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Abstract: Long-term cigarette smoking (LTCS) represents an important risk factor for cardiac 

infarction and stroke and the central risk factor for the development of a bronchial carcinoma, 

smoking-associated interstitial lung fibrosis, and chronic obstructive pulmonary disease. The 

pathophysiologic development of these diseases is suggested to be promoted by chronic and 

progressive inflammation. Cigarette smoking induces repetitive inflammatory insults followed 

by a chronic and progressive activation of the immune system. In the pulmonary system of 

cigarette smokers, oxidative stress, cellular damage, and a chronic activation of pattern recogni-

tion receptors are described which are followed by the translocation of the NF-kB, the release 

of pro-inflammatory cytokines, chemokines, matrix metalloproteases, and damage-associated 

molecular patterns. In parallel, smoke pollutants cross directly through the alveolus–capillary 

interface and spread through the systemic bloodstream targeting different organs. Consequently, 

LTCS induces a systemic low-grade inflammation and increased oxidative stress in the vascular 

system. In blood, these processes promote an increased coagulation and endothelial dysfunc-

tion. In muscle tissue, inflammatory processes activate catabolic signaling pathways followed 

by muscle wasting and sarcopenia. In brain, several characteristics of neuroinflammation were 

described. Regular exercise training has been shown to be an effective nonpharmacological 

treatment strategy in smoke-induced pulmonary diseases. It is well established that exercise 

training exerts immune-regulating effects by activating anti-inflammatory signaling pathways. In 

this regard, the release of myokines from contracting skeletal muscle, the elevations of cortisol 

and adrenalin, the reduced expression of Toll-like receptors, and the increased mobilization 

of immune-regulating leukocyte subtypes might be of vital importance. Exercise training also 

increases the local and systemic antioxidative capacity and several compensatory mechanisms 

in tissues such as an increased anabolic signaling in muscle or an increased compliance of the 

vascular system. Accordingly, regular exercise training seems to protect long-term smokers 

against some important negative local and systemic consequences of smoking. Data suggest 

that it seems to be important to start exercise training as early as possible. 

Keywords: physical activity, pulmonary system, muscle wasting, lymphocytes, tobacco, airway 

epithelial cells

Introduction
Tobacco use is the most significant preventable cause of morbidity and mortality, with 

~5 million deaths caused by direct tobacco use and >600,000 deaths due to secondhand 

smoke worldwide every year. Cigarette smoking (CS) is the most common form of 

tobacco consumption in most countries.1 Due to the well-known detrimental effects 

of long-term cigarette smoking (LTCS) on health, many countries have implemented 
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intensified tobacco control efforts which resulted in a reduced 

prevalence of daily smoking since 1980. However, in many 

countries, the number of smokers is actually increasing, 

and there are preliminary indications that global prevalence 

among men will increase further in the next years.1,2 

LTCS represents an important risk factor for cardiac 

infarction and stroke and the central risk factor for the 

development of a bronchial carcinoma, smoking-associated 

interstitial lung fibrosis, and chronic obstructive pulmonary 

disease (COPD). About 20% of smokers develop a COPD 

which is actually ranking as the fifth most common cause 

of mortality worldwide.2 Also, smoking cessation does not 

reverse the progression of COPD in patients, indicating that 

smoking is an important cause, but not the only driver of 

disease progression in COPD patients. COPD is character-

ized not only by the destruction of lung tissue but also by 

a systemic inflammation. It is suggested that a sustained 

systemic inflammation develops during LTCS, resulting in 

COPD and its comorbidities such as muscle wasting, vas-

cular diseases, heart diseases, and stroke.3,4 The purpose of 

this review was to summarize the current knowledge about 

cigarette smoke-induced inflammation. Studies about the 

immunological effects of acute smoking, LTCS, secondhand 

CS, and COPD patients were included. In order to describe 

the molecular mechanisms of smoke-induced inflammation, 

in vitro studies and animal studies of smoke exposure were 

also included. The purpose of the second part of the review 

was to describe the current knowledge of the immune-

regulating systemic and local potentials of regular exercise 

training after smoke-induced inflammation. 

Methods
We searched various electronic databases such as PubMed, 

Web of Sciences, and Cochrane Library for English language 

articles without any date restriction. Our review focused 

on the effects of CS-induced inflammation on different 

organs (such as brain, lung, heart, muscle, etc) as well as 

on immune-regulating effects of exercise which may coun-

teract CS-induced inflammation. Search terms on PubMed 

(abstract and/or title) as shown in Table 1 were used. After 

careful review of titles and abstracts, it was decided whether 

the full-text will further be analyzed and consequently con-

sidered in this review.

From CS to inflammation 
The mechanisms of initiation and persistence of cigarette 

smoke (CS)-induced inflammation are not completely under-

stood. CS comprises about 4,000 chemicals, including several 

carcinogens. Toxicologic studies have revealed a multitude 

of immunomodulatory chemicals and gas.5 Consequently, 

LTCS results in repetitive inflammatory insults leading to 

a chronic and progressive activation of the immune system 

accompanied by an abnormal inflammatory response of the 

airways to various noxious gases and particles.6,7 On the one 

hand, smoke pollutants cross through the alveolus–capillary 

interface and spread directly through the systemic blood-

stream targeting different organs.7 At this point, they might 

be recognized by receptors of the innate immune system 

which initiate inflammatory signaling cascades via NF-κB 

activation.5 On the other hand, inflammatory processes are 

suggested to originate in the pulmonary system. Here, toxic 

substances disturb the barrier function of the respiratory 

epithelium and impact both innate and adaptive host defense 

mechanisms. This primarily local inflammatory processes 

spillover into the circulation leading to inflammatory and 

degenerative processes in other organs and tissues. Thus, 

inflammation is suggested to be the main driver of the central 

comorbidities.7,8

Table 1 Search terms on PubMed

Focus CS-induced inflammation

Category A (AND/OR) Category B (AND/OR) Category C

Cigarette, cigarette smoke, cigarette smoking, 
tobacco, tobacco smoke, tobacco smoking

Defense, immune, immune cell, immune 
response immune system, inflammation

Alveolar, brain, cardiac, cardiac muscle, 
endothelium, endothelial, heart, HMEC, HUVEC, 
lung, muscle, myocardium, skeletal muscle

Focus immune-regulating effects of exercise

Category A (AND) Category B (AND/OR) Category C

Aerobic, balance training, bicycling, endurance 
training, exercise, non-aerobic, physical activity, 
physical fitness, run, swim, walk 11, resistance 
training, strength training

Defense, immune, immune cell, immune 
response immune system, inflammation

Cigarette, cigarette smoke, cigarette smoking, 
tobacco, tobacco smoke, tobacco smoking

Abbreviations: HMEC, human microvascular endothelial cell; HUVEC, human umbilical vein endothelial cell.
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Effects of CS on inflammatory processes 
in respiratory tract and lungs 
CS comprises various components that damage the pulmonary 

epithelium. LTCS has been shown to injure the cell membranes 

and alter the mucosal permeability.9  Cellular damage is fol-

lowed by a compromised immune status, allowing opportunistic 

pathogens to cause infections that might amplify the inflam-

matory processes. Furthermore, components of the innate and 

adaptive immune system are chronically activated. Analysis of 

bronchoalveolar lavage fluid and breath condensate provides 

evidence that even acute exposure to cigarette smoke results in 

oxidative stress and tissue damage as suggested by increased 

products of lipid peroxidation and degradation products of 

extracellular matrix proteins.5 In bronchoalveolar lavage (BAL) 

of long-term smokers, an increase of interleukin (IL)-1β, IL-6, 

IL-8, monocyte chemoattractant protein-1 (MCP-1), macro-

phage inflammatory protein (MIP)-1α, regulated on activa-

tion, normal T-cell expressed and secreted (RANTES), tumor 

necrosis factor (TNF)-α, IL-12 (p40), and IL-17 was found.10,11 

Recent data suggest that airway epithelial cells (AECs) which 

represent a first line of defense against inhaled toxicants have 

altered inflammatory signaling in response to CS exposure. 

These cells were shown to upregulate cytokine expression and 

expression of matrix metalloproteases (MMPs) via extracellular 

signal-regulated kinase (ERK) signaling and increased p38 

activation. Furthermore, AECs show characteristics of cellu-

lar damage and cell death consequently leading to the release 

of damage-associated molecular patterns (DAMPs) into the 

extracellular space. DAMPs target pattern recognition recep-

tors such as Toll-like receptor (TLR). TLRs are found on both 

immune and epithelial cells throughout the pulmonary system. 

TLRs recognize patterns of bacteria, fungi, and viruses, and the 

levels of TLR4 are elevated in cigarette smokers with COPD. 

After TLR activation, the NF-kB pathway is induced followed 

by the secretion of a variety of pro-inflammatory cytokines.12 

In particular, MMP-9 and -12, surfactant protein D, and IL-1, 

IL-6, IL-8, and IL-17 have been found in higher quantities in the 

lungs of long-term smokers with the ongoing inflammation.10 

In parallel, immune cells, macrophages, neutrophils, dendritic 

cells, and lymphocytes migrate into the pulmonary system.11–13 

Alveolar macrophages might play a key role in the pathogenesis 

of inflammation in lungs. These cells produce increased levels 

of MMPs, such as MMP-1, MMP-2, MMP-9, MMP-12, and 

MMP-14, after smoke exposure (Figure 1).10 

Specific role of lymphocytes 
Currently, it is discussed that lymphocytes might play a cru-

cial role in inflammatory pathogenesis. Specifically, CD8+ T 

lymphocytes have been shown to be dramatically increased 

in the lungs of heavy smokers accompanied by a shift toward 

a type 1 profile. This immune cell subtype produces large 

amounts of interferon-γ and releases perforins and granzyme. 

Also B lymphocytes are activated, and it is suggested that their 

antigen-specific responses could turn against self-epitopes, 

partly because of impaired tolerance. In parallel, smoke expo-

sure led to an accumulation of forkhead-box-protein (FOX)P31 

T-regulatory cells (Tregs) in lungs of mice which might par-

ticipate in controlling inflammatory processes.14 Accordingly, 

LTCS seems to alter the pulmonary immune equilibrium which 

turns into a chronic activated, immunosuppressed condition.15

Effects of LTCS on systemic inflammation 
Every smoked cigarette seems to elicit a slight increase of 

oxidative stress and inflammation in blood indicated by an 

increase of thiobarbituric acid-reactive substances, neu-

trophil elastase, leukotrienes, and neutrophils after acute 

CS in humans.5 Chronically, most studies agree that LCTS 

induces an increase in the numbers of circulating neutrophils, 

macrophages, and lymphocytes. These cells show several 

inflammatory characteristics such as expression of activation 

markers and adhesion molecules which might mediate the 

migration into the bronchoalveolar system or other tissues.8,16 

On the molecular levels, LTCS induces a systemic low-grade 

inflammation characterized by chronically elevated levels of 

various markers for inflammation, tissue deterioration, and 

coagulation, such as C-reactive protein (CRP), TNF-α, von 

Willebrand factor (vWF), tissue inhibitor of metalloprotein-

ases-1, factor VII, and fibrinogen. Blood is suggested to be a 

transit way for transfer and spreading these molecules which 

target other organs and tissues.17,18 

Effects of CS on the vascular endothelium 
The particulate phase of CS consists of lipophilic com-

ponents, which can pass the lipid bilayer of respiratory 

membranes; therefore, the damage is not limited to the lung 

tissue as it can also affect the vascular system.19 The integ-

rity of endothelial cells (ECs) is essential, since it preserves 

vascular homeostasis, allows continuous adjustment of vas-

cular tone and maintenance of blood fluidity, and regulates 

leukocyte traffic.20 Components of CS are toxic for ECs, and 

LTCS can lead to dysfunction of ECs,21 an early hallmark of 

atherosclerosis.22 Endothelial dysfunction is characterized 

by an imbalance of vasoconstrictors and vasodilators, aber-

rant interaction between endothelial and immune cells, and 

higher expression of adhesion molecules.23 Dysfunctional 

ECs express lower levels of prostacyclin, thrombomodulin, 
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tissue plasminogen activator (tPA), and NO while expres-

sion levels of endothelin-1, angiotensin II, plasminogen 

activator inhibitor-1 (PAI-1), and vWF are increased.20 

Therefore, CS favors inflammatory processes in ECs and 

is a huge risk factor for the development of atherosclerosis 

and cardiovascular diseases (CVDs).22 In vitro studies in 

ECs demonstrate that CS induces cell injury in a dose- and 

time-dependent manner24 which can lead to apoptosis,25 

autophagic cell death,26 and necrosis.27 Different mechanisms 

are responsible for the induction of apoptosis in ECs induced 

by CS. One study showed that aqueous filtrates of CS lead 

to mitochondrial membrane depolarization, representing an 

early step in the apoptotic pathway.22 The negative influence 

of CS on apoptotic-related genes has also been reported. For 

example, CS decreases p53 and Bcl-2 expression,28 disrupts 

the vascular endothelial growth factor (VEGF), and fluid 

shear stress-mediated VEGFR2/phosphoinositide 3-kinase 

(PI3K) signaling pathway29 and reduces the cytochrome-c 

oxidase II expression through aberrant DNA methylation.25 

Vascular damage through excessive apoptosis was also shown 

to be initiated by a p53-independent caspase-3 activating 

pathway.30 EC injury may also be mediated through protein 

carbonylation which is caused by reactive species in CS.31 

Recruitment of leukocytes to the inflammation site happens 

by cytokine signaling, MMP-1 and MMP-9 upregulation, and 

through cell adhesion of immune cells to ECs.32

Potential mechanisms of atherogenesis
The underlying mechanism of atherogenesis of ECs induced 

by CS is not fully understood yet.33 So far, CS-induced 

inflammation-related responses have been described in 

experimental studies in vitro. CS led to phosphorylation 

of various mitogen-activated protein kinases (MAPK), like 

p38,34 c-Jun N-terminal kinase (JNK), and ERK.34,35 The 

expression levels of osteopontin,35 E-selectin, intercellular 

cell adhesion molecule-1 (ICAM-1),36 and IL-837 were also 

induced by CS. Furthermore, CS induced nicotinamide 

adenine dinucleotide phosphate (NAD(P)H)-oxidase-derived 

Figure 1 Illustration about cigarette-induced induction of oxidative stress and inflammation in AECs.
Abbreviations: AEC, airway epithelial cell; TLR4, Toll-like receptor-4; DAMP, damage-associated molecular pattern; MMP, matrix metalloprotease; ROS, reactive oxygen 
species; IL, interleukin; TNF, tumor necrosis factor; IFN, interferon. 
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 generation,38 upregulated fractalkine (CX3CL1), 

increased IL-13Rα2 through the activation of protein kinase 

A-cAMP response element-binding protein (PKA-CREB) 

pathway,39 increased cyclooxygenase-2 (COX-2) expression 

through nuclear β-catenin accumulation due to the activation 

of epidermal growth factor receptor (EGFR)/Akt/glycogen 

synthase kinase-3β pathways.40 One cell culture study dem-

onstrated that ECs treated with CS for 72 hours expressed 

only minor differences in various cytokines on mRNA level.41 

CS promotes endothelial dysfunction as well by impairing 

endothelium-dependent relaxation, presumably through sup-

pression of NO production42 and CS-low-density lipoprotein 

(CS-LDL).43 Cell culture studies proved that exposure of 

ECs to CS impaired the VEGF-induced EC migration44,45 

and tube formation, explaining the negative effect of CS on 

vessel growth and endothelial function.45

Effect of smoking on the cardiac tissue
Persistent inflammation is an important factor in the develop-

ment of CVD.46 Since CS promotes inflammation47 and injures 

the cardiovascular system chronically, it is not surprising that 

the risk for CVD is twice as high in smokers than in non-

smokers.48 Toxic effects of CS on the myocardium have been 

proved experimentally as well as clinically,15 but whether 

smoking is a direct or indirect cause of CVD still needs to 

be proved.49 It is somehow remarkable that even secondhand 

smoke has the ability to increase the risk for CVD to as 

high as 30%.48,50–54 Secondhand smoking combined with an 

unhealthy lifestyle was shown to reduce the ability of the heart 

adapt sensitively to sidestream smoke in a murine model.48 

Furthermore, in nonsmoking humans, secondhand smoking 

increased WBC count immediately as well as CRP levels 18 

h after exposure. Both of these are markers for inflammation 

and have been linked to a higher incidence of CVD.50

The situation for smokers is worse. Active smoking 

increases cardiac afterload, promotes a pro-thrombotic sta-

tus, reduces fibrinolysis, changes the profile of circulating 

lipids,48 promotes neutrophil infiltration in the myocardium,55 

alters T-cell function,56 and causes DNA adducts in the myo-

cardium.57 CS leads to the production of reactive oxygen 

species (ROS) which initiate ROS-sensitive signal transduc-

tion pathways, such as MAPKs, and various transcription 

factors, including NF-kB15 resulting in an aberrant cytokine 

profile.58–60 Gene analysis of the hearts of mice revealed 

an upregulation of the xenobiotic-metabolizing enzyme 

cytochrome P-450 1A1 and a downregulation of PAI-1, 

representing a key gene involved in fibrinolysis.61 Taken 

together, all mentioned factors are suggested to increase the 

risk for several diseases of the cardiovascular system also in 

human smokers.62

Effects of LTCS on muscle tissue
Human smokers tend to have a lower BMI while central or 

abdominal obesity seems to be increased. Thus, the weight 

loss associated with tobacco smoking may be due to loss 

of lean mass rather than fat.63 It is suggested that inflam-

mation and oxidation of proteins are two main contributors 

to the development of skeletal muscle loss and dysfunction 

observed in LTCS and COPD patients.63 Structurally, LTCS 

leads to a reduced percentage of type I fiber, a lower muscle 

fiber cross-sectional area, an increased glycolytic enzymatic 

activity, and decreased muscle oxidative activity.8,63,64 Mice 

chronically exposed to cigarette smoke tend to a reduced 

muscle capillary to fiber ratio along with decreased VEGF, 

lowered endothelial and neuronal nitrite oxide synthase activ-

ities in muscle vessels, and increased inflammatory activity 

indicated by an increased mRNA expression of TNF-α and 

IL-1β.8,64,65 The role of numerous cell signaling pathways in 

the development of skeletal muscle atrophy, a key element 

of muscle dysfunction in long-term cigarette smokers and 

COPD patients, has been investigated.65 In general, atrophy 

occurs when protein degradation exceeds protein synthesis. 

With regard to protein degradation, the ubiquitin  proteasome 

system (UPS) seems to have an important role during LTCS. 

In smoke-exposed mice, an increased ubiquitination of 

target proteins was demonstrated, which was indicated by 

the increased activities of the E3 ubiquitin ligases atrogin-1 

and muscle RING finger protein-1 (MuRF1).66 In parallel, 

key factors that induce protein synthesis such as insulin-like 

growth factor 1 (IGF-1), are reduced followed by a lower 

activation of anabolic signaling pathways such as protein 

kinase B (Akt) and rapamycin (mTOR) pathways. All the 

mentioned pathways interact with inflammatory signaling 

molecules such as TNF-α turning protein balance toward an 

enhanced degradation leading to muscle wasting.63,66 

Effects of LTCS on brain inflammation
Atherosclerosis and vascular brain lesions share similar 

pathological features such as oxidative stress and increased 

inflammation.67 Oxidative stress, for example, plays a deci-

sive role in the pathogenesis of ischemic brain injury.68 It is 

not surprising that direct and secondhand CS are associated 

with various cerebrovascular-related diseases,32 in particular, 

smoking is a risk factor for stroke.69

Likewise to the effects of CS on endothelial cells,70 higher 

expression of VEGF, ICAM-1, IL-8, and nuclear factor 
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(erythroid-derived 2)-like 2 was also observed in cultured 

brain ECs.71 Furthermore, it was shown that CS extracts 

induced heme oxygenase-1 (HO-1) expression mediated by 

phosphatidylcholine phospholipase C/protein kinase Cδ/

NADPH oxidase-dependent platelet-derived growth factor 

receptor (PDGFR)/PI3K/Akt pathway.19 Higher HO-1 expres-

sion was shown to exacerbate early brain injury during intra-

cerebral hemorrhagic stroke.72 Endothelin-1 levels decreased 

in rat brains exposed to CS, implying that endothelin-1 may 

contribute to the hemodynamic response to chronic CS.73

Effects on brain ECs
Moreover, animal experiments proved that CS negatively 

affected endothelial tight junctions71 and downregulated the 

activity of Na-K-2Cl cotransporter in brain ECs. The latter 

could possibly contribute to an increase in extracellular K+. 

Therefore, CS may exacerbate ischemic cellular damage 

and hinder recovery from ischemic damage. In addition, 

accumulation of extracellular fluid K+ is a risk factor for 

cellular edema in astrocytes and neurons and could impair 

neuronal conduction after stroke.74 Increased blood viscos-

ity due to CS impairs the blood flow and risks the integrity 

of the brain microvasculature.32 On top of everything, CS 

negatively affects the viability of the blood–brain barrier 

(BBB). Taken together, CS and hemodynamic impairments 

contribute synergistically to vascular inflammation and BBB 

damage.32 Inflammation of brain cells due to CS was also con-

firmed in various in vivo studies using mouse and rat models. 

Inflammation and cell death processes in the brain are often 

characterized by alterations of the neuroproteome.73–75 Mice 

exposed to secondhand CS, showed higher levels of ROS, 

induction of lipid peroxidation, activation of the transcription 

factors NF-kB and activator protein-1, as well as activation 

of MAPK, including JNK, ERK, and p38, and COX-2 in 

various regions of the brain.69 Furthermore, secondhand CS 

altered enzymatic antioxidant defenses by reducing superox-

ide dismutase as well as catalase and increasing glutathione 

S-transferase activity in rat brains. Moreover, rats exposed 

to secondhand CS showed increased proteolytic degradation 

of αII-spectrin through caspase-3 and dephosphorylation of 

phosphoprotein enriched in astrocytes-15, both indicating 

apoptotic cell death.75

Immune-regulating effects of 
exercise training
Exercise training has been shown to be an effective non-

pharmacological treatment strategy in pulmonary diseases 

and systemic lung diseases. Furthermore, regular exercise 

has been shown to increase patients’ strength, endurance 

capacity, quality-of-life scores, and symptoms of fatigue and 

dyspnea.76 Thus, the beneficial effects of exercise training in 

pulmonary rehabilitation are well established. Recent studies 

provided evidence that regular and moderate exercise exerts 

protective effects against smoke-induced lung disease due to 

its anti-inflammatory effects.64,77

Anti-inflammatory effects of exercise
Exercise training exerts its immune-regulating effects 

by activating anti-inflammatory signaling pathways.78,79 

Contracting skeletal muscle produces and secretes the anti-

inflammatory myokine IL-6 during an acute bout of exercise, 

which evokes a subsequent rise in circulating levels of IL-6 

followed by an ensuing increase in systemic levels of the 

anti-inflammatory cytokines IL-10 and IL-1RA.77–79 IL-10, 

which is mainly produced by Tregs, reduces tissue dam-

age caused by inflammation and is known to diminish the 

adaptive immune response.80–82 Complementarily, IL-1RA 

is capable to limit the effects of the pro-inflammatory cyto-

kine IL-1β and therefore serves as an important contributor 

to exercise-induced anti-inflammatory state.79 Besides, 

exercise-induced systemic elevations of cortisol, adrenalin, 

and IL-6 inhibit the secretion of pro-inflammatory TNF-α by 

monocytes.78,82,83 Moreover, after an acute bout of strenuous 

prolonged exercise, a reduced expression of TLRs on mono-

cytes can be observed, which results in subsequent inhibition 

of pro-inflammatory cytokines and promotes the expression 

of costimulatory molecules and major histocompatibility 

complex.83,84 CD14lowCD16+ monocytes are characterized 

by heightened TLR-4 expression and thereby associated 

with pro-inflammatory properties.85 Regular exercise lowers 

the ratio of pro-inflammatory monocytes (CD14lowCD16+) 

to classical monocytes (CD14hiCD16–).86 Chronic exercise 

training also increases Treg cell numbers in circulation. In 

detail, athletes participating in sports where aerobic capacity 

is a prominent factor for performance outcome seem to have 

increased Treg counts.87,88

Specific role of exercise during obesity
In case of obesity, exercise training stimulates anti-inflam-

matory signaling via a reduction in visceral fat mass, which 

is accompanied by a decrease in the production of several 

pro-inflammatory adipokines (eg, TNF-α, leptin, retinol-

binding protein) and higher levels of adiponectin, which 

has anti-inflammatory effects and functions as an insulin 

sensitizer.89 Current mouse and rat model studies indicate 

that acute bouts of exercise and exercise training stimulate 
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phenotypic switching from M1-type macrophages producing 

TNF, IL-6, and nitric oxide toward M2-type macrophages, 

which release arginase and anti-inflammatory cytokines.90,91 

In addition, after exercise training, a reduced tissue expres-

sion of ICAM-1, which is involved in the adhesion of inflam-

matory cells to endothelium and conveys interactions of T 

cells with target cells, and an inhibition of pro-inflammatory 

M1-type macrophage migration in adipose tissue occur.91

Effects of exercise on pulmonary system 
after LTCS 
Experimental animal studies demonstrated that aerobic 

exercise after CS exposure or asthma induction reduces lung 

inflammation92 and remodeling.93,94 

In particular, exercise was shown to increase Th1 response 

and suppress Th2 cytokine levels in lungs of smoke-exposed 

mice.95 In parallel, exercise increased antioxidant defense and 

reduced oxidative stress markers.96,97 In CS-exposed mice, it 

was shown that prior exercise training significantly reduced 

bronchoalveolar capillary permeability, inflammatory cell 

infiltration, epithelial thickening, expression of proliferat-

ing cell nuclear antigen, mucin 2, cytokines, chemokines, 

adhesion molecules, and activation of NF-κB.98 These data 

proved an important preventive effect of exercise training for 

smoke-induced inflammation in lung tissue. 

Effects of exercise on CS-induced 
inflammation in blood
Regular exercise training has been shown to lower the levels 

of several inflammatory, chemoattractive, and coagulative 

factors in the blood of smoke-exposed mice. However, some 

human studies and clinical trials also demonstrated that due 

to dyspnea, COPD patients have restricted activity levels and 

muscle wasting, a markedly impaired exercise capacity.99,100 

Therefore, some of these patients develop a kind of exercise 

intolerance. In this regard, it seems to be important to start 

exercise programs carefully, because acute and intensive bouts 

of exercise are known to induce a systemic immunologic 

response and oxidative stress, which might force inflammation 

in patients. However, a pro-inflammatory effect of exercise 

was only shown in muscle-wasted COPD patients after acute 

and intensive bouts of exercise. Interestingly, this effect was 

partially blunted by short-term supplementary oxygen.100,101 

In general, longer periods of regular exercise training show 

a decrease of many inflammatory cytokines such as TNF-α, 

IL-2, IL-4, and CRP in COPD patients.102 Similarly, in murine 

models, a reduced expression of cell surface markers on cir-

culating immune cells such as vascular adhesion molecule-1 

(VCAM-1), ICAM-1, and CD62L was shown after regular 

treadmill running. Also several other inflammatory cytokines 

such as IL-1α, MCP-3, MIP-1β, MIP-1α, and CD40L were 

shown to decrease in smoke-exposed mice after training.64 In 

addition, regular endurance exercise has been shown to have 

favorable effects on blood coagulation by affecting fibrinolysis 

via decreasing vWF and factor VII.103 

Effects of exercise on endothelium after 
LTCS
The effects of CS and exercise on the inflammation of ECs 

have been well established in the literature. However, to our 

knowledge, no study has investigated the effects of exercise 

toward CS-induced inflammation in blood vessels. Therefore, 

it can only be hypothesized how exercise possibly ameliorates 

CS-induced inflammation in vessel walls by its effects on 

inflammation in general.

Endurance exercise training promotes endothelium-

dependent vasodilation104–108 which is related to a shear 

stress-induced and Akt-dependent phosphorylation of 

endothelial NOS, resulting in NO activation.107 Furthermore, 

regular physical activity reduces oxidative stress,108 inflam-

mation,109,110 and promotes LDL oxidation.19 It has also been 

demonstrated that exercise training has a positive impact on 

inflammatory markers. Regular physical activity reduced 

the levels of circulating adhesion molecules111 like soluble 

intercellular adhesion molecule-1,112,113 soluble vascular 

adhesion molecule-1 (sVCAM-1),112 soluble P-selectin, 

and circulating CRP.109 Prolonged exercise sessions may 

increase cell adhesion molecules like P-selectin,113 E-selectin, 

ICAM-1, and VCAM-1 first, but the endothelium recovers 

rapidly afterwards.114 It is noteworthy that the potential 

influence of exercise training on inflammation, circulating 

biomarkers, and anti-oxidative capacity depends on exercise 

 capacity.115–117 For example, heart failure patients showed 

reduced endothelial response toward exercise. Indeed, 

plasma levels of vWF and tPA remained unaffected after 

exercise while their values increased in healthy subjects.118,119 

Therefore, endothelial dysfunction and chronic inflammation 

probably impair exercise capacity.120 It is therefore crucial 

that exercise interventions in smokers should be considered 

as soon as possible since its benefits may decline with the 

progression of possible diseases.

Effects of exercise on cardiac tissue of 
smokers 
Smoking and physical inactivity are two avoidable risk 

factors for CVD.121 As endothelial dysfunction can lead to 
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cardiac dysfunction,122,123 it is reasonable to assume that 

protective effects of exercise toward endothelium in (non-)

smokers, which are mentioned above, might also be cardio-

protective. The decreasing risks for CVDs through moderate 

exercise training are in part mediated through inducing anti- 

inflammatory factors.124–127 Nonetheless, as it was mentioned 

for vessel walls, studies examining anti-inflammatory effects 

of exercise in CS-induced inflammation of the myocardium 

remain poor.

Short-time swimming exercise in CS-exposed Wistar 

rat could attenuate the impact of CS to the cardiovascular 

system compared to the control group.47 Another study with 

young women demonstrated that even secondhand smoking 

had a negative influence on exercise capacity due to reduced 

values of VO
2max

 and exercise duration and an increased 

R-to-R value.129

Exercise intensity rather than duration has a more 

powerful impact on physiological adaptations regarding 

inflammation and oxidative stress,128 like it was described for 

vessel walls. Even if high-risk patients with severe coronary 

artery disease or heart failure could benefit the most from 

more intensive exercise training like high-intensity interval 

training, its safety has not been properly established.130 For 

example, exercise intensity might be a critical factor for the 

development of exercise-induced hypertension. Increased 

exercise intensity could trigger more endothelial responses 

in the absence of inflammatory markers. Therefore, exercise 

intervention plans should always have to be appropriate to 

each condition.23

Effects of exercise on muscle wasting 
after LTCS
Exercise is able to reverse sarcopenia and muscle wasting 

in LTCS by different pathways. On the one hand, a decrease 

of systemic inflammation and inflammatory mediators in 

muscle such as TNF-α and IL-1β might indirectly reduce 

the activation of catabolic pathways and increase anabolic 

signals.64 In this regard, exercise has been shown to decrease 

for FoxO1 phosphorylation and reduce the expression of 

atrogin-1 and MuRF-1 in skeletal muscle of smoke-exposed 

mice. Consequently, exercise training abrogates the expres-

sion of protein catabolic E3 ligases, which are considered 

key factors in myofibrillar protein breakdown via the UPS. 

On the other hand, in particular, resistance training is also 

known to directly increase IGF-1 signaling followed by the 

activation of the Akt–mTOR–pathway.131,132 The reduction 

of catabolic and stimulation of anabolic signaling attenuate 

or reverse muscle wasting after smoke exposure. Endurance 

training was also shown to increase metabolic capacities of 

muscles by increased expression of genes involved in fatty 

acid transport into the mitochondrial matrix. Similarly, glu-

cose uptake was optimized after regular exercise training.64 

The differentiated effects of exercise training on muscle tissue 

might also depend on the mode of exercise. While endurance 

training more efficiently addresses type I fibers and oxidative 

metabolism, strength or resistance training mainly affects 

type II fibers, induces hypertrophy, and increases strength 

capabilities. However, most pulmonary rehabilitation pro-

grams include both endurance and resistance exercise to 

maximize gains from both modalities. Alternatively, it has 

been shown that combined training program which includes 

both resistance and endurance exercise modalities increases 

strength and endurance in COPD patients.133

Effects of exercise on brain after LCTS
Inflammation and vascular-induced abnormalities in the 

brain are two conditions associated with stroke and other 

neurovascular diseases, which can be protected by regular 

physical activity in humans.134 In humans and animals, 

exercise upregulates brain neurotrophin and brain-derived 

neurotophin factor (BDNF), which is an important factor of 

neuronal function, growth, and survival. BDNF increases 

the brain’s resistance to damage and degeneration.135 The 

immediate response of the brain to acute exercise produces 

only marginal changes of inflammatory mediators.136 On the 

other hand, regular physical activity improves the overall 

immune condition in the brain.137 Murine studies proved that 

pro-inflammatory cytokines impair the IGF-1 signal trans-

duction in neurons. Peripheral IGF-1 is essential in glucose 

metabolism and cerebrovascular function. One mechanism 

by which the negative effects of inflammation are counter-

acted by exercise is the restoration of IGF-1 signaling.137 In a 

study with mice, endurance and strength training decreased 

most of the inflammatory factors, such as IL-1α, IL-2, and 

IL-18. Interestingly, NF-κB and COX-2 protein levels were 

significantly increased probably due to circulating IL-6 after 

training. The increased expression of COX-2 and microsomal 

prostaglandin E synthase, an enzyme downstream of COX-

2, were independent of peripheral inflammation.138 Exercise 

improved oxidative stress and inflammation directly at the 

brain of old high-fat-fed ApoE−/− mice, reaffirming the neu-

roprotective effects of exercise in a model of mice with vas-

cular brain lesions.138 On the other hand, aged mice, training 

above the lactate threshold showed increased levels of brain 

PGC-1α, mTOR, and phospho-mTOR protein levels, as well 

as citrate synthase mRNA levels.139 A similar relationship has 
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been confirmed in young mice.140 In addition, for FOXO-3 

translocated from the nucleus to the cytoplasm, predicting 

an increased and facilitated VEGF-A expression.141 Another 

study using rats in a traumatic brain injury model showed 

that aerobic exercise training enhances the endogenous 

anti-inflammatory response (IL-10), inhibits the infiltration 

of neutrophils, and attenuates BBB breakdown as well as 

pro-inflammatory cytokines (IL-1β, TNFα).141

Neuroprotective effects of exercise
Neuroprotective and anti-inflammatory effects of exercise on 

the brain have also been shown in humans. Moderate intensity 

interval training in Parkinson’s disease patients attenuated 

inflammation by decreasing circulating sVCAM-1 and serum 

TNF-α and increasing serum BDNF levels.142

Accordingly, exercise training has the potential to be a new 

therapeutic approach to control acute inflammation.143 These 

effects remain to be proven in response to CS-induced inflam-

mation. So far, only one study has investigated the effects of 

exercise training on CS-exposed brain oxidative stress.144 Mice 

exposed to CS showed decreased levels of BDNF and higher 

immobility in a forced swim test. Exercise was able to prevent 

oxidative damage, but surprisingly, it could neither reverse 

the decrease of BDNF nor it was able to prevent CS-induced 

depressive-like behavior.144 These results clearly show that 

molecular effects of exercise on CS-induced inflammation at 

the brain needs to be investigated in future research projects. 

Conclusion 
Taken together, LTCS induces local and systemic inflam-

matory processes which might be mediated directly by pol-

lutant particles and a spillover of inflammatory signals to 

other tissues. These inflammatory processes might induce 

or amplify signals of tissue degradation and catabolic pro-

cesses. Exercise training has been shown to prevent and even 

reverse inflammatory processes leading to reduced tissue 

degradation and catabolic processes. In parallel, exercise 

elicits anabolic signals leading to an increased functional 

capacity. Accordingly, regular exercise training seems to 

protect long-term smokers against some important nega-

tive local and systemic consequences of smoking. In this 

regard, the immune- regulating properties of exercise might 

have relevance (Figure 2). It has to be considered that many 

molecular findings from smoking or exercise effects on tis-

sues were obtained from animal studies, and this knowledge 

has to be only carefully transferred to humans. 

Figure 2 Overview about the distribution of inflammatory signals induced by tobacco smoking from the pulmonary system to blood, brain, cardiac tissue, and muscle and 
the immune-regulating effects of regular exercise training.
Abbreviations: BBB, blood–brain barrier; TLR, Toll-like receptor; DAMP, damage-associated molecular pattern. 
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More studies are needed to discover the mechanisms 

how exercise affects inflammation in smokers. Specifically, 

the effects of exercise on inflammation in various organs in 

smokers have to be confirmed. From a clinical point of view, 

data suggest that it seems to be important to start exercise 

training as early as possible for smokers. In this regard, the 

progressive increase of certain inflammatory signals might 

be important predictors of the necessity of starting a regular 

exercise training program. 
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