
© 2018 Siu and Murphy. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms. 
php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Eye and Brain 2018:10 25–36

Eye and Brain Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
25

R E V I E W

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/EB.S130893

The development of human visual cortex  
and clinical implications

Caitlin R Siu1

Kathryn M Murphy1,2

1McMaster Integrative Neuroscience 
Discovery and Study (MiNDS) 
Program, McMaster University, 
Hamilton, ON, Canada; 2Department 
of Psychology, Neuroscience & 
Behaviour, McMaster University, 
Hamilton, ON, Canada

Abstract: The primary visual cortex (V1) is the first cortical area that processes visual infor-

mation. Normal development of V1 depends on binocular vision during the critical period, and 

age-related losses of vision are linked with neurobiological changes in V1. Animal studies have 

provided important details about the neurobiological mechanisms in V1 that support normal 

vision or are changed by visual diseases. There is very little information, however, about those 

neurobiological mechanisms in human V1. That lack of information has hampered the transla-

tion of biologically inspired treatments from preclinical models to effective clinical treatments. 

We have studied human V1 to characterize the expression of neurobiological mechanisms that 

regulate visual perception and neuroplasticity. We have identified five stages of development for 

human V1 that start in infancy and continue across the life span. Here, we describe these stages, 

compare them with visual and anatomical milestones, and discuss implications for translating 

treatments for visual disorders that depend on neuroplasticity of V1 function.

Keywords: development, human visual cortex, amblyopia, synaptic plasticity, glutamatergic, 

GABAergic, receptors

Introduction
The human brain has >20 cortical areas that receive strong visually driven activity and 

process that information to support all aspects of our visual perceptions. Changes in 

any of those cortical areas can affect visual perception, and abnormal visual experi-

ence, especially in childhood, often disrupts the maturation of visual cortical circuits 

causing poor vision. The role of the visual cortex in processing visual perception and 

plasticity has been well studied in animal models,1–9 but there are few studies about 

the neurobiology of human visual cortex10–19 and even fewer examine how it develops 

and changes across the life span.20–24 Brain imaging studies are beginning to address 

structural and functional development of the human cortex,25 but the lack of information 

about cellular and molecular mechanisms has slowed the translation of biologically 

inspired treatments for visual disorders.

Over the past decade, our laboratory has focused on studying the neurobiology of 

human visual cortex by measuring the expression of molecular markers that regulate 

neural function and plasticity, and characterizing a series of neurobiological milestones. 

Perhaps the most striking finding from our studies has been the prolonged develop-

ment of those markers in human primary visual cortex (V1). We have found that 

development of the human V120–22,24 mirrors the long process of visual maturation and 

age-related changes in perception.26–29 In this review, we will focus on the five stages 

that we identified for human V1 and link them with visual and anatomical milestones. 
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Finally, we will discuss the implications of these new findings 

for translation of biologically inspired neuroplasticity-based 

therapeutic approaches for treating visual disorders.

To study the development of human visual cortex, we 

chose to measure the expression of synaptic and non-synaptic 

proteins because these mechanisms link structure and func-

tion.20–22,24 Imagine a Venn diagram with the anatomical 

structure of V1 on one side and the physiological and visual 

functions on the other side. The neural proteins sit at the 

interface joining structure with function, they regulate how 

synapses and circuits develop, they respond to plasticity, and 

they control neural communication. Furthermore, measuring 

neural proteins in postmortem tissue from human cortex is a 

robust methodology that provides high-quality reliable data 

about these rare and valuable human tissue samples.

Stage 1: the first year, early 
maturation of vision and the 
structure of  V1 neurobiology
Visual milestones
Early visual development is characterized by progres-

sive improvements in functions such as acuity,30,31 contrast 

 sensitivity,32 orientation selectivity,33 and motion sensitivity.34 

None of those visual abilities, however, attain adult levels at 

this early stage. In contrast, binocular functions such as fusion, 

stereopsis, and stereoacuity emerge abruptly around 3 months 

of age.35 By 2 months of age, infants can discriminate some 

color from white light,36 and by 3 months evidence for trichro-

macy emerges.37,38 Infants develop the ability to individuate 

objects by shape and size by 4.5 months,39 while the ability to 

integrate contours or edges emerges later around 6 months.40,41 

By 5 months most infants have fusion and stereopsis, followed 

by rapid development to reach adult levels by 6–7 months of 

age;35 meanwhile, the development of spatial acuity continues 

to improve well past infancy (Figure 1).31,42 Normal time course 

for the development of spatial visual functions is not prepro-

grammed but instead is experience-dependent and abnormal 

vision can have a profound effect on the maturation of these 

functions.43,44 Infancy marks the onset of the sensitive period 

for developing amblyopia, as the average age of diagnosis 

is about 1.2 years.45 Early treatment of cataracts in infancy 

shows rapid improvement in visual acuity even within 1 hour 

of cataract removal.46 Many studies and clinical experience 

have shown that early treatment for amblyopia, even starting 

in infancy, improves the chance of developing normal acuity.47

Figure 1 Summary chart for development of human visual milestones. 
Notes: A summary of the development of key visual perceptual milestones across the life span. The top panel shows the stages of human development (infants, young 
children, older children, teens, young adults, older adults), and associated ages in months and years (as presented by Siu et al22). The rows below illustrate the approximate 
timing of onset and emergence (green arrows), adult-like levels (gray shade with black arrows), and loss of function (red arrows). References linked to each milestone are 
provided in the right column. 
Abbreviations: V1, primary visual cortex; mo, months.
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Anatomical milestones
Many of the anatomical features of human V1 develop 

prenatally. Neurogenesis begins around embryonic day 33 

and is complete by birth,48–50 while the thalamic input to 

layer 4 in V1,51,52 bipolar, and pyramidal cells with long 

and thin dendritic spines forms distinct laminar patterns at 

around 20–30 weeks gestation.16,53 Other aspects of cortical 

development that begin prenatally continue to mature after 

birth. Cytochrome oxidase expression is present at 26 weeks 

gestation, and is organized into clearly visible “puffs” by 24 

days postnatal, and becomes well organized by 4 months 

postnatal.19 Vertical interlaminar connections form between 

26 and 29 weeks gestation, while long-range horizontal 

connections in layers 4B and 5 emerge at around 37 weeks 

gestation, and show adult-like patchiness by 8 weeks postna-

tal. Layer 2/3 horizontal connections emerge later at around 

16 weeks postnatal and become adult-like by 15 months of 

age.15 By 4 months of age, feedforward connections from 

V1 to extrastriate area V2 have formed mature connections, 

while feedback connections are still immature only reaching 

adult levels at around 2 years of age.14 Synaptogenesis in 

human V1 increases to reach a peak between 8 months and 

2 years and is followed by a longer period of synaptic prun-

ing to reach adult levels later in childhood.13 The number of 

dendritic spines in V1 follows a similar trajectory that peaks 

at around 5 months of age and then decreases to adult levels 

by 2 years.54 Many anatomical features are already adult-like 

by the end of this stage (Figure 2); however, vision continues 

to mature well beyond the first year of life. 

Neurobiological milestones
We have found that the first stage of human V1 development 

is characterized by rapid changes in neurobiological mecha-

nisms that will support the emergence of visual function and 

synaptic plasticity. There are some early changes to both 

excitatory glutamatergic and inhibitory gamma-aminobutyric 

acid (GABA)ergic synaptic receptors (Figure 3),22,24 and a 

shift toward a balance between these excitatory and inhibitory 

(E-I) receptors.20 The immature GABA
A
 receptors subunits, 

GABA
A
α2 and GABA

A
α3, dominate expression in the first 

Figure 2 Summary chart for development of human V1 anatomical milestones. 
Notes: A summary of the development of key neuroanatomical milestones in human V1 across the life span. The top panel shows the stages of human development (prenatal, 
infants, young children, older children, teens, young adults, older adults), and associated ages in months and years (as presented by Siu et al22). The rows below illustrate the 
approximate timing of onset and emergence (green arrows), adult-like levels and structure (gray shade with black arrows), and loss of expression (red arrows). Black dots 
refer to anatomical milestones that are completed before birth. References linked to each milestone are provided in the right column.
Abbreviations: V1, primary visual cortex; mo, months.
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year, but quickly show signs of maturation as those subunits 

are replaced by GABA
A
α1 (Figure 4) so that there is relatively 

more GABA
A
α1 by about 1 year of age, that peaks later in 

adolescence (Figure 3).24 For glutamatergic synapses, the 

N-methyl-d-aspartate (NMDA) receptor subunit GluN1 is 

highly expressed at birth, then rapidly declines to reach adult 

levels at around 1 year. That loss is balanced by an increase 

in GluA2 containing AMPA receptor (AMPAR) expression, 

and the shift from more NMDA to more AMPA signals the 

loss of NMDA-dominated silent glutamatergic synapses to be 

replaced by active AMPA containing synapses (Figure 3).22 

The maturation of both GABA
A
 receptor subunits and the 

AMPA:NMDA balance speed up responses at those receptors 

and trigger an environment that supports experience-depen-

dent plasticity (Figure 4).55–57 For example, the maturation of 

GABA
A
 receptor regulates the critical period for plasticity,56 

as the mature α1 subunit is necessary for ocular dominance 

plasticity.55 Moreover, the insertion of AMPAR is driven by 

visual experience and is an important step in initiating the 

critical period.58 

Stage 2: preschool children have 
high variability in V1 development 
(1–4 years)
Visual milestones
Many aspects of visual perception continue to improve through 

the first few years of development (Figure 1). Young children 

have experience-dependent improvements in visual acuity,42 bio-

logical motion perception,59 and contrast sensitivity,60,61 but those 

abilities are still not adult-like.62 During the first 2 years of this 

stage (~1–3 years), children are most susceptible to  abnormal 

binocular vision63 that can cause amblyopia. Alternatively, if 

abnormal vision is identified and treated in children under 

Figure 3 Summary chart for development of human V1 neurobiological milestones. 
Notes: A summary of the development of key neurobiological milestones in human V1 across the life span. The top panel shows the stages of human development (infants, 
young children, older children, teens, young adults, older adults), and associated ages in months and years (as presented by Siu et al22). The rows below illustrate the 
approximate timing of onset and emergence (green arrows), peak expression (gray shades), adult-like levels (gray shade with black arrows), and loss of expression (red 
arrows). References linked to each milestone are provided in the right column.
Abbreviations: V1, primary visual cortex; mo, months; MBP, myelin basic protein.
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5 years of age, there is the greatest likelihood for  recovery,64 for 

both high and low spatial frequencies.65 For example, binocular 

iPad treatment for amblyopia shows improvement in visual acu-

ity at this stage for amblyopic children.66 

Anatomical milestones
In young children, V1 undergoes synaptic and dendritic 

refinement to reach adult appearance at around 2 years of age 

(Figure 2).54 Other aspects of human cortical development are 

characterized as “adult-like” by this stage, including cortical 

thickness67  and the appearance of feedback connections from 

extrastriate areas to V1.14

Neurobiological milestones
Although this period of experience-driven visual develop-

ment points to significant increases in visual plasticity, we 

have found little evidence that neural plasticity mechanisms 

complete maturation during this stage (Figure 3). Instead, we 

found a novel aspect of human cortical development that is 

characterized by waves of high interindividual variability in 

the expression of neural plasticity markers in human V1.20–23 

Interindividual variability in human V1 can be characterized 

across development using the variance-to-mean ratio of protein 

expression across a moving window of three age-adjacent 

cases. Using this, we found a period of high interindividual 

variability, or a “wave”, during young childhood for many of 

the synaptic proteins, but not during the other stages of devel-

opment.22 This variability may signify either interindividual 

differences in the rate of development, or it may identify 

intraindividual fluctuations in the expression of plasticity 

mechanisms.22 Nevertheless, this large dynamic range in 

protein expression likely contributes to increased plasticity or 

learning for optimal behavioral performance.68 Interestingly, 

this stage of interindividual variability comes just after the E-I 

balance has been reached in human V1.20 Balanced excitation 

and inhibition in the cortex establish cortical criticality, defined 

as a dynamic range of spontaneous activity that maximizes the 

processing of input activity.69 Thus, the waves of variability in 

cortical development may be an important stage of develop-

ment when visual circuits “learn” complex processing by using 

the variability to fine-tune optimal neural circuits.22,70 

Stage 3: experience-dependent 
visual development in school aged 
children (5–11 years)
Visual milestones
Many visual abilities finish maturation in older children 

(Figure 1). However, the precise age of maturation may vary 

significantly, and usually, depends on the type of measure 

Figure 4 Summary chart of glutamatergic and GABAergic receptor subunits. 
Notes: This figure presents a summary of some key glutamate (AMPAR and NMDAR) and GABA (GABAA) receptor subunit compositions that regulate neuroplasticity 
in the primary visual cortex. The columns represent functional significance of the balance of NMDA:AMPA (top), GluN2A:GluN2B (middle), and GABAAα1:GABAAα3 
(bottom). More juvenile synapses are dominated by more NMDAR, GluN2B containing NMDAR, and GABAAα3 containing GABAA receptors that allow for LTP in excitatory 
synapses127 and slower kinetics through the receptors. More mature synapses are dominated by more AMPAR, GluN2A containing NMDAR, and GABAAα1 containing 
GABAA receptors that allow for more LTD in excitatory synapses,127 and faster kinetics through the receptors.
Abbreviations: GABA, gamma-aminobutyric acid; LTD, long-term depression; AMPAR, AMPA receptor; NMDAR, N-methyl-d-aspartate receptor; LTP, long-term 
potentiation. 
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used to assess vision, or the type of patterned visual input 

that a child has experienced.71 For example, visual acuity can 

mature between 5 and 15 years, while contrast sensitivity can 

mature anywhere between 6 and 19 years of age.26,72 While 

some studies suggest that motion perception can mature in 

older children,73–76 others suggest that it continues to improve 

beyond childhood into adolescence and adulthood.34,77–79

Children aged 6–10 years are just beyond the period of 

susceptibility for developing amblyopia65,80,81 that is associ-

ated with the end of the critical period for ocular dominance 

plasticity in animal models.20 Despite this, there is evidence 

for significant visual plasticity at this stage in both children 

with amblyopia and children with normal vision.82–84 The 

neurobiological mechanisms that regulate this experience-

dependent plasticity, including triggers proteins that promote 

neuroplasticity, and brakes that limit it are well studied in 

animal models.5,85,86 

Neurobiological milestones
The expression of some neural plasticity mechanisms peaks 

during this stage of development (Figure 3). These include 

peaks in the expression of the glutamatergic receptor scaf-

folding protein PSD-95 and AMPA receptor subunit GluA2.22 

Peaks in the expression for both of these proteins have been 

linked with ending the critical period for experience-dependent 

plasticity in the visual cortex.58,87 The maturation of those 

proteins is experience-dependent87 and contributes to stabiliz-

ing synapses.88 Furthermore, GluA2 is necessary for a form 

of plasticity, homeostatic synaptic scaling, which regulates 

synaptic strength over fluctuations in synaptic activity.89 The 

homeostatic scaling up or down of AMPAR expression is 

dependent on synaptic activity and cooperates with NMDA-

dependent Hebbian plasticity to refine cortical connectivity and 

promote synaptic stability during the development of V1.90–92 

In human V1, expression of the GABA receptor scaf-

folding protein gephyrin also matures during late childhood 

development (Figure 3).20,24 Gephyrin is directly related to 

the strength and stability of inhibitory synapses93 and this 

peak suggests a developmental balance between excitatory 

(eg, PSD-95, GluA2) and inhibitory synaptic mechanisms.20 

It is interesting to note that the AMPAR subunit GluA2 is 

highly expressed on parvalbumin-positive (PV+) inhibitory 

interneurons,94 and PV+ cell activity regulates critical period 

plasticity.95 It will be important for future experiments to 

address the development of PV+ inhibitory interneurons in 

human V1 to fully understand the maturation of these plas-

ticity mechanisms during this important stage of childhood 

visual development.

Stage 4: prolonged visual 
development in adolescence and 
adulthood (12–55 years)
Visual milestones
A series of studies characterizing visual development have 

shown that “higher-order” visual abilities continue to mature 

through the teen and young adult years (Figure 1). For 

example, global and biological motion34,77,96–98 and spatial 

integration of contours27 mature during adolescence (eg, 

14–15 years of age). Face perception has an even slower pace 

of maturation, with continuous improvements into adulthood, 

as face learning and recognition improve into the third decade 

of life.29,99,100 Expertise in face perception depends on visual 

experience, and abnormal early vision has a “sleeper effect” 

on the development of the neural circuits and perceptual 

processing that support normal face perception.101–103 

Children older than 7 years of age are less responsive to 

amblyopia treatment,104 but some forms of treatment may 

be effective in teens and adults and suggest that plasticity 

persists in the visual cortex.105–107 For example, perceptual 

training for low-level perceptual abilities like contrast sensi-

tivity and letter-recognition can improve the vision of some 

amblyopic patients.108 These training-induced improvements 

are often small and not clinically significant.109 Perceptual 

learning studies have shown that there is plasticity in adult-

hood that can support recovery from amblyopia.110 Adults 

with amblyopia can improve visual acuity with extensive 

perceptual training,111 and succeed in refining contrast 

sensitivity,83 orientation selectivity,112 stereopsis,113 spatial 

discrimination,114 and face learning.115,116

Anatomical milestones
Structural imaging studies of humans show that intracorti-

cal myelin in the visual cortex continues to increase well 

into adulthood, peaking between 30 and 40 years of age 

( Figure 2).117 Anatomical analysis of postmortem human 

visual cortex also indicates the prolonged development of 

cortical myelination that continues into the third decade of 

life.118 Gray matter density mapping shows a slow linear 

decline of cortical thickness with age in the occipital cor-

tex,119,120 and that regression appears to mature sequentially 

across the cortical areas, with primary areas maturing before 

higher-order association areas.121

Neurobiological milestones
Our studies of neuroplasticity mechanisms in human V1 

provide new evidence that many aspects of V1 continue to 
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develop into the adult years (Figure 3). Our findings include 

measures of myelin expression as a brake on plasticity classic-

myelin basic protein [MBP]),122 and of the balance between 

NMDA receptor subunits 2A and 2B that supports plasticity 

when 2B dominates and reduces plasticity when 2A domi-

nates (2A:2B) (Figure 4).123–127 Myelin expression peaks in 

young adults21 and the shift from more 2B to more 2A also 

ends at around 35 years of age.22 Some GABAergic proteins 

also continue developing into adulthood. The enzyme that 

makes the on-demand pool of GABA (GAD65) and the 

GABA
A
α1 receptor subunit continues to increase into adult-

hood (Figure 3).24 Each of these late maturing mechanisms is 

important for regulating neural transmission and plasticity. 

For example, the bidirectional regulation of the 2A:2B bal-

ance can facilitate plasticity when 2B is favored, or reduce 

experience-dependent plasticity when 2A is favored.123–127 All 

of these findings show that the progressive shift in human 

V1 from a very plastic environment in childhood to a less 

plastic environment in adults continues into the third decade 

of life (Figure 3). That pace of neurobiological development 

is much slower than predicted by vision studies or animal 

research.20–22,24

The very slow maturation of human V1 may keep a 

sliver of the plasticity window open that both normal visual 

development and some types of vision treatments can use. 

Stage 5: loss of plasticity 
mechanisms during aging of human 
V1 (>55 years)
Visual milestones
Certain visual losses in aging have been interpreted as part 

of normal aging that changes the receptive field properties 

of neurons in V1 (Figure 1).28 During normal aging, there is 

an increase in the population receptive field size for neurons 

in V1 and in the extrastriate area V2 that serve the foveal 

representations.128 These neural changes and others contribute 

to age-related losses of low-level visual functions like visual 

acuity,129 contrast sensitivity,130 and orientation selectivity.131 

In addition, there are age-related losses for many higher-

order visual perceptions,132 including face perception,99,133–135 

motion processing,136–140 and reading speed.28

There are also acquired causes for age-related vision loss 

that include diseases such as diabetic retinopathy, macular 

degeneration, cataracts, and glaucoma. All of these dis-

eases affect the eye and either directly or indirectly reduce 

retinal functioning either because the cataract has degraded 

the image or the disease has caused degeneration of the 

retina.141 These retinal changes impact the information that 

is  transmitted to the central visual pathway and many stud-

ies have shown changes in the visual areas of the brain.142 

Often, these eye diseases are described as neurodegeneration 

spreading that starts in the eye and progresses to affect the 

visual cortex.143 Thus, it is likely that vision changes in normal 

aging and adult-acquired visual diseases may involve neuro-

degenerative processes in V1 in addition to optical changes.

Anatomical milestones
Aging in the visual cortex is characterized by specific 

microstructural changes (Figure 2). These include significant 

changes in the morphology of pyramidal cell bodies in human 

V1, a loss of dendrite number, and reduced complexity of the 

dendritic arborizations.10 In primate V1, aging changes the 

process of cortical demyelination and remyelination so that 

remyelinated axons have shorter segments and the myelin 

sheaths are less tightly compacted around the axons thereby 

affecting the efficiency of axonal conduction.144–146 In human 

V1, there is a progressive loss of intracortical myelin content 

in the stria of Gennari that begins around 30 years of age and 

continues to decline into the late 90s.147 Some animal studies 

have also found a loss of intracortical inhibition in V1 that 

leads to poor orientation selectivity,148–150 and treating V1 

of old monkeys with the neurotransmitter GABA sharpens 

orientation selectivity of V1 neurons so they are similar to 

the selectivity found in young adults.150

Neurobiological milestones
Our studies of human V1 have found that the expression of 

many synaptic and non-synaptic proteins decreases in older 

adults (Figure 3). There are losses for GAD65, the enzyme 

that makes the on-demand pool of GABA,24 Ube3A, an E3 

ubiquitin ligase that is necessary for experience-dependent 

plasticity,23 classic-MBP that is necessary for normal axonal 

myelination,21 and GluN2A, the mature subunit of the NMDA 

receptor that regulates certain forms of plasticity.22 Not all 

synaptic proteins change on aging; for example, expression 

of the GABA
A
 receptor subunit does not decline.24 Interest-

ingly, most of the proteins that do change shift toward the 

more juvenile-like partner. For example, the age-related loss 

of GluN2A shifts the 2A:2B balance toward more 2B, and 

that may reinstate a more plastic environment.127 Also, the 

loss of classic-MBP shifts the composition of MBP to favor 

the immature oligodendrocyte protein Golli-MBP21 which 

can give rise to various developmental regulated isoforms 

of MBP.151 These shifts toward more juvenile-like neural 

proteins raise the possibility that there is support for a more 

plastic environment in aging. However, not all of the changes 
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point to greater plasticity since there is a loss of Ube3A, a 

protein that is necessary for experience-dependent plastic-

ity in the visual system.152 Perhaps, the age-related losses 

of these important neural proteins reflect an internal drive 

to maintain stable functioning of visual cortical circuits in 

the face of degraded inputs due to optical changes153,154 and 

neurodegenerative processes.143

Conclusions
We have demonstrated lifelong changes in the neurobio-

logical mechanisms found in human V1 that support neural 

development, plasticity, and processing of visual information. 

These changes can be described in five stages: very early 

establishment of mechanisms for E-I transmission; a novel 

stage of variability in young children; maturation of low-

level mechanisms in older children; continued fine-tuning 

through teens and young adults; and age-related losses. How 

far these five stages of V1 maturation will generalize across 

the 20 cortical areas that process visual information remains 

unknown. This is an important question to address, especially 

for developing new cortically inspired treatments for adult-

acquired vision loss, since plasticity in the extrastriate area 

may prove to be important for supporting maintenance or 

recovery of vision caused by a retinal disease.

The first three figures summarize key milestones for 

visual system development and illustrate compelling 

similarities between the timing of visual, anatomical, and 

neurobiological milestones in human V1. Tapping into these 

neurobiological mechanisms is going to be key for the next 

generation of treatments for visual disorders. For example, a 

wide range of potential new therapies has been developed in 

animal models for amblyopia. The treatments include every-

thing from fine-tuning of traditional patching therapy155,156 to 

drug treatments,157 to novel visual stimulation paradigms158 

and visual environments.159–161 Also, it is likely that normal 

age-related changes in human V1 interact with the spread-

ing neurodegeneration caused by diseases like glaucoma. In 

contrast to the excitement from preclinical models, no new 

plasticity-based treatments have crossed the chasm into clini-

cal practice. One of the impediments has been the lack of 

information about neurobiological mechanisms in the human 

visual cortex, but our studies are beginning to fill that gap. 

Although our approach to studying neurobiology in human 

V1 does not provide information about circuitry, synaptic 

function, cellular type, or laminar localization, these data 

are valuable as the first steps for identifying neurobiological 

mechanisms that underlie visual perception and plasticity 

in humans. In addition, these data will help to guide future 

human and animal studies by making it easier to make more 

direct links between the neurobiological developments of V1 

in humans and animal models, that can pave the way for the 

translation of biologically inspired vision treatments.
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