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Abstract: In recent years, protein–protein interactions are becoming the object of increasing 

attention in many different fields, such as structural biology, molecular biology, systems 

biology, and drug discovery. From a structural biology perspective, it would be desirable 

to integrate current efforts into the structural proteomics programs. Given that experimental 

determination of many protein–protein complex structures is highly challenging, and in 

the context of current high-performance computational capabilities, different computer 

tools are being developed to help in this task. Among them, computational docking aims 

to predict the structure of a protein–protein complex starting from the atomic coordinates 

of its individual components, and in recent years, a growing number of docking approaches 

are being reported with increased predictive capabilities. The improvement of speed and 

accuracy of these docking methods, together with the modeling of the interaction networks 

that regulate the most critical processes in a living organism, will be essential for computa-

tional proteomics. The ultimate goal is the rational design of drugs capable of specifically 

inhibiting or modifying protein–protein interactions of therapeutic significance. While 

rational design of protein–protein interaction inhibitors is at its very early stage, the first 

results are promising.

Keywords: protein–protein interactions, drug design, protein docking, structural prediction, 

virtual ligand screening, hot-spots

Introduction
Protein–protein interactions (PPI) are involved in most of the essential processes 

that occur in living organisms, such as cellular communication, immunological 

response, and gene expression control. A detailed energetic and structural knowledge 

of these interactions is necessary to understand the complex regulatory and meta-

bolic interaction networks that occur in living organisms, with the ultimate goal of 

designing drugs for blocking or modifying interactions of therapeutic interest. Thus, 

targeting PPI of therapeutic interest with small-molecule compounds is becoming 

the Holy Grail of drug discovery. A number of experimental and computational 

methods have been reported to contribute to all the stages of the drug discovery 

process targeting PPI. High-throughput experimental methods, such as coexpression 

analysis1 and the yeast two-hybrid test,2 may be used to establish an interaction, and 

random mutagenesis3 to locate the interaction surfaces. Finally, X-ray crystallogra-

phy and/or nuclear magnetic resonance (NMR) provide the most detailed structural 

information of the atomic interactions in a protein–protein complex. However, 

although the number of three-dimensional (3-D) protein structures deposited in 
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the Protein Data Bank (PDB)4 is rapidly growing, only a 

small fraction of numerous protein–protein complexes, 

frequently transient, has been experimentally characterized 

so far. The increasing availability of high-performance 

computing has favored the development of computer tools 

that can help in this task.

Computational prediction of a protein–protein complex 

geometry from the 3-D coordinates of the individual pro-

teins involved has a relatively short history.5 Early docking 

methods used purely geometrical criteria to evaluate the 

resulting solutions, and considered the conformation of 

the molecule side-chains as fixed (rigid-body assumption). 

While this approach demonstrated the ability to rebuild a 

protein–protein complex from its already mutually adjusted 

subunits,6,7 it was not accurate enough to model the induced 

fit of the interacting surfaces upon binding, and therefore 

the prediction results were clearly poorer when using the 

uncomplexed subunits.8 In order to perform more realistic 

simulations, recently developed docking methods include 

interface explicit or implicit flexibility,9,10 and a more accu-

rate energy function.11 While a 100% reliable automated 

prediction of the association of two proteins is beyond 

the reach of current methods, advances in energy calcu-

lations and in global minimization algorithms, together 

with the increasing availability of computing power, may 

lead to useful predictions at a proteomic scale in the next 

few years.

The development of computational methods to model 

protein–protein docking, identify promising binding 

pockets, and predict protein-ligand association will facili-

tate the discovery of small molecules capable of inhibiting 

or modifying PPI, a major new challenge in drug design. 

We can envisage a general strategy for a multidisciplinary 

drug discovery process that targets PPI of therapeutic 

interest, involving four major stages (Figure 1). In the 

following sections each of these stages will be discussed in 

detail, with the emphasis on the computerized techniques 

(Table 1).

Identification of PPI  
of biomedical importance
A plethora of biochemical and genetic experiments, such as 

cross-linking, co-immunoprecipitation and co-fractionation 

by chromatography, among others, have been traditionally 

used to establish specific interactions between proteins. 

Biophysical assays have been also developed to experimen-

tally measure kinetic and thermodynamic binding constants 

between two given proteins.12–16 From all the experimental 

methods, the yeast two-hybrid assay2 and correlation of 

mRNA expression profiles17 have propelled large-scale 

detection of PPI.1,18,19

In recent years, with all the available information derived 

from the genome sequencing projects, several computa-

tional tools have been applied to find and recognize PPI 

from genome sequences at a proteomic level. Analysis of 

co-evolution of proteins20 and gene fusion events21,22 can be 

used to detect putative PPI. A well-known study described 

the use of combination of techniques (correlated evolution, 

correlated mRNA expression profiles, and domain fusion 

patterns) to find 93,750 pairwise links between 4,701 (76%) 

functionally related yeast proteins, from which 4,130 links 

(between 1,223 proteins) were of the ‘highest confidence’ 

(validated by direct experimental techniques or by two of 

the three prediction techniques).23 Other methods are based 

on interacting domains,24 interacting motifs,25 and a variety 

of criteria such as similarity of phylogenetic trees,26 protein 

interaction network topology,27 signature products28 or 

genome-wide coevolutionary networks.29 There are some 

good recent reviews that give a complete view of the currently 

available methods to identify PPI.30–33

Other computational approaches focus on mining the 

literature, the whole ‘googleome,’ for PPI. A system for auto-

matic detection of PPI extracted from scientific abstracts was 

able to rebuild key interactions of the Drosophila cell cycle 

control for 33 of the 91 protein names used in the bibliography 

screening.34 A similar system, based on a general-purpose 

information extraction engine, identified interactions between 

two proteins from Medline abstracts with an accuracy of 77% 

and a coverage of 58% of the total interactions.35 Another 

method used discriminating words to identify Medline 

abstracts that described protein interactions, with an accuracy 

of 77% and a coverage of ∼50% (or 100% of accuracy with a 

coverage of ∼30%).36 A new text-mining method (PIE: Protein 

Interaction information Extraction system) is available on the 

web to extract PPI from literature (http://pie.snu.ac.kr/). This 

tool, consisting on an article filter followed by a sentence filter, 

has been trained on the BioCreAtIvE II workshop dataset, 

enriched by other selected known-interactions. Using a 

10-fold cross validation and 0.5 probability cutoff, the method 

showed a precision of 87.4% for the article filter, and 92.1% 

for the sentence filter.37

All the experimental and computational data on exist-

ing PPI were soon organized in various public databases: 

YPD and WormPD – Yeast and Caenorhabditis elegans 

Proteome Databases;38 MIPS – Munich Information Center for 

Protein Sequences’39 DIP – Database of Interacting Proteins;40 
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BIND – Biomolecular Interaction Network Database;41 and 

private ones, such as PathCodeTM from GPC-Biotech (http://

www.gpc-biotech.com/). This facilitated large-scale studies that 

aimed to map the network of PPI of complete living organisms. 

The first described maps were those of the hepatitis C virus;42 

vaccinia virus;19 Saccharomyces cerevisiae;43–45 Caenorhabditis 

elegans;46 or Helicobacter pylori.47 Other organisms followed, 

at different levels of completeness.48–51 The field is rapidly 

growing, and there are currently many web tools and data 

collections that are publicly available online (http://www.imb-

jena.de/jcb/ppi/jcb_ppi_databases.html).

Target characterization: Structural 
information about the protein–
protein complex and drugability 
of the targeted PPI
Location of the interface
Mutational studies
Alanine-scanning mutagenesis3 combined with kinetic 

and thermodynamic measurements can be used to experi-

mentally locate and characterize residues involved in PPI. 

A comprehensive database of energetic data for different 

Clinical studies
– Pharmacokinetics and toxicology
– Clinical trials

– Synthetic chemistry
– Biological assay

Lead discovery and optimization
– Empirical discovery: natural ligands, phage-display, HTS
– Rational design: peptidomimetics, virtual screening

Interface characterization
– Alanine scanning mutagenesis
– X-ray, NMR
– Protein–protein docking simulations

Protein–protein interaction identification and validation

– Biochemical and genetic experiments (cross-linking; co-immuno-
   precipitation; yeast two-hybrid; co-expression profiles...)
– Genome analysis (co-evolution; gene fusion...)
– Biological validation

Figure 1 Flow-chart of the drug discovery process targeting protein–protein interactions.
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protein–protein complexes, determined by alanine mutations 

(ASEdb), has been compiled and made publicly available 

(http://www.asedb.org/).52 This database is actively updated 

and it is commonly used both by experimentalists and by 

computational benchmark studies.53

Computational prediction of protein–protein 
interfaces
Can protein–protein interfaces be predicted from the structures 

of their components, or, in other words, are there specific 

chemical and physical characteristics on a protein–protein 

interface that we could use to predict protein-binding sites 

on a protein surface? The question is far from being solved. 

Pioneer studies found that PPI sites have specific structural 

characteristics that differentiate them from other areas of the 

protein surface.54–60 However, when oligomeric proteins were 

excluded from the analysis, the results showed that chemical 

composition of protein–protein interfaces does not seem to 

differ greatly from the rest of the solvent-accessible surface.61–63 

Although chemical and physical complementarity between the 

interacting surfaces is essential for the recognition, it is difficult 

to find simple chemical or structural patterns on the surface of 

proteins that unequivocally define a protein recognition site.

Alternative strategies for prediction of protein–protein 

interaction sites have been recently developed (Zhou and Qin 

recently reviewed all the different approaches).64 Amongst 

them, methods based solely on sequence information have 

been reported. Receptor-binding domains were predicted by 

analyzing hydrophobicity distribution on protein sequences.65 

Predictions were 59%–80% correct, depending on the data-

base of protein interactions used. A neural network method 

that uses sequence profiles and solvent exposure of neigh-

boring residues has been reported.66 The method was trained 

on 615 pairs of nonhomologous protein–protein complexes 

(homodimers and heterodimers), and was tested on different 

sets of bound and unbound proteins. In the case of unbound 

proteins, 70% of the predicted residues were correctly located 

at the protein–protein interfaces. More recently, Ofran and 

Rost developed a machine learning-based method called ISI 

(Interaction Sites Identified from Sequence) to identify inter-

acting residues from protein sequences only. They combined 

predicted structural features with evolutionary information 

with no reference to the 3-D structure of the protein, and 

the strongest interface residue predictions reached 90% of 

accuracy in a cross experiment.67 Another method, based on 

a 3-D cluster analysis that evaluates residue conservation 

on a set of 35 protein families, can identify interfaces and 

functional residues.68

In addition to conservation, a combination of physical and 

empirical methods can give promising results for interface 

prediction, as in the Promate server (http://bioinfo.weizmann.

ac.il/promate/).69 Considering energy-based approaches, 

the optimal docking area (ODA), a method based on the 

hypothesis that desolvation must play a central role during 

protein–protein binding, identifies continuous surface patches 

with optimal docking desolvation. This approach has been 

validated on 66 unbound non homologue protein structures 

involved in nonobligate protein–protein heterocomplexes 

and the ODA predicted regions were correct in 80 % of the 

cases.70 The strategy has been applied to numerous cases of 

biological and therapeutic interest, with excellent predictive 

results.71–74

Structure determination  
of protein–protein complexes
Once a target protein–protein interaction has been established, 

it is desirable to obtain the most detailed structural informa-

tion at atomic resolution of the protein–protein complex by 

X-ray crystallography and/or NMR experimental techniques. 

During the last decades, a number of protein–protein com-

plex structures of therapeutic interest have been solved and 

deposited in the PDB.4 However, solving the 3-D structure 

Table 1 Computer approach to rational design of inhibitors/enhancers of protein–protein interactions

Target identification

1. establish protein–protein interaction Correlated mRNA expression profiles; correlated elution; domain fusion patterns; 
automated literature mining

Target characterization

2. Locate interface Surface analysis; hydrophobicity profiles; 3-D cluster analysis; residue conservation

3. Modeling protein–protein interaction Rigid-body docking; energy minimization; side-chain refinement; flexible docking

4. Finding putative small-molecule pockets Analysis of “hot-spots”; surface cavities

Lead discovery and optimization

5. Mimicking interface energy minimization; graphic modelling

6. Ligand docking Flexible ligand docking; grid or explicit receptor representations; MC minimization
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of a protein–protein complex is still a long and difficult task, 

and the number of available coordinates of protein heterodi-

mers is relatively small compared to the number of deposited 

individual protein structures. Therefore, there is a need for 

reliable computational tools that can predict protein–protein 

complex formation and help to theoretically analyze the 

phenomenon of association between proteins.

Protein–protein docking prediction
The so-called “protein docking” problem, that is the predic-

tion of a protein–protein complex using only the coordinates 

of its separate subunits, is one of the major challenges in 

structural biology. Apart from the intrinsic academic interest 

in characterizing the determinants of molecular recognition, 

the scientific community increasingly requires computational 

tools to model the physiological interactions in which a pro-

tein is involved, once its 3-D structure has been solved. Given 

that the number of available 3-D structures of individual 

structures is significantly increasing with the upcoming struc-

tural genomics projects,75,76 and considering that solving the 

structure of a protein–protein complex is often qualitatively 

more difficult than solving its individual subunits, one can 

easily deduce the importance of computational prediction of 

protein–protein complexes for the proteomics era. For that 

reason, during the last 20 years, a variety of computational 

algorithms for automatic protein–protein docking have been 

developed.5,77,78

Geometry-based protein–protein docking methods
The analysis of protein–protein complex structures at atomic 

resolution gave the first glimpse of the determinants of pro-

tein docking. From the analysis of several protein–protein 

complex structures, the most obvious observation was that 

protein surfaces of interacting proteins at binding sites were 

often highly complementary (Figure 2).79,80 For that reason, 

early protein–protein docking algorithms were based on 

purely geometric criteria, aiming to maximize the shape 

complementarity between the two interacting molecules.7,80,81 

Conformational search of the best fit was performed on the 

rigid-body (ie, fixed backbone and side-chain conformation) 

representation of molecules, by geometric methods such as 

‘sphere-matching’ in the original DOCK algorithm.7

Many of the recently developed docking methods are 

still mainly based on the shape complementarity criterion 

and the rigid-body assumption. In these methods, efforts 

have been directed towards improvement of spatial con-

formational search by introduction of new minimization 

techniques. Simulated annealing by using Monte Carlo 

simulations facilitated the use of constraint-driven docking.82 

One of the most important advances was the use of Fourier 

transformation techniques to rapidly evaluate all possible 

translations between the molecules in a given orientation 

in order to find the best geometry matching6 This method 

actually constitutes the basis of some of the most popular 

rigid-body docking approaches nowadays (eg, FTDOCK83 

or ZDOCK).84,85 Other successful geometric-based docking 

methods are Hex86 and MolFit.6

In general, geometry-based rigid-body docking methods 

were able to find and score properly the correct solution 

when using the 3-D coordinates of the complexed subunits 

during simulations.6,8,87–90 However, when these methods 

were tested on real cases, using the 3-D coordinates of the 

uncomplexed subunits, the correct solution was often not 

properly discriminated from the false positives, or even was 

not found at all.8,88–90 Clearly, the geometry criterion was valid 

to rebuild a complex after separation of its bound subunits, 

given the additional induced shape complementarity of their 

Figure 2 Shape complementarity at the interface of a protease-inhibitor complex 
(chymotrypsin/APPi; PDB code 1ca0).
Abbreviation: PDB, Protein Data Bank.
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surfaces, but it was not able to correctly dock the unbound 

subunits, because their interacting surfaces are not always 

complementary enough. Thus, in order to model the induced 

fit that occur upon protein–protein association, it was neces-

sary to overcome the rigid-body assumption, and to include 

in the scoring function other binding determinants than pure 

geometrical complementarity.

Protein docking as a global energy minimization 
problem
During formation of a protein–protein complex, the interacting 

interfaces of the approaching subunits fit each other to reach 

the native bound conformation. Since protein complexes are, 

in general, thermodynamically stable systems, the native 

bound conformation should represent the global minimum 

of the free energy, and therefore the docking problem can 

be reduced to finding this global minimum. From this point 

of view, geometry-based docking methods considered that 

the interaction energy was proportional to the contact area. 

Whereas this geometry-based approach can account reason-

ably well for the van der Waals interactions, it is clearly insuf-

ficient to describe other contributions to the interaction energy. 

Thus, different docking methods were developed to include 

other binding determinants, such as hydrogen bonding,91 

electrostatic energy,92,93 solvation94 or hydrophobicity.95

At the same time, finding the global minimum of the free 

energy for a protein–protein association presented a confor-

mational search challenge. As the rigid-body approach was 

insufficient to simulate the induced conformational fit upon 

binding, docking methods started to include strategies to mimic 

molecular flexibility during the optimization (Bonvin reviewed 

all the diverse strategies developed to deal with molecular flex-

ibility upon binding during the docking process).10 The most 

practical strategy was the softening of the scoring function by 

imposing some limiting values to the steric energy terms, thus 

allowing some overlap of the interacting surfaces.83,96–100 This 

strategy overcame, to some extent, the difficulties stemming 

from the use of the unbound conformations of the interacting 

molecules. Explicit treatment of flexibility could lead to a more 

accurate description of the protein–protein complex formation 

phenomenon, but a full conformational search is currently 

impractical. However, since molecular association involves 

only small conformational changes in most of the known 

protein–protein complexes,63,101 computational requirements 

can be dramatically lowered by limiting conformational flex-

ibility to interface side chains.102–108

The first docking method that considered continuous flex-

ibility of interface side-chains during the global minimization 

process was based on internal coordinate mechanics 

(ICM).109–112 The ICM flexible docking procedure, success-

fully applied to the prediction of an antibody-lysozyme 

complex,113 was tested in a blind prediction contest.114 

Although the ICM pseudo-Brownian method115 with sub-

sequent global optimization116 of the interface side chain 

rotations lead to promising results, it was computationally 

too expensive to be tested on large databases of complexes. 

Therefore, an alternative two-step docking procedure (rigid 

body docking followed by ICM side-chain optimization) was 

proposed.9 The docking method used a fast soft interaction 

energy function pre-calculated on a grid,117 similar to the fast 

ligand docking procedures,118 which drastically increased 

the speed of the procedure.9 The scoring function used to 

evaluate the rigid-body docking poses was further optimized, 

for a better selection of docking solutions before the refine-

ment step.119 The scoring function, composed by Coulombic 

electrostatics and ASA-based desolvation energy with atomic 

solvation parameters optimized for protein–protein docking, 

was later implemented in a docking protocol called pyDock, 

which was able to score docking sets generated by different 

docking methods.11 Other docking and/or scoring schemes 

that are based on energy description are Haddock,120 ClusPro/

SmoothDock,107,121 RosettaDock108 and ATTRACT.122

Baker and colleagues improved side-chain modeling dur-

ing docking significantly using a rapid and efficient method 

for sampling off-rotamer side-chains conformations by tor-

sion space minimization. Their approach to include flexibility 

yielded better energetic discrimination between correct and 

incorrect docking models and a significant improvement 

in the quality of their predictions.123 Other approaches aim 

to include backbone flexibility by using conformational 

ensembles of the unbound subunits previously computed by 

Molecular Dynamics124,125 or by precalculating soft collective 

degrees of freedom by normal mode analysis (NMA) that are 

later used to include flexibility during docking.126 However, 

fully unrestricted molecular dynamics are too costly for 

routine application during docking. Nevertheless, there are 

important advances, as the use of steered molecular dynamics 

to give insights into the energy determinants and mechanism 

of TCR-pMHC association.127

Benchmarking protein–protein docking methods
To be used in practical applications, the protein–protein 

docking methods first have to be validated on a sufficiently 

large and diverse set of experimentally solved complex 

structures, ideally with individual subunit structures also 

experimentally determined. The problem is that there are 
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not so many cases suitable for benchmarking. In one of the 

earliest benchmarking efforts, Norel and colleagues tested 

a rigid-body docking method on a set of complexes, starting 

from bound and unbound components. When the unbound 

subunits for both partners (in four different complexes) were 

used, the near-native solution had the lowest energy (eg, was 

identified as best docked) in only one case.8 FTDOCK dock-

ing method with refinement of binding side-chains was also 

benchmarked in a set of complexes (five cases when using 

unbound subunits). The near-native solution was ranked 

below 20 in all five cases, but it was predicted as the low-

est energy solution in only one.105 BiGGER rigid-body 

method was later applied to 11 protein–protein complexes 

using the unbound subunits. The near-native solution was 

found among the docked conformations in eight out of the 

11 cases, but was not ranked first in any of them.100 The ICM 

protein–protein docking9 was applied to a set of twenty-four 

protein–protein complexes (starting from the 3-D coordinates 

of bound and unbound subunits). When the unbound sub-

units were used, the near-native conformation was ranked 

below 20 in 85% of the complexes with no major backbone 

rearrangement upon binding (it was ranked 1 in 64% of the 

protease-inhibitor complexes). Recently, the laboratory of 

Weng has made an effort in providing suitable sets of cases 

for benchmarking of protein–protein docking methods.128–130 

Nowadays, it is almost standard to provide success rates on 

these benchmarks.11,108,131

In 2001, an international protein–protein docking experi-

ment called Critical Assessment of PRedicted Interactions 

(CAPRI; http://www.ebi.ac.uk/msd-srv/capri/capri.html) 

was launched, based on the CASP experiment model for 

single protein structural prediction. CAPRI is a blind test to 

evaluate the capacity of protein–protein docking algorithms 

to predict the binding-mode of two interacting proteins. This 

experiment allows direct comparison of different docking 

algorithms and permits also to follow the evolution of the 

performance of the most popular docking methods along 

time.132–135 Table 2 shows the results of all the CAPRI rounds 

that have been assessed so far, where the performance of the 

most active groups can be compared. In Figure 3 we can see 

three different examples of CAPRI results for the ICM and 

pyDock methods for targets 6, 14, and 25.

evaluate suitability for small-molecule 
binding (drugability)
Computational methods to analyze the small-molecule 

drugability of a target protein–protein interface focus on the 

existence of ‘hot-spots’ and/or small pockets. Although the 

overall chemical composition of protein interfaces does not 

significantly differ from the rest of the solvent-accessible 

surface,61–63 structural analysis and experimental studies 

on protein–protein complexes underline the existence of 

‘hot-spots’, eg, a few residues that confer most of the binding 

energy.136,137 These ‘hot-spots’ can be potential targets for 

small molecule drug discovery.138 Indeed, a specific inter-

action may be disrupted by targeting one or several of its 

hot spots. Consequently, low molecular weight compounds 

satisfying the requirements for orally deliverable drugs can 

be used to interfere with recognition sites in protein–protein 

interfaces that are usually above 800 Å2.139 Hot-spots can also 

be particularly helpful in difficult cases in which no small 

cavities are identified in flat protein–protein interfaces.

Experimental measurement of residue contributions to 

binding energy can be done by Alanine Scanning Muta-

genesis combined with biophysical methods but this is a 

quite costly way to identify hot-spots. Therefore efforts have 

focused on computational prediction of these residues, and 

a variety of approaches have been reported based on residue 

conservation,140,141 machine-learning algorithm from protein 

sequence alone,142 hydrogen bonding,143 complete binding 

energy evaluation144–146 or propensity calculation from rigid-

body docking.53 In Figure 4 we can see the high correlation 

between the hot-spot predictions from docking53 and the 

known experimental data for the IL4–IL4 receptor α chain.

The protein–protein interfaces most easily targeted with 

small molecule drugs typically contain a sufficiently deep 

surface pocket suitable for small molecule binding.147 Experi-

mental and computational prediction of binding pockets 

on the surface of proteins has been successfully applied to 

rational drug design,148–153 and thus they can be one of the first-

choice computational tools to characterize a protein–protein 

interface in search of potential pockets.

Discovery of inhibitors/promoters 
of PPI
Given the role of PPI in regulating the majority of biological 

functions, PPI inhibition has long been one of the major goals 

in drug design. Empirical discovery of small compounds 

that can disrupt PPI has been traditionally difficult,154 and 

structure-based design of PPI inhibitors is currently limited 

to only a few successful cases. However, recent develop-

ment of computational methods for protein–protein and 

protein-ligand docking is expected to facilitate the rational 

discovery of small compounds that can modify PPI. Several 

reviews of PPI modulation by small molecules have been 

published.155–157 Although the current review focuses on 
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computational approaches, we will overview here several 

examples of experimental discovery of compounds that can 

modify PPI, and we will give later more extended information 

on rational design of new PPI inhibitors based on structural 

data and computer simulations.

Discovery of PPi agonists/antagonists: 
experimental approaches
Phage-display selection of peptides
Phage display has been used to probe hot-spots as well 

as to identify novel peptide agonist/antagonists of PPI.158 

For example, it has been used to select small peptides 

that can induce oligomerization in different cytokine 

receptors).157,159,160 Especially interesting was the case of the 

20 residue cyclic peptide EMP-1,161 which induced dimeriza-

tion of the EPO receptor. A small change in this sequence 

transformed its agonist character into antagonist.162 Cwirla 

and colleagues also identified small peptides that can induce 

receptor dimerization in thrombopoietin receptor (TPOR).163 

An interesting drug discovery platform that used phage 

peptide libraries and HTS of small molecules based on the 

selected peptides was reported.164 This strategy was applied 

to the discovery of agonist/antagonist peptides and small 

molecules in the insulin-like growth factor-1 (IGF-1)/IGF-1 

receptor system, and has been also used to identify a binding 

epitope and potential protein–protein interaction partners of a 

given protein, by searching in the sequence databases. In the 

case of the insulin receptor, both agonists and antagonists 

have been discovered using phage display. This technology 

even allowed a better understanding of the receptor molecular 

architecture with identification of critical regions required 

for its biological activity.165 Potent antagonists called “zeta” 

peptides of the high-affinity immunoglobulin E (IgE) receptor 

have also been identified and prevent histamine release 

from cultured cells. Moreover, these peptides that acts as 

competitive IgE inhibitors can be used for further design of 

IgE inhibitors.166

Discovery and optimization of natural ligands
Natural products didemnaketals A and B were used to 

synthesize simplified analogs that inhibited HIV protease 

homodimerization.167 Chalcone derivatives, with known 

anticancer properties, were recently described to inhibit 

interactions between the human oncoprotein MDM2 and p53 

tumor suppressor protein.168,169 Cyclodextrin dimers (CD) that 

disrupt PPI by targeting hydrophobic patches have been also 

reported.170 Interestingly, small molecules and peptides can 

also induce an unwanted stabilization of a protein–protein 

complex. This is the case of Brefeldin A, a small hydrophobic 

compound produced by toxic fungi that has dramatic effects 

on mammalian cells. It has been proposed that brefeldin 

A works as an uncompetitive inhibitor stabilizing a transient 

“dead-end” complex between Arf exchange factor and Sec7 

domain of Gea1, Gea2 and Sec7 proteins.171 On the other 

A B C

Figure 3 CAPri Target examples: A) and B) are two high-quality models found with iCM and submitted for the CAPri Targets 6 and 14 respectively, C) is a medium quality 
model found with pyDock submitted for the CAPri Target 25. Complexes are shown as surface and ribbon.  The correct position of the ligand is shown in yellow ribbon, the 
model is shown in navy blue ribbon.
Abbreviations: CAPri, Critical Assessment of Predicted interactions; iCM, internal coordinate mechanics.
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side, a large number of natural compounds have been known 

to target the tubulin-tubulin interaction to stop cancer cells 

division, and some new molecules are currently used in 

clinical trial for cancer therapy.172

High-throughput screening of small molecules
High-throughput screening (HTS) methods have been used 

to discover small compounds capable of inhibiting PPI, 

especially when no structural information is available about 

the target proteins.173 In general, HTS is less successful 

in identifying PPI inhibitors than in identifying any other 

type of inhibitor: PPI are extended over a big interface 

(average binding energy per unit area: 9 cal/mol⋅Å2)154 

and are difficult to target with a small site-specific drug 

(average binding energy per unit area: 31 cal/mol⋅Å2). 

Tian and colleagues used a high-throughput, cell-based 

screen to detect small compounds that activated the murine 

granulocyte-colony-stimulating factor (G-CSF) receptor.174 

They found a small molecule (SB 247464;Figure 5a) that 

replaced the natural protein ligand G-CSF in its role of 

inducing oligomerization of G-CSF receptor chains, thus 

triggering the corresponding signal transduction pathways. 

Later, it was shown that SB 247464 could dimerize the 

G-CSF receptor in a different manner than G-CSF, through 

a Zinc mediated interaction. It also appeared that SB 247464 

and G-CSF bound to different sites on the receptor, given 

that the small compound was unable to compete with G-CSF 

receptor natural ligand to initiate the dimerization.175 This 

constituted one of the first examples of a synthetic small 

molecule capable of dimerizing cell surface receptors.

Similarly, Kimura and colleagues screened many com-

pounds capable of inhibiting the binding of thrombopoietin 

(TPO) to the cell surface receptor c-Mpl, necessary for 

triggering megakaryopoiesis and platelet production cascades 

after receptor oligomerization. They found two small 

inhibitor compounds, TM4 and TM41 (Figure 5b), which 

were able to replace the natural TPO in its role of inducing 

c-Mpl oligomerization.176

HTS techniques have also been used to find a molecule 

that inhibited interaction between EPO and EPO receptor 

(Figure 5c). A multimeric form of this molecule was 

also synthesized and shown to induce dimerization in the 

EPO receptor, thus mimicking the physiological role of 

EPO.177,178 A cell-based screening assay was also used to 

select a molecule (L-783,281) that activated insulin receptor 

(Figure 5d). The mechanism proposed was that L-783,281 

bound the tyrosine kinase domain of the insulin receptor, 

altering its conformation and leading to its activation.179

Combinatorial piperazinone libraries have been used 

to find compounds that disrupt the interaction between 

the transcription factor LEF-1 and the protein β-catenin, 

which accumulates in a majority of colorectal tumors.180 

The complex formed between the Tcf4 transcription factor 

and the β-catenin, also involved in colorectal tumors, has 

been investigated by screening several thousand of natural 

compounds, among which six inhibitors in the low micro-

molar range were found.181 A combinatorial chemical library 

based on a pyrimidineimidazole core has been designed to 

find inhibitors of the inducible nitric oxide synthase (iNOS). 

This enzyme that generates NO from l-arginine is involved 

A

B

C

Figure 4 Normalized interface propensity (NiP) calculation from rigid-body docking 
for the prediction of hot-spots on the complex between the iL-4 and its iL4 receptor 
α chain (complex PDB code 1iar). A) The iL-4 receptor α chain is represented as grey 
ribbon, and the dots represent the center of coordinates of each of the 12000 rigid-body 
docking solutions poses colored according to the pyDock scoring function on a 
scale from red to blue: lowest energy values are shown in red. B) The iL-4 receptor 
α chain surface is colored according to the NiP value of each residue obtained from 
the 100 lowest-energy docking solutions.  The predicted hot-spots corresponding to 
the highest NiP values (cutoff  0.4) are shown in red. C) The iL-4 receptor α chain 
surface is colored according to the available experimental data. The residues shown in 
red are the ones experimentally known as hot-spot (ie, they contribute more than 1 kcal.
mol-1 to the binding energy).  The residues shown in blue are experimentally known as 
nonhot-spot, and the residues in white have no available experimental data.
Abbreviations: iL, interleukin; PDB, Protein Data Bank.
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in tissue damage during inflammation and is fully active as a 

dimer. By screening, Devlin and colleagues found a class of 

potent, selective and cell permeable iNOS inhibitors capable 

of preventing its dimerization.182,183

The oncoprotein c-Myc, over expressed in many human 

tumors (lung, colon, Burkitt’s lymphoma), requires binding 

to its activation partner Max in order to interact with DNA 

and achieve its transcription factor function. Because of 

its potential therapeutic applications, this interaction was 

studied by HTS and allowed the discovery of two potent 

and selective dimerization inhibitors: Mycro1 and Micro2, 

both in the low micromolar range.184 The complex formed 

between TNF-alpha and its receptor TNFRc1 were known 

to be inhibited by antibodies and soluble receptors, but 

no potent small molecule was reported until Muckelbauer 

and colleagues performed screening on this system and 

discovered two inhibiting small-molecule compounds act-

ing through covalent modification of the receptor via a 

photochemical reaction.185 HTS has also been used to discover 

two classes of competitive antagonists for the interaction 

B7.1/CD28, involved into the T-cell response augmentation, 

with potential therapeutic applications in immunotherapy after 

transplantation or autoimmune diseases.186 More recently, 

a Rac activation-specific inhibitor of the Rac1-GEF inter-

action that could be useful for therapeutic targeting at Rac 

deregulation has also been found in this way.187

Fragment-based lead discovery
Fragment assembly is a recent approach developed to help find-

ing or optimizing leads during the drug discovery process. A set 

of small fragments are screened against the protein of interest 

and the binders are then combined to form small-molecule 

compounds, which significantly increases the search process 

efficiency. Indeed, the chances of finding a hit are higher than 

in conventional HTS.188 Hajduk and Greer analyzed the impact 

of fragment-based methods in drug design over the last decade, 
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showing a list of all the targets studied through fragment-based 

approach that lead to potent inhibitors discovery.189 For example, 

a potent inhibitor of the anti apoptotic Bcl-2 family proteins 

(Blc-2, Bcl-XL and Bcl-w) was discovered using NMR-based 

screening of small fragments combined with structure-based 

drug design. The molecule, called ABT-737 showed a strong 

capacity to reduce regression of solid tumors in mice.190 

Tethering is a fragment-based method relying on the reversible 

formation of a disulfide bridge between the target protein and 

the fragment. In this way, the search region is controlled by 

the introduction, by site-directed mutagenesis, of a cysteine 

residue near the site of interest of the target protein, which 

in addition facilitates the computational analysis of potential 

binding modes.191 With this approach, a known inhibitor (in the 

millimolar affinity range) of the interaction between IL-2 and its 

receptor got its affinity significantly increased. The X-ray struc-

ture of the previously known IL-2/inhibitor complex revealed 

an adaptive IL-2 interface, in which a small molecule binding 

site was created. The application of the tethering approach 

resulted in a clear improvement of the original molecule to the 

nanomolar affinity range.192,193

rational design of PPi inhibitors: 
computational approaches
In principle, the problem of PPI inhibition seems to be just 

a particular case of the broader drug design field, but a 

deeper analysis shows intrinsic characteristics that make it 

a distinct field. While drug design, in general, is focused on 

the discovery of small compounds that can bind into natural 

ligand-binding pockets or active centers of proteins of thera-

peutic interest,194 inhibition of PPI requires identification of 

small compounds capable of disrupting a large and highly 

complementary interaction surface between two proteins 

(Figure 6). The absence of well defined, deep pockets in 

protein–protein interfaces, and the large number of inter-

molecular contacts arising from their high geometrical and 

chemical complementarity makes the problem especially 

difficult. Nevertheless, several methods for rational design of 

PPI inhibitors have been recently applied to particular cases 

with some success. The constant increase in computational 

power and the development of new efficient and accurate 

computer tools for drug design are starting to yield promising 

results in this very challenging area.

Mimicking protein–protein interfaces:  
from peptides to small molecules
Antibodies capable of blocking or enhancing PPI have 

been reported, for example a monoclonal antibody that can 

induce homodimerization of erythropoietin receptor and 

triggers cell proliferation cascades,195 or a monoclonal anti-

body that may block critical PPI of HIV-1 integrase.196 The 

use of antibodies in cancer therapy is highly promising.197 

A B

Figure 6 An example of a protein-small molecule interface A: complex trypsin/rPr128515 inhibitor (PDB 1f0u) compared to a protein–protein interface B: complex ePO 
receptor/ePO (PDB 1eer).  The protein-small molecule interface A), with fewer inter-atomic contacts, is noticeably smaller and deeper than the shallow, large protein–protein 
interface B). The molecules are shown in the same scale.
Abbreviation: PDB, Protein Data Bank.
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However, clinical use of antibodies presents in practice 

numerous problems (high cost for large-scale production, 

drug delivery, immunoreactivity, etc.).198 Fortunately, there 

are some reported examples of design of small molecule 

inhibitors that mimic an antibody binding function.199,200 

Based on this strategy, Chrunyk and colleagues proposed to 

design small compounds to mimic the binding of antibodies 

that can act as blocking agents of PPI.201 They selected a 

monoclonal antibody to block interaction between proteins 

IL-1β and IL-1R and they found that a simpler single chain 

antibody retained the same blocking capacity, leaving the 

door open for future design of PPI inhibitors. Similarly, 

a calyx[4]arene scaffold with pendant cyclic peptide units 

was designed as a mimetic of antibody Fab fragments, and 

was shown to bind cytochrome c in the same region of the 

protein as its natural protein partners (cytochrome oxidase, 

cytochrome c peroxidase).202

Structure-based design of peptides that mimic structural 

elements of a protein–protein interface203,205 has been widely 

applied for the inhibition of PPI.155,206,207 Some examples of 

the so-called “interface peptide” strategy include: peptide 

inhibitors of different adhesive proteins such as α−actinin 

and vinculin;208,209 short peptides that inhibit homodimeriza-

tion of HIV-1 protease;210,211 a stabilized helicoidal peptide 

that inhibits a domain-domain interaction between the 

N-terminal and C-terminal domains of the HIV-1 enve-

lope glycoprotein gp41, disabling thus membrane fusion 

between the virus and target cells;212 synthetic peptides that 

inhibit homo-dimerization of thymidylate synthase (TS);213 

a β-sheet peptide that inhibits dimerization of the small E47 

transcription factor;214 a synthetic cyclic heptapeptide that 

inhibits interaction between CD4 and major histocompat-

ibility complex (MHC) class II proteins;215,216 synthetic 

peptides that block interaction between CD8 and MHC class I 

proteins;217 synthetic peptides that inhibit dimerization of the 

HIV reverse transcriptase;218–220 inhibition of HIV-1 protease 

homodimerization by a small tethered peptide;221 inhibition 

of the herpes simplex virus ribonucleotide reductase dimer-

ization by a small hexapeptide resulting in a stronger effect 

on replication than the Acyclovir;222 and peptides targeting 

SH3-mediated PPI.223 Ferrer and colleagues used a combina-

torial chemical library to find elements that, when covalently 

attached to a peptide derived from the outer layer α-helix, 

could inhibit gp-41-mediated HIV-1 cell entry.224 Based on 

the X-ray structure of the inhibitor in complex with the HIV-1 

gp41 trimeric core,225 they showed that blocking a small cavity 

was sufficient to inhibit the interaction between the core 

coiled-coil and the outer-layer α-helix of gp41. However, the 

small molecule alone had no inhibitory activity, although it 

increased the potency of the 30-mer mimetic peptide.

The discovery of peptide, peptidomimetic and small 

molecule inhibitors of the association between integrin 

α4β1 (VLA-4) and the endothelial surface protein vascular 

cell adhesion molecule (VCAM) was reported.226–228 

A review of structure-based design of phosphopeptides 

and small molecule inhibitors of Grb2-SH2 mediated PPI 

has been published.229 A peptide sequestering the anti-

apoptotic protein Bcl-2 has been optimized to increase its 

“mimicking” capability with respect to the BH3 domain of 

BID (a pro-apoptotic BH3-only protein) by hydrocarbon 

stapling. The resulting BH3 domain alpha-helix is more rigid, 

protease-resistant, cell permeable and binds with increased 

affinity to Bcl-2. This inhibitor suppresses the growth of 

human leukemia cells in vitro, and it prolongs the survival 

of leukemic mice in vivo.230 Furet and colleagues applied a 

structure-based approach to improve 1700-fold the binding 

affinity towards hdm2 of their initial peptide derived from 

the N-terminal domain of p53. They discovered potent 

antagonists of the p53-hdm2 interaction, which constitutes 

an attractive approach for cancer therapy.231 Several “two 

turns” structural mimics of the myosin light chain kinase 

present functional homology in its high affinity binding to 

calmodulin, and are able to inhibit the calmodulin activation 

of PDE enzyme in the nanomolar range.232

Although design of peptide molecules that mimic 

protein–protein interfaces or antibody binding is an interesting 

approach, the ultimate goal is the design of small nonpeptidic 

PPI inhibitors (generally with MW  500), more desir-

able for therapeutic use than peptides or peptidomimetics. 

Tilley and colleagues designed a series of acylphenylalanine 

derivatives intended to mimic the proposed binding region of 

interleukin-2 (IL-2) to the α receptor subunit (IL-2Rα), based 

on a combination of structural information of IL-2 (by X-ray 

and NMR data) and site-directed mutagenesis. Structure-

activity studies led to a small compound with an IC
50

 µM.233 

Similarly, Sarabu and colleagues designed a series of small 

molecule antagonists for the interaction between interleukin-1 

alpha protein (IL-1α) and the Type I receptor, with potential 

interest to treat inflammation related diseases.234 The design 

was based on the 3-D structure of the proposed binding 

epitope for IL-1β (derived from the X-ray structures of IL-1 

ligands and site-directed mutagenesis data).

Nonpeptidic inhibitors of the interaction between 

fibrinogen and GPIIb-IIIa integrin, association that is essen-

tial for platelet aggregation, have been designed based on 

the tripeptide sequence Arg-Gly-Asp (RGD).235,236 Several 
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of these molecules (xemilofiban, orbofiban, sibrafiban, and 

lotrafiban; Figure 7) have progressed until phase III clinical 

trials but unfortunately they did not reach the market due to 

both a lack of efficacy237 and safety concerns. Other nonpep-

tidic RGD mimics have been designed based on spirocyclic 

structures.238,239

Based on the structure of the complex between the B 

domain (Fb) of Staphylococcus aureus protein A (SpA) and 

the Fc fragment of IgG (Figure 8a),240 Li and colleagues used 

computer-aided molecular modeling to design a molecule 

mimetic for protein A (Figure 8b) that is an effective competi-

tive inhibitor for its interaction with IgG (Figure 8c).241

Another interesting strategy for PPI inhibition is the use of 

transition metal complexes to target distinctive patterns of 

histidine residues on the surface of a protein.242 A review 

of rational design of PPI inhibitors involving the TNF family 

cytokines has been published.243 A different area of therapeutic 

interest involving PPI is the formation of amyloid fibrils. 

Klabunde and colleagues discovered small compounds that 

can inhibit transthyretin (TTR) fibril formation by stabilizing 

the native tetrameric conformation of TTR.244 They used a 

structure-based drug design approach based on the crystal 

structures of TTR complexed with known amyloid fibril 

inhibitors. Their work represents a good example of modulating 

PPI by enhancing stability of the complexed conformations 

avoiding unbound conformations that lead to disease.

Protein interfaces can be artificially re-engineered. 

A particularly difficult task is to break strong PPI in which 

two monomers are interlocked through extensive interactions 

and side-chain mutations are insufficient. Borchert and 

colleagues re-engineered the backbone of loop3 at the inter-

face between two triose-phosphate isomerase monomers, 

which led to predicted monomeric structures.245,246 Engineered 

protein–protein interfaces, artificially disrupted after the intro-

duction of cavities by using alanine-scanning mutagenesis, 

can be restored with small molecules bound to the cavity, 

thus generating artificial small molecule switches for PPI.247 

Although rational design of the protein–protein interfaces 

themselves has limited therapeutic interest, it could be useful 

to understand the physicochemical basis of PPI modulation, 

and also to generate manipulated organisms in biotechnology 

that functionally respond to specific molecules.

Computer-aided design: virtual screening 
and docking simulations
Computational simulations is increasingly facilitating 

rational design of small molecules that can inhibit or stimu-

late the biological activity of specific proteins, mostly by 

targeting a clearly defined binding pocket.194,248 However, 

so far very few inhibitors of PPI have been designed using 

computer simulations (see recent reviews focused on virtual 

screening for the identification of inhibitors of PPI).249–251

Computational approaches have been successfully 

applied to optimize peptidic ligands in several systems. 

Zeng and colleagues used a combinatorial algorithm252 

based on the MCSS approach149 for the optimization of 
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peptides that inhibit the association between Ras and Raf, 

proteins involved in signal transduction pathways and in 

many oncogenic events.253 Furet and colleagues254–256 opti-

mized the inhibition properties of the phospho-tripeptide 

pTyr-Ile-Asn by molecular modeling and found a derivative 

capable of blocking the interaction between the activated 

tyrosine kinase growth factor receptors (TKGFR) and the 

SH2 domain of Grb2 (see a review of SH2 domain and drug 

discovery).257 Proline-rich peptides targeting SH3 domains 

were computationally optimized using the programs GRID117 

and LUDI,258 obtaining an increment of 100-fold in affinity 

and 1000-fold in selectivity.

HN

N N

N

HN
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Figure 8 A) Structure of the complex (PDB: 1fc2) between the Staphylococcus aureus Protein A Fb domain (solid surface) and the igG Fc fragment (red); Side-chains of binding 
residues Phe132 and Tyr133 of Protein A are shown in yellow; B) Small molecule competitive inhibitor ApA; C) Model of the interaction between igG (solid surface) and 
inhibitor ApA (in green), superimposed on the binding residues Phe132 and Tyr133 of the complexed Protein A structure (red ribbon).
Abbreviation: PDB, Protein Data Bank.
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Fewer computational methods have been developed for 

rational design of small nonpeptidic compounds to inhibit 

PPI. Li and colleagues applied computer screening to select 

small nonpeptidic organic molecules that can inhibit interac-

tion between CD4 and MHC class II proteins.147 Based on the 

X-ray structure of the human CD4 D1 domain,259 and using a 

combination of theoretical prediction and synthetic peptide 

experiments, the authors identified a surface pocket potentially 

involved in functional binding to MHC class II (Figure 9a). 

The identification of such a surface pocket was critical for 

the success of the strategy. The authors used the computer 

program DOCK3.5260 to screen the available chemicals 

directory (ACD) (Molecular Design Limited, San Leandro, 

CA, USA), that included around 150,000 commercially 

available small organic compounds, in search for possible 

ligands to that particular pocket. They finally selected four 

compounds with significant inhibitory activity (45%–75% at 

100 µM) for the CD4-MHC class II interaction (Figure 9b).

A novel class of low molecular weight hydantoins, 

which inhibits the interaction between the lymphocyte 

function-associated antigen-1 (LFA-1) and the intercellular 

adhesion molecule (ICAM-1) by allosteric regulation,262 

represented an alternative example of PPI regulation. 

Based on an integrated immunochemical, chemical, and 

molecular modeling approach, the following allosteric 

inhibition mechanism was proposed: the hydantoins bind 

to LFA-1 and drive the equilibrium between active and 

inactive states of LFA-1 towards the conformation that is 

unable to interact with ICAM-1.263 Bushweller and colleagues 

found four new inhibitors that effectively blocked the 

interaction between Runx1 and CBFβ with low micromolar 

affinity, amongst 35 potential candidates selected by virtual 

screening. An NMR spectroscopy screening study showed 

later that none of these compounds were directly bound to 

the protein–protein interface, which suggested the existence 

of allosteric effects in the inhibition.264

Virtual screening has been used to identify 13 nonpep-

tide drug-like inhibitors targeting the p56Lck SH2-domain 

from an initial screening of 25,000 compounds.265 Amongst 

the 13 inhibitors, two were identified as potential lead 

compounds for further development.266 In another example, 

virtual screening of 640,000 compounds was performed with 

DOCK4.0.1 in order to target the interaction between S100B 

and p53, which lead to the discovery of seven inhibitors 

in the micromolar range. Five of these compounds inhib-

ited growth of primary malignant melanoma cells and are 

currently being optimized to find higher affinity inhibitors 

for potential applications in cancer therapy.267 The extra-

cellular kinases ERK1/2, which play an important role in a 

signaling pathway involved in proliferation, are believed to 

be interesting targets to arrest cell proliferation in cancer. 

Only two proteins are known to turn on ERK1/2 kinases, 
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which then are able to phosphorylate dozens of proteins 

in vitro. Shapiro and colleagues applied a virtual screening 

approach to specifically target the ERK phosphorylation 

of two substrates: RSK-1 and ELK-1. The discovered 

compounds were able to inhibit the proliferation of several 

cancer cell lines in vitro.268 A recent study combined virtual 

fragment analysis and selection by molecular docking (using 

five different scoring functions) with an NMR-screening 

experiment called fluorine chemical shift anisotropy 

and exchange for screening (FAXS). The approach 

permitted the identification of a molecule displaying 

a strongly favorable binding enthalpy as tested by isothermal 

titration calorimetry (ITC), which suggested an enhanced 

selectivity for the v-src tyrosine kinase SH2 domain. 

Finally, computational modelling of the interaction nicely helped 

to explain the high binding enthalpy of this compound.269

Drug design and regulation of PPI: 
clinical applications
Very few of the designed molecule inhibitors of PPI have 

been clinically tested. One example is a synthetic cyclic 

heptapeptide that inhibits interaction between CD4 and MHC 

class II proteins and that has been approved by the United 

States Food and Drug Administration for a phase I clinical 

trial in graft-versus-host disease (GVHD) prophylaxis in bone 

marrow transplant patients.215,216 Another example is a new 

thrombopoetic growth factor, eltrombopag (or SB-497115), 

which is actually in phase III clinical trials as an oral and 

nonpeptide thrombopoetin receptor agonist for the treatment 

of idiopathic thrombocytopenic purpura.270–272 Genetech 

(San Francisco, CA, USA) is also developing pertussis toxin 

(IAP) antagonists,273 a novel class of cancer therapeutics,274 

and one of the molecules is now in phase I clinical trials.275

Numerous factors can affect the output of an interaction 

network in a living organism. Some studies suggest than small 

changes in effector concentration can be more significant 

than absence or presence of a particular component, and 

the response can depend highly upon the biology of the 

system.159,276 The complexity of the response of the interac-

tion networks in living organisms upon small changes in the 

environment makes the possibility of controlling signaling 

pathways with small compounds extremely challenging, 

although in the near future it will undoubtedly become one 

of the hottest areas in medicinal chemistry.

Conclusions
Targeting protein–protein interfaces with a small molecule 

is much more difficult than targeting a natural ligand pocket 

with another compound, due to the large and distributed set 

of interactions, the frequent lack of deep pockets, and the 

induced fit of the protein interfaces. A careful analysis of a 

protein–protein interface in search of putative small-molecule 

binding pockets, together with extensive computational 

protein-ligand docking simulations (virtual screening), 

will help to improve the rational design of PPI inhibitors. 

Computational prediction of “hot-spots” (for protein and 

ligand binding) at the surface of proteins can help to focus 

virtual screening or protein-ligand docking studies onto 

specific areas of a protein surface, and thus prioritize a 

large number of putative protein–protein interaction targets 

according to their potential to lead to a small molecule 

modulator. Finally, new improved protein–protein docking 

methods will be essential to predict the protein interfaces, 

and evaluate the PPI inhibition or oligomerization modula-

tion capability of the selected compounds.

A combination of experimental and computational 

techniques, together with a deep knowledge of the determi-

nants of protein–protein and protein-ligand interactions is 

necessary for the successful design of small compounds that 

can specifically modify PPI of therapeutic interest. The field 

is at its very early stage, but it constitutes a highly promising 

area of therapeutic proteomics.
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