, 149C>T, 196a2C>T, and 499A>G polymorphisms with colorectal cancer in the Korean population. *Mol Carcinog.* 2012;51(Suppl 1): E65–E73.
- Hezova R, Kovarikova A, Bienertova-Vasku J, et al. Evaluation of SNPs in miR-196-a2, miR-27a and miR-146a as risk factors of colorectal cancer. *World J Gastroenterol.* 14 2012;18(22):2827–2831.
- Jiang J, Jia ZF, Cao DH, Wu YH, Sun ZW, Cao XY. Association of the miR-146a rs2910164 polymorphism with gastric cancer susceptibility and prognosis. *Future Oncol.* 2016;12(19):2215–2226.
- Hu Y, Yu CY, Wang JL, Guan J, Chen HY, Fang JY. MicroRNA sequence polymorphisms and the risk of different types of cancer. *Sci Rep.* 2014;4:3648.
- Johnnidis JB, Harris MH, Wheeler RT, et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. *Nature*. 2008;451(7182):1125–1129.
- 29. Woolf B. On estimating the relation between blood group and disease. *Ann Hum Genet.* 1955;19(4):251–253.

- Liu Y, Zhan Y, Chen Z, et al. Directing cellular information flow via CRISPR signal conductors. *Nat Methods*. 2016;13(11):938–944.
- Vangel MG, Rukhin AL. Maximum likelihood analysis for heteroscedastic one-way random effects ANOVA in interlaboratory studies. *Biometrics*. 1999;55(1):129–136.
- DerSimonian R, Kacker R. Random-effects model for meta-analysis of clinical trials: an update. *Contemp Clin Trials*. 2007;28(2):105–114.
- Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. *J Natl Cancer Inst.* 1959;22(4): 719–748.
- Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. *BMJ*. 1997;315(7109):629–634.
- Hu Z, Liang J, Wang Z, et al. Common genetic variants in pre-microRNAs were associated with increased risk of breast cancer in Chinese women. *Hum Mutat*. 2009;30(1):79–84.
- Catucci I, Yang R, Verderio P, et al. Evaluation of SNPs in miR-146a, miR196a2 and miR-499 as low-penetrance alleles in German and Italian familial breast cancer cases. *Hum Mutat*. 2010;31(1):E1052–E1057.
- Christensen BC, Avissar-Whiting M, Ouellet LG, et al. Mature microRNA sequence polymorphism in MIR196A2 is associated with risk and prognosis of head and neck cancer. *Clin Cancer Res.* 2010;16(14): 3713–3720.
- Wang K, Guo H, Hu H, et al. A functional variation in pre-microRNA-196a is associated with susceptibility of esophageal squamous cell carcinoma risk in Chinese Han. *Biomarkers*. 2010;15(7):614–618.
- George GP, Gangwar R, Mandal RK, Sankhwar SN, Mittal RD. Genetic variation in microRNA genes and prostate cancer risk in North Indian population. *Mol Biol Rep.* 2011;38(3):1609–1615.
- Jedlinski DJ, Gabrovska PN, Weinstein SR, Smith RA, Griffiths LR. Single nucleotide polymorphism in hsa-mir-196a-2 and breast cancer risk: a case control study. *Twin Res Hum Genet*. 2011;14(5):417–421.
- Mittal RD, Gangwar R, George GP, Mittal T, Kapoor R. Investigative role of pre-microRNAs in bladder cancer patients: a case-control study in North India. *DNA Cell Biol.* 2011;30(6):401–406.
- Zhan JF, Chen LH, Chen ZX, et al. A functional variant in microRNA-196a2 is associated with susceptibility of colorectal cancer in a Chinese population. *Archiv Med Res.* 2011;42(2):144–148.
- Zhou B, Wang K, Wang Y, et al. Common genetic polymorphisms in pre-microRNAs and risk of cervical squamous cell carcinoma. *Mol Carcinog.* 2011;50(7):499–505.
- 44. Chen H, Sun LY, Chen LL, Zheng HQ, Zhang QF. A variant in micro RNA-196a2 is not associated with susceptibility to and progression of colorectal cancer in Chinese. *Int Med J.* 2012;42(6):e115–e119.
- Linhares JJ, Azevedo M Jr, Siufi AA, et al Evaluation of single nucleotide polymorphisms in microRNAs (hsa-miR-196a2 rs11614913 C/T) from Brazilian women with breast cancer. *BMC Med Genet*. 2012;13:119.
- 46. Yoon KA, Yoon H, Park S, et al. The prognostic impact of microRNA sequence polymorphisms on the recurrence of patients with completely resected non-small cell lung cancer. *J Thorac Cardiovasc Surg.* 2012;144(4):794–807.
- Zhu L, Chu H, Gu D, et al. A functional polymorphism in miRNA-196a2 is associated with colorectal cancer risk in a Chinese population. *DNA Cell Biol.* 2012;31(3):350–354.
- Ahn DH, Rah H, Choi Y-K, et al. Association of the miR-146aC>G, miR-149T>C, miR-196a2T>C, and miR-499A>G polymorphisms with gastric cancer risk and survival in the Korean population. *Mol Carcinog*. 2013;52(S1):39–51.
- Han Y, Pu R, Han X, et al. Associations of pri-miR-34b/c and pre-miR-196a2 polymorphisms and their multiplicative interactions with hepatitis B virus mutations with hepatocellular carcinoma risk. *PLoS One*. 2013;8(3):e58564.
- Hong MJ, Choi YY, Jang JA, et al. Association between genetic variants in pre-microRNAs and survival of early-stage NSCLC. *J Thorac Oncol.* 2013;8(6):703–710.
- Lv M, Dong W, Li L, et al. Association between genetic variants in pre-miRNA and colorectal cancer risk in a Chinese population. *J Cancer Res Clin Oncol.* 2013;139(8):1405–1410.

- Song X, Sturgis EM, Liu J, et al. MicroRNA variants increase the risk of HPV-associated squamous cell carcinoma of the oropharynx in never smokers. *PLoS One*. 2013;8(2):e56622.
- Wang S, Tao G, Wu D, et al. A functional polymorphism in MIR196A2 is associated with risk and prognosis of gastric cancer. *Mol Carcinog*. 2013;52(Suppl 1):E87–E95.
- Yuan Z, Zeng X, Yang D, Wang W, Liu Z. Effects of common polymorphism rs11614913 in Hsa-miR-196a2 on lung cancer risk. *PLoS One*. 2013;8(4):e61047.
- 55. Zhang J, Wang R, Ma Y-Y, et al. Association Between Single Nucleotide Polymorphisms in miRNA196a-2 and miRNA146a and Susceptibility to Hepatocellular Carcinoma in a Chinese Population. *Asian Pac J Cancer Prev.* 2013;14(11):6427–6431.
- Bansal C, Sharma KL, Misra S, Srivastava AN, Mittal B, Singh US. Common genetic variants in pre-microRNAs and risk of breast cancer in the North Indian population. *Ecancermedicalscience*. 2014;8:473.
- Chu YH, Hsieh MJ, Chiou HL, et al. MicroRNA gene polymorphisms and environmental factors increase patient susceptibility to hepatocellular carcinoma. *PLoS One*. 2014;9(2):e89930.
- Dikeakos P, Theodoropoulos G, Rizos S, Tzanakis N, Zografos G, Gazouli M. Association of the miR-146aC>G, miR-149T>C, and miR-196a2T>C polymorphisms with gastric cancer risk and survival in the Greek population. *Mol Biol Rep.* 2014;41(2):1075–1080.
- Du M, Lu D, Wang Q, et al. Genetic variations in microRNAs and the risk and survival of renal cell cancer. *Carcinogenesis*. 2014;35(7): 1629–1635.
- Du W, Ma X-L, Zhao C, et al. Associations of Single Nucleotide Polymorphisms in miR-146a, miR-196a, miR-149 and miR-499 with Colorectal Cancer Susceptibility. *Asian Pac J Cancer Prev.* 2014;15(2): 1047–1055.
- Fan X, Wu Z. Effects of four single nucleotide polymorphisms in microRNA-coding genes on lung cancer risk. *Tumour Biol*. 2014;35(11): 10815–10824.
- Kupcinskas J, Bruzaite I, Juzenas S, et al. Lack of association between miR-27a, miR-146a, miR-196a-2, miR-492 and miR-608 gene polymorphisms and colorectal cancer. *Sci Rep.* 2014;4:5993.
- Li P, Yan H, Zhang H, et al. A functional polymorphism in MIR196A2 is associated with risk and progression of nasopharyngeal carcinoma in the Chinese population. *Genet Test Mol Biomarkers*. Mar 2014;18(3):149–155.
- 64. Qu Y, Qu H, Luo M, et al. MicroRNAs related polymorphisms and genetic susceptibility to esophageal squamous cell carcinoma. *Mol Genet Genom*. 2014;289(6):1123–1130.
- Tong N, Xu B, Shi D, et al. Hsa-miR-196a2 polymorphism increases the risk of acute lymphoblastic leukemia in Chinese children. *Mutat Res.* 2014;759:16–21.
- 66. Wang N, Li Y, Zhou RM, et al. Hsa-miR-196a2 functional SNP is associated with the risk of ESCC in individuals under 60 years old. *Biomarkers*. 2014;19(1):43–48.
- Deng S, Wang W, Li X, Zhang P. Common genetic polymorphisms in pre-microRNAs and risk of bladder cancer. *World J Surg Oncol.* 2015;13:297.
- Dikaiakos P, Gazouli M, Rizos S, Zografos G, Theodoropoulos GE. Evaluation of genetic variants in miRNAs in patients with colorectal cancer. *Cancer Biom*. 2015;15(2):157–162.
- Li X, Li K, Wu Z. Association of four common SNPs in microRNA polymorphisms with the risk of hepatocellular carcinoma. *Int J Clin Exp Pathol.* 2015;8(8):9560–9566.
- Ni Q, Ji A, Yin J, Wang X, Liu X. Effects of Two Common Polymorphisms rs2910164 in miR-146a and rs11614913 in miR-196a2 on Gastric Cancer Susceptibility. *Gastroenterol Res Pract*. 2015;2015:764163.
- Nikolic Z, Savic Pavicevic D, Vucic N, et al. Assessment of association between genetic variants in microRNA genes hsa-miR-499, hsa-miR-196a2 and hsa-miR-27a and prostate cancer risk in Serbian population. *Exp Mol Pathol.* 2015;99(1):145–150.
- Qi P, Wang L, Zhou B, et al. Associations of miRNA polymorphisms and expression levels with breast cancer risk in the Chinese population. *Genet Mol Res.* 2015;14(2):6289–6296.

- Wu Y, Hao X, Feng Z, Liu Y. Genetic polymorphisms in miRNAs and susceptibility to colorectal cancer. *Cell Biochem Biophysics*. 2015;71(1):271–278.
- 74. Dai ZM, Kang HF, Zhang WG, et al. The Associations of single nucleotide polymorphisms in miR196a2, miR-499, and miR-608 with breast cancer susceptibility: A STROBE-Compliant Observational Study. *Medicine*. 2016;95(7):e2826.
- Li J, Cheng G, Wang S. A single-nucleotide polymorphism of miR-196a2T>C rs11614913 Is associated with hepatocellular carcinoma in the Chinese population. *Genet Test Mol Biomarkers*. 2016;20(4):213–215.
- Li M, Li RJ, Bai H, et al. Association between the pre-miR-196a2 rs11614913 polymorphism and gastric cancer susceptibility in a Chinese population. *Genet Mol Res.* 2016;15(2).
- Qiu GP, Liu J. MicroRNA gene polymorphisms in evaluating therapeutic efficacy after transcatheter arterial chemoembolization for primary hepatocellular carcinoma. *Genet Test Mol Biomarkers*. 2016.
- Shen F, Chen J, Guo S, et al. Genetic variants in miR-196a2 and miR-499 are associated with susceptibility to esophageal squamous cell carcinoma in Chinese Han population. *Tumour Biol.* 2016;37(4): 4777–4784.
- Song ZS, Wu Y, Zhao HG, et al. Association between the rs11614913 variant of miRNA-196a-2 and the risk of epithelial ovarian cancer. *Oncol Lett.* 2016;11(1):194–200.
- Xu X, Ling Q, Wang J, et al. Donor miR-196a-2 polymorphism is associated with hepatocellular carcinoma recurrence after liver transplantation in a Han Chinese population. *Int J Cancer*. 2016;138(3):620–629.
- Yin Z, Cui Z, Ren Y, et al. Association between polymorphisms in pre-miRNA genes and risk of lung cancer in a Chinese non-smoking female population. *Lung Cancer*. 2016;94:15–21.
- Zhao H, Xu J, Zhao D, et al. Somatic mutation of the SNP rs11614913 and its association with increased MIR 196A2 expression in breast cancer. *DNA Cell Biol.* 2016;35(2):81–87.
- Okubo M, Tahara T, Shibata T, et al. Association between common genetic variants in pre-microRNAs and gastric cancer risk in Japanese population. *Helicobacter*. 2010;15(6):524–531.
- Pu JY, Dong W, Zhang L, Liang WB, Yang Y, Lv ML. No association between single nucleotide polymorphisms in pre-mirnas and the risk of gastric cancer in Chinese population. *Iran J Basic Med Sci.* 2014;17(2):128–133.
- Omrani M, Hashemi M, Eskandari-Nasab E, et al. hsa-mir-499 rs3746444 gene polymorphism is associated with susceptibility to breast cancer in an Iranian population. *Biomark Med.* 2014;8(2):259–267.
- Qi JH, Wang J, Chen J, et al. High-resolution melting analysis reveals genetic polymorphisms in microRNAs confer hepatocellular carcinoma risk in Chinese patients. *BMC Cancer*. 2014;14:643.
- Chu YH, Tzeng SL, Lin CW, Chien MH, Chen MK, Yang SF. Impacts of microRNA gene polymorphisms on the susceptibility of environmental factors leading to carcinogenesis in oral cancer. *PLoS One*. 2012;7(6):e39777.
- Gu JY, Tu L. Investigating the role of polymorphisms in miR-146a, -149, and -196a2 in the development of gastric cancer. *Genet Mol Res.* 2016;15(2): gmr.15027839.
- Hashemi M, Moradi N, Ziaee SA, et al. Association between single nucleotide polymorphism in miR-499, miR-196a2, miR-146a and miR-149 and prostate cancer risk in a sample of Iranian population. *J Adv Res.* 2016;7(3):491–498.
- He B, Pan Y, Xu Y, et al. Associations of polymorphisms in microRNAs with female breast cancer risk in Chinese population. *Tumour Biol.* 2015;36(6):4575–4582.
- Kou JT, Fan H, Han D, et al. Association between four common microRNA polymorphisms and the risk of hepatocellular carcinoma and HBV infection. *Oncol Lett.* 2014;8(3):1255–1260.
- 92. Morales S, Gulppi F, Gonzalez-Hormazabal P, et al. Association of single nucleotide polymorphisms in Pre-miR-27a, Pre-miR-196a2, Pre-miR-423, miR-608 and Pre-miR-618 with breast cancer susceptibility in a South American population. *BMC Genet.* 15 2016; 17(1):109.

- Pavlakis E, Papaconstantinou I, Gazouli M, et al. MicroRNA gene polymorphisms in pancreatic cancer. *Pancreatology*. 2013;13(3): 273–278.
- Roy R, De Sarkar N, Ghose S, et al. Genetic variations at microRNA and processing genes and risk of oral cancer. *Tumour Bio*. 2014;35(4): 3409–3414.
- Sodhi KK, Bahl C, Singh N, Behera D, Sharma S. Functional genetic variants in pre-miR-146a and 196a2 genes are associated with risk of lung cancer in North Indians. *Future Oncol.* 2015;11(15): 2159–2173.
- Sun XC, Zhang AC, Tong LL, et al. miR-146a and miR-196a2 polymorphisms in ovarian cancer risk. *Genet Mol Res.* 2016;15(3): gmr.15038468.
- Sushma PS, Jamil K, Kumar PU, Satyanarayana U, Ramakrishna M, Triveni B. Genetic variation in MicroRNAs and risk of oral squamous cell carcinoma in South Indian population. *Asian Pac J Cancer Prev.* 2015;16(17):7589–7594.
- Toraih EA, Fawz MS, Elgazzaz MG, Hussein MH, Shehata RH, Daoud HG. Combined genotype analyses of precursor miRNA196a2 and 499a variants with hepatic and renal cancer susceptibility a Preliminary Study. *Asian Pac J Cancer Prev.* 2016;17(7):3369–3375.
- Zhang LH, Hao BB, Zhang CY, Dai XZ, Zhang F. Contributions of polymorphisms in miR146a, miR196a, and miR499 to the development of hepatocellular carcinoma. *Genet Mol Res.* 2016;15(3).
- Zhang M, Jin M, Yu Y, et al. Associations of miRNA polymorphisms and female physiological characteristics with breast cancer risk in Chinese population. *Eur J Cancer Care (Engl)*. 2012;21(2):274–280.
- 101. Kim MJ, Yoo SS, Choi YY, Park JY. A functional polymorphism in the pre-microRNA-196a2 and the risk of lung cancer in a Korean population. *Lung Cancer*. 2010;69(1):127–129.
- 102. Vinci S, Gelmini S, Pratesi N, et al. Genetic variants in miR-146a, miR-149, miR-196a2, miR-499 and their influence on relative expression in lung cancers. *Clin Chem Lab Med.* 2011;49(12):2073–2080.
- 103. Ahn DH, Rah H, Choi YK, et al. Association of the miR-146aC>G, miR-149T>C, miR-196a2T>C, and miR-499A>G polymorphisms with gastric cancer risk and survival in the Korean population. *Mol Carcinog.* 2013;52(Suppl 1):E39–E51.
- 104. Umar M, Upadhyay R, Prakash G, Kumar S, Ghoshal UC, Mittal B. Evaluation of common genetic variants in pre-microRNA in susceptibility and prognosis of esophageal cancer. *Mol Carcinog.* 2013;52 (Suppl 1):E10–E18.

- Vinci S, Gelmini S, Mancini I, et al. Genetic and epigenetic factors in regulation of microRNA in colorectal cancers. *Methods*. 2013; 59(1):138–146.
- 106. Wei J, Zheng L, Liu S, et al. MiR-196a2 rs11614913 T > C polymorphism and risk of esophageal cancer in a Chinese population. *Human Immunology*. 2013;74(9):1199–1205.
- 107. Parlayan C, Ikeda S, Sato N, Sawabe M, Muramatsu M, Arai T. Association analysis of single nucleotide polymorphisms in miR-146a and miR-196a2 on the prevalence of cancer in elderly Japanese: a casecontrol study. *Asian Pacific journal of cancer prevention: APJCP*. 2014;15(5):2101–2107.
- Guo J, Jin M, Zhang M, Chen K. A genetic variant in miR-196a2 increased digestive system cancer risks: a meta-analysis of 15 casecontrol studies. *PLoS One*. 2012;7(1):e30585.
- 109. Ma XP, Zhang T, Peng B, Yu L, Jiang de K. Association between microRNA polymorphisms and cancer risk based on the findings of 66 case-control studies. *PLoS One.* 2013;8(11):e79584.
- 110. Wang J, Wang Q, Liu H, et al. The association of miR-146a rs2910164 and miR-196a2 rs11614913 polymorphisms with cancer risk: a metaanalysis of 32 studies. *Mutagenesis*. 2012;27(6):779–788.
- Zhang H, Su YL, Yu H, Qian BY. Meta-Analysis of the association between Mir-196a-2 polymorphism and cancer susceptibility. *Cancer*. 2012;9(1):63–72.
- 112. Chen C, Zhang Y, Zhang L, Weakley SM, Yao Q. MicroRNA-196: critical roles and clinical applications in development and cancer. *J Cell Mol Med.* 2011;15(1):14–23.
- Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges. *Nature Rev Drug Discov*. 2010;9(10):775–789.
- Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. *Proc Natl Acad Sci U S A*. 2006;103(7):2257–2261.
- 115. Xu J, Hu Z, Xu Z, et al. Functional variant in microRNA-196a2 contributes to the susceptibility of congenital heart disease in a Chinese population. *Hum Mut*. 2009;30(8):1231–1236.
- 116. Kang Z, Li Y, He X, et al. Quantitative assessment of the association between miR-196a2 rs11614913 polymorphism and cancer risk: evidence based on 45,816 subjects. *Tumour Biol.* 2014;35(7): 6271–6282.

OncoTargets and Therapy

Dovepress

Publish your work in this journal

OncoTargets and Therapy is an international, peer-reviewed, open access journal focusing on the pathological basis of all cancers, potential targets for therapy and treatment protocols employed to improve the management of cancer patients. The journal also focuses on the impact of management programs and new therapeutic agents and protocols on

Submit your manuscript here: http://www.dovepress.com/oncotargets-and-therapy-journal

patient perspectives such as quality of life, adherence and satisfaction. The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.