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Abstract: Disruption of energy metabolism, resulting in metabolic illnesses including diabe-

tes, hyperlipidemia, fatty liver, hypertension and atherosclerosis, will likely shorten human life 

expectancy over the next several decades. Past work focusing on diet and exercise needs to be 

continued, but new environmental factors such as exposure to pollutants and the disruption of 

circadian rhythms in modern life urgently need more attention and understanding. This review 

focuses on how environmental pollutants acting through the aryl hydrocarbon receptor (AhR) 

to cause circadian disruption lead to metabolic derangements. AhR-mediated metabolic dys-

regulation in the whole organism, and dysregulation specific to the liver and adipose tissue, will 

be explored. Finally, the role of AhR in circadian desynchrony and resultant effects on energy 

metabolism will be discussed. This review summarizes information vital to future developments 

that can combat metabolic illnesses.

Keywords: aryl hydrocarbon receptor, adipogenesis, glucose metabolism, lipolysis, circadian 

rhythm, insulin sensitivity

Introduction
For the first time in modern medical history, life expectancy is decreasing.1,2 Obesity, 

insulin resistance and obesity-associated illnesses, including metabolic syndrome, 

fatty liver, lipid disorders and cardiovascular disease, are major causes of decreasing 

life span. The Center for Disease Control reports that more than 34.9% of U.S. adults 

are obese,3,4 and estimates associated yearly medical costs at $147 billion dollars.5 

Obesity initiates alterations in adipose tissue, liver and skeletal muscle that affect 

energy metabolism and ultimately promote a systemic insulin resistance that leads to 

development of type 2 diabetes mellitus. Not surprisingly, the rapid worldwide increase 

in obesity has been accompanied by an equally alarming rise in type 2 diabetes, a 

metabolic disorder characterized by increased serum glucose secondary to decreased 

insulin sensitivity. The International Diabetes Foundation estimates that 415 million 

people currently have diabetes with expectations for an increase to 624 million by 2040 

(International Diabetes Federation, 2017 http://www.diabetesatlas.org/).

Although poor diet and lack of physical activity are the most commonly cited 

contributors to the obesity and diabetes pandemics, these factors alone cannot explain 

the alarming rates of increase over the past 40 years. Perhaps the most compelling 

evidence for alternative causes is an increased body weight in wildlife and domestic 

animals living in developed countries.6 Other environmental factors, including exposure 

to environmental chemicals and alterations in sleep patterns, contribute significantly 
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to the emerging problem of obesity, insulin resistance and 

diabetes and are the focus of this review.

Obesogens are molecules that change glucose, lipid and 

protein metabolism, as well as produce changes in feeding 

behavior that lead to development of obesity and its meta-

bolic sequelae.7,8 Certain persistent organic pollutants (POPs) 

are environmental obesogens,9 and epidemiological studies 

link exposure to these molecules with development of meta-

bolic dysfunction.10,11 The relationship is clear for diabetes; 

exposure to air pollution, airborne fine particulate matter 

and nitrogen dioxide increases the prevalence of diabetes.12 

Serum levels of certain POPs are higher in diabetic patients 

in the Canary Islands, Spain, with a positive correlation 

observed between serum dichlorodiphenyldichloroethylene 

and serum glucose levels.13 Low levels of insulin are observed 

in individuals with high serum concentrations of organochlo-

rine pesticides, a type of POPs. Similarly, obesity is more 

prevalent in children whose mothers were smokers during 

pregnancy.14 Lipid disorders are also affected by POPs. Car-

bon monoxide, nitrogen dioxide and sulfur dioxide exposure 

deregulates cholesterol metabolism and reduces high-density 

lipoproteins and apolipoprotein.15 POPs can create liver dys-

function; children exposed to traffic-related air pollution have 

increased concentrations of plasma cytokeratin-18, a marker 

of hepatocellular apoptosis and disrupted liver function.16 

These data suggest a link between exposure to environmental 

obesogens and metabolic dysfunction. Potential mechanisms 

for metabolic dysfunction in response to environmental 

disruptions such as activation of aryl hydrocarbon receptor 

(AhR) by POPs and circadian rhythm disruption are subse-

quently explored in this review.

The AhR
The AhR is an evolutionarily ancient protein that has been 

studied extensively for its function as a primary mediator 

of biological responsiveness to xenobiotics, including obe-

sogenic POPs. Industrially produced AhR ligands are toxic 

chemical contaminants of the global ecosystem, produced 

as by-products of pesticide production, bleaching and com-

bustion processes. Contamination with these compounds is 

widespread throughout the biosphere including air, water, 

fish and mammals. Human studies positively link POPs with 

obesity and metabolic syndrome.17–21

About 90% of human exposure to obesogens occurs 

through diet, primarily consumption of animal fat (U.S. 

EPA, 2004, https://cfpub.epa.gov/ncea/dioxin/recordisplay.

cfm?deid=87843). In addition to toxic pollutants, compounds 

that elicit AhR activity are also found in natural dietary 

products,22–25 including indole metabolites from cruciferous 

plants and flavonoids found in fruits and vegetables.23 Thus, 

AhR can be activated by an array of diverse ligands that can 

be endogenous, naturally occurring and/or anthropogenic.26–28 

AhR may alter metabolic function through its regulation of 

inflammatory cytokine expression, cell cycle signaling and 

interaction with the cellular circadian clock.29–34

AhR is expressed as a cytoplasmic multiprotein 

 complex.35–38 Upon activation by high-affinity ligands, a con-

formational change in the three-dimensional structure of the 

AhR complex exposes a nuclear localization signal.39 Ligand-

bound AhR translocates to the nucleus, releases ligand and 

binds to the aryl hydrocarbon nuclear transporter (ARNT). 

The AhR-ARNT complex binds to specific dioxin response 

elements (DREs) on the DNA22–40 and AhR target genes such 

as cytochrome P450 (CYP1A1) are expressed (Figure 1). 

After target gene activation, AhR is removed from the nucleus 

and degraded by the 28S proteasome.39 Expression of AhR is 

also regulated by an inhibitor, the AhR repressor. While this 

canonical signaling has been identified as a primary mecha-

nism regulating the toxicological responses through AhR, 

alternative signaling events are increasingly being understood 

to mediate the physiological effects of AhR. Both cholesterol 

and fatty acid synthesis are regulated by endogenous AhR 

activity that does not depend on binding to the DRE.41,42 Thus, 

AhR regulates expression of myriad genes through multiple 

mechanisms, including many associated with obesity, lipid 

metabolism and inflammation.41–44

Systemic energy metabolism
AhR activation through POPs and obesogens is linked to 

the development of type 2 diabetes in humans. Exposure to 

the strong AhR activator 2,3,7,8-tetrachlorodibenzodioxin 

(TCDD) is associated with glucose intolerance and hyper-

insulinemia; risk of diabetes is positively correlated with 

TCDD body burden.45–47 Vietnam veterans exposed to high 

levels of Agent Orange causing high AhR activation display 

hyperinsulinemia and increased type 2 diabetes.48

Experimental studies in animal models also demonstrate 

that AhR activation leads to altered energy metabolism and 

obesity. Exposure to obesogens suppresses gluconeogenesis 

and glycogenolysis in mice with a functional AhR; mice 

without significant AhR activity were unaffected.49 C57BL/6.

D2 mice with low-affinity AhR are less susceptible to the 

negative metabolic impacts of high-fat diet (HFD) exposure 

compared to C57BL/6 mice with a high-affinity AhR allele. 

Increased susceptibility to obesity was hypothesized to be a 

result of altered peroxisome proliferator-activated  receptor 
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(PPARα, γ, and δ) signaling pathways that control lipid 

metabolism and homeostasis.43 AhR activation may inhibit 

PPARγ function, leading to insulin resistance.50 Mechanistic 

studies in primary and immortalized mouse embryotic fibro-

blasts isolated from wild-type mice treated with TCDD have 

suppressed adipogenesis, most likely due to deceased activity 

of PPARγ and stearoyl-CoA desaturase type 1. TCDD had no 

effect on fibroblasts isolated from AhR mutant mice.51 AhR-

deficient mice are unaffected by TCDD, even at doses that 

are 10-fold higher than those found to induce pathological 

effects in wild-type littermates, suggesting that the effect is 

dependent on AhR.52

Mice that express a low-affinity AhR allele are less 

susceptible to obesity after exposure to HFD, exhibiting dif-

ferences in fat mass, liver physiology and liver gene expres-

sion compared to mice with high-affinity AhR.43 Similarly, 

germ line AhR null mice have enhanced insulin sensitivity 

and improved glucose tolerance.44 Even mice that express 

only a single AhR allele (AhR+/–), which may in some ways 

be more similar to the mice with the low-affinity allele, are 

resistant to the harmful effects of HFD-induced obesity.30 The 

Ah–/– mice have increased basal metabolic rates, accompanied 

by increased expression of thermogenic genes, including 

uncoupling protein 1 in brown adipose tissue, and elevated 

β-oxidation in skeletal muscle.30 Thus, reduced AhR activity 

may promote enhanced metabolic rate through effects on 

brown adipose tissue and skeletal muscle.

Fibroblast growth factor 21 (FGF21) is a recently discov-

ered hormone with protective properties against metabolic 

disease; working independently from the action of insulin, 

FGF21 promotes glucose uptake, improves lipids metabolism 

and causes increased energy expenditure and weight loss.53 

FGF21 is an AhR target gene whose promoter contains sev-

eral DREs.54,55 In the absence of AhR agonist, liver and blood 

FGF21 levels are higher in mice with liver-specific knockouts 

of AhR, suggesting that endogenous AhR activity suppresses 

FGF21.55 By contrast, TCDD activation of AhR produced 

increased liver FGF21 in mice with a normal AhR, but not in 

AhR null mice. Interestingly, the AhR null mice died within 

20 days, while the wild-type control lived to the end of the 

30-day experiment, supporting the idea that acute AhR acti-

vation and induction of FGF21 is protective.54 Humans with 

metabolic illness such as diabetes often have FGF21 resis-

tance,56 suggesting that FGF21 protection against metabolic 

dysregulation works only for acute insults and is not effective 

in long-term exposure. Transgenic mice with constitutively 

active AhR specific to the liver develop fatty liver, but not 

obesity or diabetes, when placed on HFD; knockdown of  

Figure 1 Canonical AhR signaling pathway. 
Notes: Lipophilic POPs enter into cells and bind to the AhR in the cytoplasm where it is associated with a complex of proteins that include hsp90, p23 and XAP2. After 
binding to POPs, AhR dissociates from its chaperone complex and then translocates into nucleus where it forms a heterodimer with ARNT and binds to DRe elements in the 
promoters of target genes to induce their transcription, including members of the cytochrome P450 family. while expression of the target genes produce phase i metabolizing 
enzymes that attack POPs and degrade them (red arrow), they also produce cytotoxic metabolites that may have harmful effects on cells (green arrows), the blue arrows 
indicate the flow of activity that occurs upon activation of the receptor.
Abbreviations: AhR, aryl hydrocarbon receptor; POPs, persistent organic pollutants; ARNT, aryl hydrocarbon nuclear transporter; DRe, dioxin response element.
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FGF21 in these AhR mice caused them to respond to HFD in 

the same way as their wild-type counterparts.57 In summary, 

both human and animal studies show a strong correlation 

between AhR activity and metabolic illness; the exact mecha-

nisms behind this effect are still incompletely understood but 

may involve FGF21 and PPAR’s working through improved 

glucose uptake and improved lipid and energy metabolism.

Liver energy metabolism
AhR activation affects systemic energy homeostasis through 

perturbations of glucose and lipid metabolism.22,23 AhR acti-

vation often disrupts hepatic glucose and lipid metabolism 

producing disease,54,56–63 while inhibition of AhR is protec-

tive for metabolic illnesses.28,41,55 Beneficial effects of AhR 

activity on liver glucose and lipid metabolism have also 

been shown,41,42,64 demonstrating the need to examine each 

experimental design closely. Effects of species, strain, sex 

and age of animals are likely to be important.65–67

AhR activation by dietary intake can lead to fatty liver. 

Six-week-old male C57BL/6 mice were fed a high methionine 

(2% methionine) diet for 1 and 2 months to induce hyperho-

mocysteinemia. They developed elevated levels of the fatty 

acid transport protein CD36, as well as fatty liver; both the 

increase in CD36 and the fatty liver were blocked by treat-

ment with CH22319, an AhR antagonist, in drinking water at 

10 mg/kg/day showing that the effect was AhR dependent.58

Environmental factors affecting metabolic illness include 

both dietary intake and obesogenic POPs. To study this 

interaction, male C57BL/6 mice (age unspecified) were fed 

a low-fat diet (LFD) containing 20% of total calories as the 

unsaturated fatty acid linoleic acid or HFD containing 40% 

of total calories from linoleic acid for 4 months. After 2 

months of the diet, they were intraperitoneally injected with 

polychlorinated biphenyls-77 (PCB77) (170 μmol/kg) or 

vehicle every 2 weeks for the remaining 2 months. Animals 

fed with the HFD had larger livers than those fed with LFD. 

The mice injected with PCB77 had even larger livers. DNA 

microarray analysis of liver tissue showed alterations in 

many genes related to fatty acid, triglyceride and cholesterol 

metabolism when mice were fed HFD, and PCBB77 had an 

interactive effect with diet.59

Conclusive demonstration that the environmental fac-

tors of diet and obesogenic POPs work together to produce 

liver failure is provided by a recent study designed to mimic 

high levels of human exposure to TCDD. Seven-week-old 

male C57BL/6J mice were fed with LFD (10% fat) or HFD 

(45% fat) for 14 weeks. After 8 weeks, mice received either 

vehicle injections or weekly 5 μg/kg TCDD injections for the 

final 6 weeks. This dosing strategy produced blood levels of 

TCDD in the mice similar to those found in humans follow-

ing industrial accidents with TCDD exposure. The mice fed a 

HFD and treated with weekly TCDD demonstrated more fatty 

liver and fatty acid dysregulation than any of the other groups, 

demonstrating a synergistic effect of HFD and TCDD.60

To more specifically determine if the effects of obeso-

genic POPs act through AhR, wild-type and AhR knockout 

(AhRKO) animals (Bradfield strain) were treated with 

2,3,7,8-tetrachlorodibenzofuran (TCDF) or vehicle. Wild-

type 6-week-old male C57BL/6J mice were fed dough pills 

with TCDF or vehicle for 5 days resulting in a total TCDF 

dose of 5 μg/kg. AhRKO mice were treated the same, except 

that the total dose of TCDF was 24 μg/kg given over 5 days. 

Neither group demonstrated obvious liver problems; on 

pathological examination, mild liver dysfunction was seen 

in wild-type TCDF-treated animals. Metabolomics analysis 

of liver and serum showed that TCDF treatment in wild-type 

mice caused disruption of hepatic lipogenesis, as well as 

altered glucose, fatty acid and amino acid metabolism. There 

was no effect on AhRKO mice who could not process TCDF 

through the AhR.49

By contrast, one study using liver-specific knockdown of 

AhR demonstrated that AhR activity was protective against 

hepatotoxicity from HFD. Liver-specific knockout mice 

were prepared from AhRflox/fox and C57BL/6J mice with Cre 

recombinase gene. The final animals had knockout of AhR 

in liver only. In wild-type mice, HFD induced the expression 

of suppressor cytokines signal 3 (Socs3), which decreases 

inflammation and protects against HFD-induced obesity. 

Specific deletion of AhR in the liver inhibited the expression 

of Socs3 leading to increased susceptibility to HFD-induced 

hepatotoxicity. AhR activation promotes Socs3 expression 

suggesting that Socs3 is the target of AhR activation.64

Several studies have shown that endogenous AhR sup-

presses transcription of genes required for cholesterol and 

fatty acid synthesis through a DRE-independent mechanism. 

Female C57BL/6J mice aged 10–12 weeks expressing total 

body AhRs with low or high binding affinity for ligand were 

examined. Mice with low-affinity AhRs (effectively AhR null 

mice) had higher transcription levels of enzymes required for 

fatty acid and cholesterol synthesis than mice of an identical 

genetic background except that they expressed high-affinity 

AhRs, indicating that endogenous AhR suppresses fatty acid 

and cholesterol synthesis. In addition, female C57BL/6J 

mice aged 10–12 weeks with a liver-specific AhR mutant 

that cannot bind DRE were injected with the AhR agonist, 

β-naphthoflavone. Both the wild-type AhR and the mutant 
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inactive DRE binding AhR demonstrated decreased synthesis 

of fatty acids and cholesterol compared to AhR null mice. 

There was no difference between mice that effectively bound 

to DRE and those that did not, demonstrating that DRE 

binding is not necessary for the action of AhR in regulating 

enzymes responsible for fatty acid and cholesterol synthe-

sis.41,42 These studies indicate that environmental factors such 

as diet and pollutants act together to affect liver function.

Adipose tissue and lipid metabolism
Lipophilic obesogenic POPs accumulate in fat-rich tissues 

and are resistant to metabolism.61 Thus, it is not surprising 

that adipose tissue would be a primary target mediating 

the effects of POPs on metabolism through AhR. Although 

once considered simply a storage organ for excess nutri-

ents, white adipose tissue is now recognized as a critical 

endocrine regulator of systemic metabolism. Both obesity 

and lipodystrophies cause insulin resistance, highlighting 

the importance of proper adipose tissue mass and function 

in systemic metabolism.62,63,68 Adipose tissue regulates food 

intake, contributes to systemic insulin sensitivity and controls 

serum lipid levels.

Adipose tissue expansion through the formation of new 

adipocytes (adipogenesis) promotes insulin sensitivity in the 

face of obesity. By contrast, adipocyte cell expansion (hyper-

trophy) leads to lipid overloading and aberrant adipokine 

production, which likely produces systemic insulin resis-

tance.69–71 Activation of AhR within adipose tissue generally 

inhibits adipogenesis, attenuating the production of new adult 

adipocytes, and impedes lipolysis, reducing the release of free 

fatty acids into the blood. AhR regulates cell proliferation and 

differentiation of mesenchymal stem cells and preadipocytes 

within adipose tissue. AhR activation by TCDD treatment 

suppresses differentiation of preadipocytes; depletion of 

nuclear AhR restores preadipocyte  differentiation.72,73 AhR 

protein is downregulated when preadipocytes differentiate 

into mature adipocytes.

Together, this evidence suggests that AhR activity nega-

tively regulates adipogenesis, increasing susceptibility to 

metabolic illnesses. These effects are likely mediated through 

downregulation of PPARγ and stearoyl-CoA desaturase type 

151 and higher activity of p42/p44 MAP kinase. AhR stabi-

lizes activity of the retinoblastoma family member, p107, 

which binds to PPARγ. Ultimately, both MAPK kinase 

activity and p107 suppress PPARγ activity, thereby inhibit-

ing adipogenesis. Activation of PPARγ with troglitazone, 

ciglitazone and indomethacin overcomes the inhibition of 

differentiation imposed by overexpression of AhR.74,75

AhR has different effects on several cellular activities 

to inhibit adipogenesis. TCDD works synergistically with 

extracellular signal-regulated kinase to decrease PPARγ 

activity. The AhR antagonist 3V-methoxy-4V-nitroflavone 

blocks TCDD-induced Cyp1B1 activation and eliminates 

TCDD-induced PPARγ inhibition.76,77 In the C3H10T1/2 

(pluripotent mouse mesenchymal stem cell) culture line, 

TCDD blocks the differentiation effects of inducers; micro-

array studies suggest that this inhibition of differentiation 

into adipocytes may be mediated through TCDD effects on 

cell adhesion-linked signaling pathways.78 TCDD inhibits 

differentiation of mouse embryonic fibroblasts into adipo-

cytes by increasing levels of known regulators of cellular 

differentiation, CCAAT/enhancer-binding protein (C/EBPβ 

and C/EBPδ), in a tyrosine kinase c-Src-dependent man-

ner.79 AhR cooperates with nuclear factor (erythroid-derived 

2)-like 2 (NRF2) to inhibit adipogenesis, since activation or 

overexpression of AhR in NRF2-deficient cells decreases 

adipogenesis.80

In toxicological studies, downstream effects of AhR acti-

vation can sometimes differ depending on the nature of the 

AhR ligand. However, suppression of adipogenesis by AhR 

activation occurs in response to a variety of AhR ligands. 

Mycelial extract of Cordyceps militaris and benzo[a]pyrene 

(BaP) activate AhR and inhibit adipogenesis in cultured 

mouse 3T3L1 cells, which have a fibroblast morphology, but 

can differentiate into an adipocyte phenotype. AhR inhibition 

of adipogenesis in 3T3L1 cells occurs through decreasing 

PPARγ and C/EBPα. Dominant-negative inhibition of AhR 

blocks these effects.75 H Mycelial extract of C. militaris 

inhibits mammalian target of rapamycin complex 1 signal-

ing pathway via inhibition of AKT leading to a decrease in 

the expression of C/EBPb and PPARg.81,82 Thus, the inhibi-

tory effects of AhR on adipogenesis are multifactorial and 

complex.

In a cell line derived from human subcutaneous fat tissue 

of a non-diabetic donor, obesogenic POPs decreased adipo-

genesis. These effects were blocked by the AhR antagonist 

CH223191.83 BaP inhibits adipogenesis in mesenchymal 

stem cells derived from human bone marrow by decreasing 

the expression of fatty acid binding protein 4 and glycer-

aldehyde-3-phosphate dehydrogenase (GAPDH); the AhR 

antagonist α-naphthoflavone blocks these effects.84 The AhR 

agonist indole-3-carbinol decreases lipid accumulation and 

expression of NRF2, hormone-sensitive lipase (HSL) and 

GAPDH in mature adipocytes.85 Taken together, these data 

demonstrate the importance of AhR activation by a wide 

variety of agonists in regulating adipogenesis. Inhibition of 
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adipogenesis by AhR activation decreases the overall numbers 

of adipocytes available for storing fat.

AhR also affects the lipolysis function of mature adi-

pocytes. Lipolysis functions as an important regulator of 

systemic energy homeostasis by providing the body with free 

fatty acids during fasting and exercise. Defective lipolysis 

disrupts systemic metabolic processes.86,87 Adipose triglyc-

eride lipase (ATGL), HSL and monoglyceride lipase (MGL) 

are key enzymes that regulate this process. ATGL initially 

hydrolyzes triacylglycerols to produce diacylglycerols 

(DAGs) and free fatty acids. HSL hydrolyzes DAGs to pro-

duce monoacylglycerols (MAGs). Finally, MAGs are broken 

down to glycerol and non-esterified fatty acids by MGL.88–90

Activation of AhR by the agonist β-naphthoflavone inhib-

its expression of lipolysis genes in differentiated 3T3-L1 adi-

pocyte cultures (Khazaal and Tischkau, unpublished results) 

and suppresses lipolysis. BaP suppresses β-adrenoceptor 

agonist-induced lipolysis in adipose primary explants from 

mice and humans. In male C57BL/6J mice, weighing 20–22 g 

(11 weeks), chronic injection of BaP (0.5 mg/kg every 2 days) 

for 15 days increased body weight and fat mass, although 

the food intake was similar.91 However, Hsu et al found that 

TCDD has no effects on lipolysis in 3T3-L1 cells. This may 

be because they used the wrong time point. They measured 

glycerol content in media of fully differentiated cells treated 

with TCDD for 3 days or shortly after addition of TCDD.75

AhR activation may also increase inflammation in adi-

pose tissue. Administration of obesogenic POPs increases 

tumor necrosis factor-α (TNFα) expression in white adipose 

tissue, which may lead to impaired glucose tolerance in lean 

and in obese mice.92 Selective ablation of AhR in adipose 

tissue abolishes the negative effects of POPs on obesity, 

inflammation and glucose intolerance.93 TCDD activation 

of adipocytes leads to insulin resistance through TNFα.94 

Collectively, these data demonstrate that lipophilic adipo-

genic POPs accumulate in adipose tissue where they activate 

AhR. Activated AhR in adipose tissue inhibits adipogenesis, 

thereby reducing the overall number of fat cells available 

to store lipids. AhR activation inhibits lipolysis, reducing 

the ability of adipocytes to break down stored triglycerides 

into free fatty acids. Finally, AhR activation in adipocytes 

promotes an inflammatory response in adipose tissue, which 

contributes to the development of insulin resistance. When 

combined with long-term exposure to excess energy (HFD), 

the reduced number of fat cells with impaired ability to 

breakdown lipids may become over-burdened with lipid, 

which may subsequently promote local inflammation, lead-

ing to insulin resistance (Figure 2).

Figure 2 AhR regulates body metabolism through actions in the liver and adipose tissue. 
Notes: AhR activation by POPs and/or high-fat diet directly targets certain genes controlling glucose and lipid metabolism in the liver and adipose tissue, thereby directly 
contributing to the development of metabolic disorders. in adipose tissue, AhR activation targets adipogenesis and lipolysis, acting to inhibit both processes. in adipose 
tissue, AhR suppresses mTORC, which decreases AKT activity and inhibits PPARγ levels, ultimately leading to decreased differentiation of pre-adipocytes. The reduction in 
adipocyte numbers provides fewer adult adipocytes for capturing lipids. Under HFD conditions, adipocytes become hypertrophied and ultimately overwhelmed; lipid then 
accumulates in other organs and adipose tissue becomes inflamed. In the liver, AhR activation promotes CD36, which enhances lipid uptake by the liver. AhR activation also 
suppresses PPARα, leading to decreased β-oxidation and FA metabolism. Finally, AhR may regulate FGF21, which has a role in regulation of systemic metabolism through 
effects on adipose tissue function.
Abbreviations: AhR, aryl hydrocarbon receptor; POPs, persistent organic pollutants; mTORC, mammalian target of rapamycin complex; PPAR, peroxisome proliferator-
activated receptor; HFD, high-fat diet; FA, fatty acid; FGF21, fibroblast growth factor 21; C/EBP, CCAAT/enhancer-binding protein; ATGL, adipose triglyceride lipase; DAG, 
diacylglycerol; HSL, hormone-sensitive lipase; MAG, monoacylglycerol; MGL, monoglyceride lipase; TG, triglycerides; FFA, free fatty acids; TAG, triacyl glycerol.
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AhR, circadian rhythms and metabolism
Alteration of circadian rhythm, specifically inhibition of 

the clock genes Period 1 (PER1)31 and Rev-erba (Sun and 

Tischkau, unpublished results), may contribute to metabolic 

dysfunction by AhR activation. Controlled by a master clock 

in the hypothalamic suprachiasmatic nucleus (SCN), the cir-

cadian timing system has emerged as an important regulator 

of systemic energy metabolism.95 The SCN provides sympa-

thetic and parasympathetic input to the liver and pancreas96 

to regulate hepatic glucose production and insulin release, 

respectively.97 Glucocorticoids and melatonin are hormonal 

signals that also contribute to clock regulation of systemic 

metabolism.98–101

At the cellular level, circadian clock genes regulate 

energy balance and metabolism. Mutations or deletion of 

certain clock genes, including Circadian Locomotor Output 

Cycles Kaput (CLOCK), PERs and cryptochromes, promote 

obesity, elevated blood glucose and insulin resistance.102–105 In 

humans, PER2 mutations are associated with elevated fasting 

blood glucose, supporting the link between clock genes and 

metabolic syndrome.106 By contrast, liver-specific deletion of 

the clock gene brain muscle ARNT-like protein 1 (BMAL1) 

produces hypoglycemia, enhanced glucose clearance and 

loss of rhythmic expression of glucose regulatory genes.107

Disrupted circadian rhythms, as commonly occur in 

human shift workers, are associated with glucose dysregu-

lation, obesity and metabolic syndrome.108,109 Experimental 

shift work models support the effects of circadian desyn-

chrony on metabolic disruption.110,111 Alteration in light/dark 

cycles in rodent studies suggests that internal desynchrony 

results from the SCN’s rapid shift to align with light/dark 

cycles, but peripheral clocks becoming uncoupled due to 

increased food intake during the inactive period.111,112 This 

type of internal desynchrony is consistent with the effects of 

AhR activation on circadian clock function, thereby providing 

an interesting piece of the mechanism by which both AhR 

and the clock may interact.

AhR and its partner ARNT as well as core circadian 

clock genes, CLOCK and BMAL1, are all members of the 

PAS domain-containing family of transcriptional regula-

tors.113 Reciprocal crosstalk between AhR signaling and 

circadian rhythms has been established.114 AhR expression 

is controlled by the circadian clock, likely through CLOCK/

BMAL1 binding to E boxes in the AhR promoter.115 AhR, 

ARNT and a number of drug-processing genes are rhyth-

mically expressed;116–119 AhR rhythmicity is abolished in 

CLOCK-mutant mice.120 AhR, CYP1A1 and CYP1B1 levels 

are increased, yet expression is arrhythmic in PER1 and PER2 

mutant mice.121–123 Conversely, activation of AhR by TCDD 

leads to alterations in PER1, PER2 and BMAL1 expression 

and reduces the ability of the circadian clock to respond to 

changes in the light/dark cycle.114,119,121–128 Moreover, AhR can 

directly interact with BMAL1 to attenuate PER1 expression 

due to decreased binding of CLOCK-BMAL1 to E-box of 

PER1 promoter.129 PER1 expression and rhythm is higher 

in AhRKO mice than wild-type mice suggesting that these 

mice had higher response to the light.31

Interestingly, like the shift work studies, chronic activa-

tion of AhR alters clock function in peripheral metabolically 

important tissues, while the master clock in the SCN remains 

aligned with the light/dark cycle.129 Systemic activation of 

AhR by treatment with TCDD suppresses the amplitude and 

delays the peak of PER1 expression in the liver. Activated 

AhR can interact with BMAL1 to suppress E-box derived 

transcription of the PER1 gene. PER1 rhythms in the SCN 

of these same animals were relatively unaffected by TCDD.31 

It is likely that the PER1 rhythm was retained in the SCN 

due to reduced expression of AhR in this tissue and the over-

riding effects of light in maintaining strong rhythms in the 

primary clock. However, a shift of liver rhythms creates an 

internal desynchrony that may underlie the development of 

metabolic syndrome that is common to both shift work and 

chronic AhR activation.

Studies in AhR-deficient mice support the coopera-

tion between AhR signaling and the clock in regulation of 

metabolism. AhR activation suppresses rhythmicity in wild-

type AhR-sensitive strains of mice.129 Mice with germline 

deletion of one or both AhR alleles have increased circadian 

rhythm amplitude and increased responsiveness to changes 

in the light/dark cycle indicative of enhanced robustness 

of their circadian clock.31,125,126,129–131 Whereas a HFD usu-

ally dampens circadian rhythms in metabolically important 

tissues, AhR-deficient animals retain robust circadian 

rhythmicity under HFD conditions.30 Although these stud-

ies have not established cause and effect, they support the 

hypothesis that robust rhythms are important for metabolic 

health and that AhR interacts with the clock to deregulate 

energy metabolism.

Conclusion
AhR activation may contribute to obesity and downstream 

metabolic disorders. AhR regulates expression of myriad 

genes,132 including many associated with obesity, lipid 

metabolism and inflammation.43,44 Understanding AhR-

dependent mechanisms that contribute to metabolic homeo-

stasis will provide a more holistic understanding regarding 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Journal of Receptor, Ligand and Channel Research 2018:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

20

Khazaal et al

 environmental factors that contribute to worldwide pandemics 

in obesity and metabolic dysfunction. Therapies to address 

these important global problems are not as simple as fixing 

diet and encouraging exercise. This review highlights how 

complex environmental signals, including light/dark cycles 

and chemical exposure contribute to metabolic health. Altered 

circadian rhythms, through changes in light/dark cycles, 

HFD and/or exposure to AhR-activating chemicals, promote 

metabolic dysfunction. Inhibition of AhR or its downstream 

signals may provide new targets for combatting these prob-

lems. AhR inhibition or silencing protects from the metabolic 

consequences of rhythm disruption (Figure 3).30,44,130

Interestingly, adipose tissue has emerged as an important 

site regulating whole-body energy metabolism. Many chemi-

cals that activate AhR are lipophilic and aggregate within 

adipose tissue. However, a recent study demonstrated that 

altered rhythms in one tissue can lead to disrupted function 

of other tissues.133 AhR is highly expressed in adipose tis-

sue and appears to regulate important adipocyte functions, 

including adipogenesis and lipolysis. As lipolysis is highly 

controlled by the circadian clock, future studies will examine 

interactions of AhR with the clock during this physiological 

process. A better understanding of clock/AhR interactions 

may provide novel therapeutic approaches to combat obesity 

and metabolic syndrome.
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