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Purpose: As a typical hypervascular tumor, clear cell renal cell carcinoma (ccRCC) is the 

most common type of RCC. This study was aimed to explore the prognostic genes for ccRCC, 

focusing on the roles of vascular endothelial growth factor A (VEGFA) and Delta-like ligand 4 

(DLL4) in the disease.

Materials and methods: The mRNA-sequencing data of kidney renal clear cell carcinoma 

(KIRC) were obtained from The Cancer Genome Atlas (TCGA) database, including 469 tumor 

samples and 68 adjacent normal samples. Using limma package, differentially expressed genes 

(DEGs) were analyzed by differential expression and subgroup analyses and confirmed using 

validation dataset GSE53757. Followed by enrichment analysis, protein–protein interaction (PPI) 

network analysis and protein subcellular localization were performed using multifaceted analysis 

tool for human transcriptome tool, and Cytoscape software and InnateDB database, respectively. 

Moreover, survival analysis was conducted to identify key prognosis-associated genes. In addition, 

VEGFA and DLL4 levels were detected using real-time quantitative PCR (qRT-PCR).

Results: A total of 1,984 DEGs were screened in the KIRC tumor samples. VEGFA was located 

in extracellular space and could interact with placental growth factor (PGF) and angiopoietin 

2 (ANGPT2) in the PPI network. Subgroup analysis suggested that VEGFA was significantly 

upregulated in stages I, II, and III ccRCC tumor samples. Survival analysis showed that TIMP1 

was among the top four prognosis-associated genes. qRT-PCR analysis confirmed that the 

expression levels of DLL4 and VEGFA were significantly upregulated in tumor samples.

Conclusion: VEGFA and DLL4 might be prognostic genes for ccRCC. Besides, PGF, ANGPT2, 

and TIMP1 might also be related to the prognosis of ccRCC patients.

Keywords: clear cell renal cell carcinoma, differentially expressed genes, protein–protein 

interaction network, subgroup analysis, survival analysis

Introduction
Renal cell carcinoma (RCC) is the most common type of kidney cancer and accounts for 

about 90%–95% of kidney cancer cases.1 It usually starts with weight loss, flank pain, 

blood in the urine, high blood pressure, fever, feeling unwell, and night sweats.2 RCC 

is responsible for 2%–3% of all malignancies in adult, ranking 7th and 9th in common 

cancer cases among men and women, respectively.3 Globally, RCC induces ~2,09,000 

new cases and results in 1,02,000 deaths per year.4 When RCC is diagnosed, in ~30% 

of cases, the cells spread into the ipsilateral renal vein, and in 5%–10% of cases, it 

spreads to the inferior vena cava.5 RCC commonly metastasizes to the adrenal glands, 

lymph nodes, liver, lungs, brain, or bones, and targeted therapy can be used to improve 

the outcome of metastatic RCC.6 Clear cell renal cell carcinoma (ccRCC) is the most 
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common type of RCC, which is responsible for 75% of the 

cases.7 Therefore, investigating the mechanisms of ccRCC 

is important for improving therapies.

In patients with low-risk ccRCC, the expression of 

BRCA1-associated protein-1 (BAP1) can serve as a prog-

nostic marker independently.8,9 Galectin-1 (GAL1) regulates 

migration and invasion of ccRCC via the hypoxia-inducible 

factor-1α (HIF-1α)-mammalian target of rapamycin (mTOR) 

signaling axis; thus, GAL1 is a promising prognostic indica-

tor and therapeutic target for the disease.10 Previous studies 

report that both the mRNA and protein levels of AT-rich 

interactive domain 1A (ARID1A) have statistical significance 

in predicting the prognosis of ccRCC.11,12 Vascular endothe-

lial growth factor A (VEGFA), which is a critical angiogenic 

cytokine, plays an important role in tumor angiogenesis and 

may be a key target for cancer therapy.13 As an endothelial 

Notch ligand, delta-like ligand 4 (DLL4) plays a critical role 

in regulating tumor angiogenesis and thus is a potential anti-

angiogenesis target in clinical applications.14 RCC is a typical 

hypervascular tumor, and its tumor cells can promote tumor 

growth and progression through producing pro-angiogenesis 

factors.15 However, the prognostic genes involved in ccRCC 

have not been fully reported. Thus, this study was designed 

to investigate the genes associated with the prognosis of 

ccRCC, focusing on the roles of VEGFA and DLL4 in ccRCC.

In this study, the mRNA-sequencing (mRNA-seq) data 

of kidney renal clear cell carcinoma (KIRC) were obtained 

from The Cancer Genome Atlas (TCGA) database. Differ-

entially expressed genes (DEGs) between tumor samples and 

adjacent normal samples were identified, and then enrichment 

analysis was performed. Followed by protein–protein interac-

tion (PPI) network analysis, protein subcellular localization, 

subgroup analysis, and survival analysis were successively 

performed to explore the key genes involved in the prognosis 

of ccRCC. Finally, VEGFA and DLL4 expression levels were 

detected by real-time quantitative PCR (qRT-PCR).

Materials and methods
Date source
The level 3 mRNA-seq data (downloaded in November 2016) 

of KIRC were downloaded from TCGA (https://cancerge-

nome.nih.gov/) database, including 469 tumor samples and 

68 adjacent normal samples. Meanwhile, clinical information 

including age, gender, race, tumor stage, survival time, and 

outcome were also obtained.

Data preprocessing and Degs screening
Using the edgeR package (version 3.4, http://www.bioconductor.

org/packages/release/bioc/html/edgeR.html)16,17 in R, the 

raw data were successively normalized into log continuous 

phase modulation (CPM) values, performed with linear 

modeling, and the relationship between average variances 

were mediated. Based on the empirical Bayes method in 

limma package18 (version 3.10.3, http://www.bioconductor.org/

packages/2.9/bioc/html/limma.html), differential expression 

analysis was performed for the tumor samples and adjacent nor-

mal samples. The p-values obtained from t-test was adjusted into 

false discovery rates (FDRs; that were adjusted p-values) using 

Benjamini–Hochberg method.19 The genes with FDR ,0.05 

and |log
2
fold change (FC)| .2 were identified as DEGs.

Functional and pathway enrichment analysis
Gene Ontology (GO, http://www.geneontology.org) data-

base can be applied for performing functional enrichment 

for genes and gene products.20 The Kyoto Encyclopedia of 

Genes and Genomes (KEGG, http://www.genome.jp/kegg/) 

database, which includes known genes and corresponding 

biochemical functionalities, can be used for pathway enrich-

ment analysis.21 BioCloud is an online platform (http://www.

biocloudservice.com) that was developed for computing 

high-throughput data. Using the multifaceted analysis tool for 

human transcriptome tool in the BioCloud platform, the DEGs 

were performed with functional and pathway enrichment 

analyses. The p-value ,0.01 was set as the cutoff criterion.

PPi network analysis and protein 
subcellular localization
The intersection of the PPI pairs included in Mentha (http://

mentha.uniroma2.it/about.php),22 BioGRID (https://wiki.

thebiogrid.org/),23 and HPRD (http://www.hprd.org/)24 

databases was taken as background, and then the DEGs 

were mapped into the background to obtain their PPI pairs. 

Subsequently, the PPI network for the DEGs was visualized 

by Cytoscape software (http://www.cytoscape.org).25 Using 

the CytoNCA plugin (version 2.1.6, http://apps.cytoscape.

org/apps/cytonca)26 in Cytoscape software, betweenness cen-

trality (BC), degree centrality (DC), and closeness centrality 

(CC) of the nodes in PPI network were analyzed to further 

identify hub nodes.27 In addition, the information of human 

protein subcellular localization were obtained from InnateDB 

database (http://www.innatedb.com/),28 including extracel-

lular space, cell surface, cytoplasm, plasma membrane, and 

nucleus. Afterward, protein subcellular localizations of the 

nodes in the PPI network were identified.

subgroup analysis based on tumor stage
To further explore DEGs, KIRC tumor samples were divided 

into four groups (stages I, II, III, and IV) based on their tumor 
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stage. Then differential expression analysis between the 

tumor samples in each group and the adjacent normal samples 

was conducted by limma package,18 with FDR ,0.05 and 

|log
2
FC| .2 as the thresholds.

Differential expression analysis and 
subgroup analysis of validation dataset
The raw CEL files and annotation files under GSE53757, 

which were sequenced on the platform of GPL570 [HG-U133_

Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array, 

were obtained from Gene Expression Omnibus (GEO, 

http://www.ncbi.nlm.nih.gov/geo/) database (downloaded 

in November 2016). GSE53757 included 72 ccRCC tumor 

samples and 72 adjacent normal samples. After the raw data 

of GSE53757 were read by the affy package (version 1.50.0, 

http://www.bioconductor.org/packages/release/bioc/html/

affy.html)29 in R, they were performed with background cor-

rection, normalization, and expression calculation using robust 

multi-array average (RMA) method.30 Based on the annota-

tion files, the probes having no matched gene symbol were 

eliminated. For probes having the same gene symbol, their 

average value was taken as the final expression value of the 

gene. Finally, differential expression analysis and subgroup 

analysis were performed separately for the ccRCC tumor 

samples and adjacent normal samples using limma package18 

with FDR ,0.05 and |log
2
FC| .2 as the thresholds.

survival analysis
To obtain prognosis-associated genes, the intersection DEGs 

between TCGA dataset and GSE53757 were identified. Then 

the intersection DEGs were divided into groups with high 

expression and low expression based on their medians. Using 

Cox model,31 variables such as age, gender, and tumor stage 

were adjusted. The genes with p-value ,0.05 were taken 

as prognosis-associated genes. The hazard ratios (HRs) 

for survival were predicted for the prognosis-associated 

genes. In addition, high-expressed genes with HR .1 and 

low-expressed genes with HR ,1 were identified, and then 

Kaplan–Meier (KM) survival curve were drawn.

qrT-Pcr analysis
A total of 11 pairs of ccRCC tumor samples and adjacent 

normal samples were obtained from our hospital. This study 

was approved by the ethic committee of The Fifth People’s 

Hospital of Shanghai, Fudan University, and written informed 

consent was obtained from relevant patients. Total RNA was 

isolated from the samples with RNAiso Plus (TaKaRa, Tokyo, 

Japan) following the manufacturer’s manual. Followed by the 

concentration and quality of total RNA were detected using 

microplate reader (Tecan, Mannedorf, Switzerland). Subse-

quently, first-strand cDNA was synthesized using a reverse 

transcription kit (TaKaRa) and then stored at -20°C.

For qRT-PCR experiments, primers were designed and 

synthesized separately by Primer Premier 6.0 software 

(Premier Software Inc., Cherry Hill, NJ, USA) and Sangon 

Biotech Co., Ltd (Shanghai, China) (Table 1), respectively. 

The expression levels of VEGFA and DLL4 in ccRCC tumor 

samples and adjacent normal samples were measured using 

SYBR green kit (Thermo Fisher Scientific, Waltham, MA, 

USA). The 10 µL amplification system included 5 µL SYBR 

Premix EX Taq (2x), 3.4 µL cDNA template (100 ng/µL), 

0.3 µL forward primer (10 µM), 0.3 µL reverse primer 

(10 µM), and 1 µL ddH
2
O. The reaction program was as 

follows: 50°C for 3 min, 95°C for 3 min, and 95°C for 10 s, 

and 60°C for 30 s for 40 cycles. In addition, a melting curve 

was created in the end. Glyceraldehyde-3-phosphate dehy-

drogenase (GAPDH) was taken as the reference gene, and 

all samples had three repeats.

statistical analysis
Based on the 2-ΔΔCt method,32 the expression levels of 

VEGFA and DLL4 were analyzed. All results were shown 

as mean ± standard error of mean (SEM). GraphPad Prism 

(GraphPad Software, Inc., La Jolla, CA, USA) was used for 

statistical analysis and drawing pictures. The p,0.05 was 

taken as the threshold for significant difference.

Results
Deg screening
A total of 1,984 DEGs were identified in the KIRC tumor 

samples in relative to adjacent normal samples, including 

806 upregulated genes (including VEGFA and DLL4) and 

1,178 downregulated genes. There were more downregulated 

genes than upregulated genes.

Functional and pathway enrichment analysis
Both the upregulated genes and downregulated genes were 

performed with enrichment analysis. The top 10 GO terms 

and pathways are shown in Figure 1A and B, respectively. 

Table 1 The primers used for quantitative real-time Pcr analysis

Primer name Primer sequence (5′-3′)

Dll4 forward ggggccaacTaTgcTTgTga
Dll4 reverse cacagTaggTgcccgTgaaT
VegFa forward cTgTcTaaTgcccTggagcc
VegFa reverse acgcgagTcTgTgTTTTTgc
gaPDh forward TgacaacTTTggTaTcgTggaagg
gaPDh reverse aggcagggaTgaTgTTcTggagag
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Figure 1 The top 10 gene ontology (gO) terms (A) and pathways (B) enriched for the upregulated genes and the downregulated genes, respectively.

For the upregulated genes, the enriched GO terms mainly 

included immune response, regulation of immune response, 

and inflammatory response. Meanwhile, the pathways 

enriched for the upregulated genes mainly included 

Staphylococcus aureus infection, natural killer cell-mediated 

cytotoxicity, and cytokine–cytokine receptor interaction. 

Besides, the GO terms enriched for the downregulated genes 

mainly included excretion, ion transmembrane transport, 
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and chloride transmembrane transport. Moreover, the 

downregulated genes were enriched in pathways such as 

neuroactive ligand–receptor interaction, protein digestion 

and absorption, and tyrosine metabolism.

PPi network analysis and protein 
subcellular localization
A total of 729 nodes and 1,105 interactions were obtained 

from the intersection of the PPI pairs included in Mentha, 

BioGRID, and HPRD databases. Then the PPI network 

involving 337 upregulated genes and 392 downregulated 

genes was constructed (Figure 2). Combined with BC, 

CC, and DC scores, the top 10 nodes are listed in Table 2. 

According to the results of protein subcellular localization, 

72, 33, 28, 68, and 91 nodes in the PPI network were located 

in extracellular space, cell surface, cytoplasm, plasma mem-

brane, and nucleus, respectively. In particular, VEGFA could 

interact with placental growth factor (PGF) and angiopoietin 

2 (ANGPT2) and was located in extracellular space.

subgroup analysis based on the 
tumor stage
Differential expression analysis were performed for stage I 

versus normal, stage II versus normal, stage III versus 

normal, and stage IV versus normal comparison groups. 

There were 1,849 (700 upregulated genes and 1,149 down-

regulated genes), 2,006 (717 upregulated genes and 1,289 

downregulated genes), 2,174 (974 upregulated genes and 

1,227 downregulated genes), and 2,288 (1,007 upregulated 

genes and 1281 downregulated genes) DEGs in stage I versus 

normal, stage II versus normal, stage III versus normal, and 

stage IV versus normal comparison groups, respectively. 

The Venn diagram of subgroup analysis (Figure 3) showed 

that the common DEGs among the four comparison groups 

were in majority. Importantly, VEGFA were differentially 

expressed in all the four comparison groups, and DLL4 had 

significantly differential expression in stage I versus normal, 

stage II versus normal, and stage III versus normal compari-

son groups (Figure 4).

Figure 2 The protein–protein interaction network constructed for the differentially expressed genes. circles and diamonds represent upregulated genes and downregulated 
genes, respectively. green, blue, purple, brown, red, and gray represent nodes located in cell surface, cytoplasm, extracellular space, nucleus, plasma membrane, and 
unknown, respectively. The size of a node indicates its degree.
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Table 2 The top 10 nodes in the protein–protein interaction 
network

Gene DC Gene BC Gene CC

ALB 27 KRT40 24 KRT40 24
KRT40 24 ALB 27 FASLG 14
CD247 22 TFAP2A 17 HCK 17
ZAP70 21 FASLG 14 ALB 27
HCK 17 ZAP70 21 TFAP2A 17
TFAP2A 17 PLG 16 BTK 13
VIM 16 WT1 8 LCP2 12
PLG 16 HCK 17 LAT 12
PLK1 15 CFTR 14 VAV1 12
CFTR 14 DLG2 11 ITK 8

Abbreviations: Dc, degree centrality; Bc, betweenness centrality; cc, closeness 
centrality.

Differential expression analysis and 
subgroup analysis of validation dataset
After the raw data of GSE53757 were preprocessed, a total of 

398 DEGs were identified in ccRCC tumor samples compared 

with adjacent normal samples, including 147 upregulated 

genes (such as VEGFA) and 251 downregulated genes. 

Based on the tumor stage, ccRCC tumor samples were also 

divided into four groups (stages I, II, III, and IV). Then 

subgroup analysis was performed for the ccRCC tumor 

samples and adjacent normal samples, finding that VEGFA 

was significantly upregulated in stages I, II, and III ccRCC 

tumor samples (Figure 5).

survival analysis
There were 270 intersection DEGs between TCGA data-

set and GSE53757, including 103 upregulated genes and 

167 downregulated genes. Then a total of 40 prognosis- 

associated genes were identified from the intersection DEGs. 

The KM survival curves for the top four prognosis-associated 

genes (according to p-values) (including aldehyde dehydro-

genase 6 family, member A1, ALDH6A1; WD repeat domain 

72, WDR72; phospholipase C-like 1, PLCL1; and TIMP met-

allopeptidase inhibitor 1, TIMP1) are shown in Figure 6.

qrT-Pcr analysis
Furthermore, the expression levels of DLL4 and VEGFA in 

ccRCC tumor samples and adjacent normal samples were 

detected by using qRT-PCR. In tumor samples, the expres-

sion levels of DLL4 (p,0.001, Figure 7A) and VEGFA 

(p,0.01, Figure 7B) were significantly upregulated in rela-

tive to adjacent normal samples.

Discussion
In this study, a total of 1,984 DEGs (including upregulated 

VEGFA and DLL4) were identified in the KIRC tumor 

samples in relative to adjacent normal samples. Subgroup 

analysis for the KIRC tumor samples showed that VEGFA 

were differentially expressed in all the four comparison 

groups, and DLL4 had significantly differential expression 

in stage I versus normal, stage II versus normal, and stage III 

versus normal comparison groups. Meanwhile, subgroup 

analysis for the validation dataset showed that VEGFA was 

significantly upregulated in stages I, II, and III ccRCC tumor 

samples. In addition, qRT-PCR analysis confirmed that the 

expression levels of DLL4 and VEGFA were significantly 

upregulated in tumor samples.

Figure 3 The Venn diagram for upregulated (A) and downregulated genes (B) in stage i versus normal, stage ii versus normal, stage iii versus normal, and stage iV versus 
normal comparison groups.
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Figure 4 The expression levels of VEGFA and DLL4 had significantly differential 
expression in stage i versus normal, stage ii versus normal, stage iii versus normal, 
and stage iV versus normal comparison groups (The cancer genome atlas).

Figure 5 The expression levels of VEGFA and DLL4 had significantly differential 
expression in stage i versus normal, stage ii versus normal, stage iii versus normal, 
and stage iV versus normal comparison groups (gse53757).

In RCC, increased serum level of VEGF is correlated 

with adverse survival and can serve as a prognostic factor.33 

VEGF expression is associated with tumor stage and 

prognosis, suggesting that VEGF functions in the growth 

and progression of RCC.34,35 Huang et al reported that the 

activation of DLL4/Notch signaling and the interaction of 

endothelium and cells contribute to the progression of RCC.36 

DLL4 blockade has a promising antitumor activity in RCC 

patient-derived tumors, and the simultaneous targeting of 

the VEGF and DLL4 signaling pathways has a combination 

benefit.37 Therefore, VEGFA and DLL4 might be prognostic 

genes for ccRCC.

Besides, VEGFA was located in extracellular space and 

had interactions with PGF and ANGPT2 in the PPI network. 

Angiogenic protein PGF belongs to the VEGF family, and 

anti-PGF antibody may be used as antiangiogenic agent 

that is minor toxicity when combined with anti-VEGF 

strategies.38 Plasma levels of PGF have significant correla-

tion with the clinical features and VEGF levels and thus 

can be used as an independent prognostic factor for RCC.39 

Plasma ANGPT2 concentration is increased in RCC patients, 

and ANGPT2 can serve as a promising target for the treat-

ment of tyrosine kinase-resistant RCC.40 Through targeting 

oncogenes ANGPT2 and neural precursor cell expressed, 

developmentally downregulated 9 (NEDD9), miR-145 acts 

as tumor suppressor and therapeutic target in patients with 

RCC.41 By activating Tie2 receptor tyrosine kinase, ANGPT2 

protects tumor endothelial cells and suppresses the antivas-

cular effects of VEGF inhibition.42 This indicates that PGF 

and ANGPT2 might be involved in the prognosis of ccRCC 

through interacting with VEGFA.

Moreover, 40 prognosis-associated genes were identi-

fied from the intersection DEGs between TCGA dataset and 

GSE5375, and TIMP1 was among the top four prognosis-

associated genes. Through upregulating matrix metallopro-

teinase-2 (MMP-2) and MMP-9 and downregulating TIMP1, 

S-phase kinase-associated protein-2 (SKP2) signaling pathway 

contributes to the invasion and metastasis of RCC cells.43,44 

Elevated protein levels of MMP2, MMP9, TIMP1, and TIMP2 

are related to shortened patient survival and thus predict poor 

prognosis in RCC.45 MMPs and TIMPs function in maintaining 

extracellular matrix homeostasis, and TIMP1 and TIMP2 levels 

are relevant in RCC.46 By upregulating TIMP1 and TIMP2, Rac  

signaling inhibits the invasion of epithelial tumor cells in 

RCC patients.47 Thus, TIMP1 might also be associated with 

the prognosis of ccRCC.

Conclusion
A series of bioinformatics analyses were carried out, finding 

a total of 1,984 DEGs in the KIRC tumor samples. Besides, 

VEGFA and DLL4 might be prognostic genes for ccRCC. Fur-

thermore, PGF, ANGPT2, and TIMP1 might also be related to the 

prognosis of ccRCC patients. However, in-depth experimental 

research studies should be performed to confirm our findings.
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Figure 6 The Kaplan–Meier (KM) survival curves for ALDH6A1 (A), WDR72 (B), PLCL1 (C), and TIMP1 (D).

Figure 7 The expression levels of DLL4 (A) and VEGFA (B) in clear cell renal cell carcinoma (ccrcc) tumor samples and adjacent normal samples. **p,0.01; ***p,0.001.
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