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Abstract: Cancer stem cells are a small population of cells with the potential for self-renewal 

and multi-directional differentiation and are an important source of cancer initiation, treat-

ment resistance, and recurrence. Epithelial–mesenchymal transition (EMT) is a process in 

which epithelial cells lose their epithelial phenotype and convert to mesenchymal cells. 

Recent studies have shown that cancer cells undergoing EMT can become stem-like cells. 

Many kinds of tumors are associated with chronic inflammation, which plays a role in 

tumor progression. Among the various immune cells mediating chronic inflammation, mac-

rophages account for ~30%–50% of the tumor mass. Macrophages are highly infiltrative in 

the tumor microenvironment and secrete a series of inflammatory factors and cytokines, such 

as transforming growth factor (TGF)-β, IL-6, IL-10, and tumor necrosis factor (TNF)-α, 

which promote EMT and enhance the stemness of cancer cells. This review summarizes 

and discusses recent research findings on some specific mechanisms of tumor-associated 

macrophage-derived cytokines in EMT and cancer stemness transition, which are emerging 

targets of cancer treatment.

Keywords: macrophage, cancer stem cell, tumor immunology, inflammatory cytokine, tumor 

microenvironment

Introduction
Cancer is a malignant disease with a high mortality that causes a significant burden 

to the society. Data have shown that up to 14.1 million people are likely to develop 

cancer annually starting in 2014, which has increased from ~10 million in the year 

2003. In both developed and developing countries, cancer ranks second in mortality 

behind cardiovascular diseases.1,2 Although substantial progress has been made in 

cancer treatments, major challenges remain, such as tumor recurrence, metastasis, 

and resistance after conventional treatment. Recent development of cancer stem cell 

(CSC) theory implies that CSCs within the tumor ultimately lead to cancer recurrence 

and metastasis causing patient mortality.3 Traditional therapies can only eliminate 

treatment-sensitive cancer cells; however, CSCs survive due to treatment resistance 

and divide into offspring cells, resulting in rapid cancer recurrence. It is known that 

cancer progression is involved with chronic inflammation, a complex process due to 

interactions between various immune cells and inflammatory factors. Macrophages are 

one of the main infiltrating immune cells in chronic inflammation, secreting inflam-

matory factors and cytokines and influencing tumor angiogenesis and metastasis, 

particularly in CSCs.
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Tumor inflammatory 
microenvironment
Tumor cells and their peripheral microenvironment have 

been likened to the relationship between “seeds and soil”, 

a proposition first proposed by Stephen Paget in 1889.4 The 

components that constitute the “soil”, which in total are 

called the tumor microenvironment (TME), are extremely 

complex, and only some of them are understood, despite 

extensive research. The known elements include tumor cells, 

fibroblasts, inflammatory mediators, immune cells, reactive 

oxygen species, and tumor-associated cytokines, among 

others.5,6 In addition, most cancer patients have a history of 

specific virus or bacterial infection; therefore, TMEs contain 

microorganism-related proteins, such as HBX protein in 

hepatocellular carcinoma (HCC) and the highly abundant 

tumorigenic proteins cagA and VacA toxins expressed by 

Helicobacter pylori in gastric cancer.7,8

As previously demonstrated, gene mutations and epige-

netic alterations fundamentally trigger tumor initiation and 

progression. However, scientists have found that the TME 

plays a non-negligible role in tumor invasion, angiogenesis, 

and epithelial–mesenchymal transition (EMT; Table 1).

Tumor-associated macrophages
The macrophages that infiltrate the TME are defined 

as tumor-associated macrophages (TAMs). TAMs are one 

of the most important immune cells in the TME, which act 

as a bridge connecting the inflammatory microenvironment 

and the malignant phenotype of tumor cells. Certain cytok-

ines derived from tumor cells and the TME such as CSF-1, 

chemokine (C-X-C motif) ligand 12, and CCL2/MCP-1 

recruit mononuclear cells into the TME and activate them 

to become TAMs.21,22

Macrophages are highly plastic and can be activated 

into two polarized states through two pathways stimulated 

by different cytokines and chemokines from the TME. The 

Th1 cytokines such as LPS, IFN-γ, and tumor necrosis 

factor (TNF)-α induce macrophages into the M1 polarized 

state, which plays a role in promoting inflammation and 

antitumor activity, while M2-TAMs polarized by IL-4 and 

IL-13 function opposite to the M1 type in immunosuppres-

sion and anti-inflammation response.23–26 Macrophages are 

abundant in multiple cancers compared with adjacent tissues, 

and their number positively correlates with cancer stage and 

poor prognosis, so M2-TAMs can be regarded as cancer-

promoting cells.27–29 TAMs play an indispensable role in 

the TME by secreting inflammatory factors that mediate the 

inflammatory microenvironment to regulate proliferation, 

metastasis, angiogenesis, immunosuppression, and EMT of 

various cancers (Table 2).

CSCs
CSCs are a small population of cells within tumors that were 

first found in human acute leukemia nearly 2 decades ago. 

They have the potential for self-renewal, differentiation, and 

unlimited proliferation and may divide into a series of hetero-

geneous cancer cell types resulting in cancer recurrence and 

treatment resistance.43 The CSC theory proposed that CSCs 

cause tumor treatment failure by acting as progenitor cells 

that survive conventional treatment, and thus, cancer can be 

completely cured only by eliminating CSCs.

The origin of CSCs has generated much controversy, and 

there is still no consensus. Some researchers have argued 

that CSCs may be derived from normal stem cells or highly 

differentiated progenitor cells that have dedifferentiated.44 

Another view on the origin of CSCs is called the cell fusion 

theory. In this scenario, fusion genes such as CD74-NRG1, 

FOXF1, and SYT-SSX are generated after tumor cells fuse 

with bone marrow-derived progenitor cells, including 

hematopoietic stem cells and mesenchymal stem cells or 

Table 1 Influence and mechanisms of components in the TME of cancer cells

Components or factors in TME Effects on cancer or cancer patients References

Cancer-associated fibroblasts Radiosensitivity 9
CXCL12 expression 10
High autophagic activity 11
eMT 12

extracellular matrix eMT 13
Type i collagen, likely contributes to bladder cancer progression 14
MMP-2 and MMP-9 degrading collagen type iv 15

Hypoxia condition Angiogenesis 16 and 17
immune cells immune escape 18 and 19

Shorter survival or worse prognosis 20

Abbreviations: TMe, tumor microenvironment; CXCL12, chemokine (C-X-C motif) ligand 12; eMT, epithelial–mesenchymal transition.
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mononuclear cells from the TME, transforming various kinds 

of tumor cells into CSCs.45–50 Cancer cells after cell fusion 

retain the ability of invasion and metastasis but have also 

acquired the potential for self-renewal and other stem-like 

characteristics. What has been confirmed is that CSCs are 

not like somatic stem cells or embryonic stem cells (ESCs), 

which exist in the body, but are acquired like tumor cells by 

tumorigenic factors, implying that the relationship between 

TME and CSCs is critical. What, if any, molecules from the 

TME promote the stemness transition?

Markers of CSCs
CSCs share some common surface markers with normal stem 

cells, such as CD133, CD44, and CD99.51,52 ESC nuclear 

transcription factors such as SOX-2, Oct3/4, Klf-4, Nanog, 

and c-Myc are also regarded as CSC markers.53–55 One study 

showed that even Nestin, a specific marker of neural stem 

cells, can be used to identify CSCs.56 These markers can be 

utilized not only to identify and isolate CSCs but also to 

predict treatment efficacy in the clinic, shedding light on how 

CSCs contribute to poor survival and tumor progression.55 

The markers shared between CSCs and normal stem cells 

imply that there are some similar biological characteristics 

between them, such as self-renewal and endless proliferation, 

under the suitable conditions.

TAM-induced eMT of cancers
EMT is a process by which epithelial cells lose the tight 

junctions between cells and gain an elongated, fibroblast-

like morphology similar to mesenchymal cells, along with 

downregulation of epithelial markers (E-cadherin, occludins, 

and claudins) and upregulation of mesenchymal markers 

(vimentin, fibronectin, and N-cadherin).57,58 It is widely 

associated with human embryonic development,59 wound 

healing or tissue repair,60 and angiogenesis.61,62

Evidence shows the ability for metastasis and invasion 

of cancer cells after EMT is remarkably enhanced, and these 

mesenchymal-like cells are strongly resistant to targeted 

drugs or radio- or chemotherapy.63–65 Tumor cells after EMT 

express high levels of stem surface markers, indicating that 

these cells have become stem-like cells.66–68 One interesting 

study revealed that breast CSCs originate from the fusion 

of M2-TAMs and breast cancer cells; these hybrid cells 

overexpress mesenchymal-associated genes and stemness 

Table 2 Specific mechanisms of tumor invasion and progression triggered by TAMs

Tumor type Malignant phenotype Specific mechanisms References

Breast cancer Lymph node metastasis, invasion, poor 
prognosis, increased adhesion to blood 
and lymphatic endothelial cells, and 
angiogenesis

TAMs secret COX-2, inducing MMP-9 
expression, promoting eMT, and promoting 
M2 macrophage polarization

26

CCL18 released from TAMs promotes 
angiogenesis

30

HCC increased migration and invasion ability 
and apoptosis inhibition

TAM-derived iL-6 activates the STAT3 
pathway, subsequently activating anti-apoptotic 
genes and cell cycle promoting genes

31

Macrophage-derived iL-8 induces eMT via 
activating the JAK2/STAT3/Snail pathway

32–34

Gastric cancer immune escape; eMT Macrophage-derived TGF-β1 impairs NK-cell 
function

35 and 36

Colon cancer Lymphatic metastasis, histological types, 
and TNM stages

TAMs markedly induce HiF-1α and Sema4D 
expression in colon cancer cells

37

Ovarian cancer Angiogenesis Upregulation of iL-8 expression in ovarian 
cancer cells induced by macrophages

38

Mucoepidermoid 
carcinoma

increased migration and invasion ability TAMs are correlated with microvessel density 
and veGF-A expression

39

BCC increased depth of invasion, microvessel 
density, and COX-2 expression

Macrophages induce BCC cells to release 
MMP-9, veGF-A, and bFGF

40

Lung cancer increased PD-L1 expression TAM-derived iFN-γ activates JAK/STAT3 and 
Pi3K/AKT signaling pathways

41

Lymph node metastasis and pleural 
invasion

TAMs secrete iL-10 and cathepsin B 42

Abbreviations: TAM, tumor-associated macrophage; eMT, epithelial–mesenchymal transition; HCC, hepatocellular carcinoma; TGF, transforming growth factor; NK, natural 
killer; BCC, basal cell carcinoma.
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markers.48 Therefore, it can be said that tumor cells after 

EMT are likely becoming CSCs to some extent.

Factors that induce EMT come from the TME. These 

signals include aberrant expression of microRNAs, abnormal 

expression of hormone receptors, and factors secreted by 

cancer-associated stromal cells and fibroblasts, which are 

all involved with stem-like transition triggered by EMT.69–72 

Macrophages secrete various soluble cytokines and inflam-

matory mediators that are not only involved in tumor angio-

genesis, matrix degradation, and invasion but also promote 

conversion of cancer cells into stem-like cells, resulting in 

tumor recurrence and metastasis (Figure 1).12

Major cytokines derived from TAMs 
in EMT and CSCs
Transforming growth factor (TGF)-β
The TGF-β family is a group of extracellular growth factors 

that includes TGF-βs, activins, and bone morphogenetic 

proteins (BMPs) that regulate growth, migration, angiogen-

esis, and immune responses of cancer.73 TGF-β has a dual 

effect on tumor behavior. It plays an anticancer role by sup-

pressing tumor proliferation, inducing apoptosis, and promot-

ing cancer cell differentiation into normal cells but changes 

its role to become a “catalyst” of cancer progression in the 

later stages.74 However, the body produces compensatory 

TGF-β that stimulates angiogenesis and immunosuppression 

and enhances cell mobilization once cancer cell resistance 

to the suppressive effects of TGF-β occurs.

TGF-β is the main inflammatory mediator in TME and 

participates in cell EMT and cancer stemness transition. 

Treatment of Hep3B or PLC/PRF/5 HCC cells by recom-

binant TGF-β promotes EMT along with expression of 

stemness-related markers CD44, EpCAM, and CD133.75–77 

In HCC tumor specimens, the density of CD68+ TAMs is 

positively correlated with EpCAM+ tumor cell distribu-

tion; TGF-β1 secreted by M2-TAMs promotes EMT of 

Figure 1 The interaction between TAM-derived cytokines and cancer cells promotes eMT and stemness.
Notes: CCL2, CSF-1, MCP-1, and CCL-12 derived from tumor inflammatory microenvironment recruit monocytes to form macrophages. Then, IL-10, IL-4, TGF-β, and 
iL-13 polarize macrophages into M2 type secreting TGF-β, iL-6, TNF-α, as well as iL-10 that promote eMT and enhance the stemness of cancer cells, resulting in cancer 
recurrence, organ metastasis, and treatment resistance.
Abbreviations: TAM, tumor-associated macrophage; eMT, epithelial–mesenchymal transition; TGF, transforming growth factor; TNF, tumor necrosis factor; CSC, cancer 
stem cell.
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Hepa1-6 cells to become stem-like cells.78 In brain tumors, 

heat shock protein-47 enhances high-level TGF-β expression, 

which induces the TGF-β pathway to promote EMT and 

stemness in glioblastoma.79 Ye et al80 found that the invasive 

front of glioma contains abundantly infiltrating TAMs and 

CD133+ glioma cells in both surgical resections and animal 

xenografts. These TAMs secrete immunosuppressive factors 

such as IL-10, and TGF-β1 in turn polarizes macrophages into 

the M2 type. The hypoxic microenvironment in the center of 

a tumor could induce stemness-associated transcription fac-

tors by enhancing TGF-β1 expression, resulting in regulatory 

T-cell and macrophage infiltration into the TME.81

iL-6
IL-6 is a multifunctional proinflammatory cytokine in serum 

and tissues and plays a key role in both acute and chronic 

inflammatory responses in autoimmune diseases,82 cardio-

vascular diseases,83 and cancers.84,85 IL-6 in the TME may 

originate from bone marrow-derived myofibroblasts,86 

mesenchymal stem cells,87 mesenchymal stromal cells,88 

and/or CD4+ T cells.89 However, the main source of IL-6 is 

TAMs, and it is closely connected with tumor progression and 

invasion by inducing lymphangiogenesis and EMT.90–92 The 

concentration of IL-6 in patient serum is related to advanced 

tumor stage and overall survival time, and it has potential as 

a biomarker to evaluate prognosis before surgery.93

IL-6 and CSCs mutually influence each other. Macrophage-

derived IL-6 activates the STAT3 signaling pathway, increas-

ing CD44+ HCC cells and enhancing sphere formation when 

HCC cells are cocultured with macrophages.94 In breast 

cancer, IL-6 activates the STAT3 pathway and its target 

genes, such as TGF-β1 and HIF-1α, to increase the propor-

tion of CD44+/CD24− cancer stem-like cells during chemo-

therapy-induced apoptosis.95 There is a positive feedback 

loop between IL-6 and CSCs; CD133+ glioma stem cells 

but not bulk glioma cells induce microglial IL-6 secretion 

through MyD88-TLR4 signaling in macrophages, which in 

turn promotes glioma stem cell enlargement.96

Lung cell malignancies triggered by chronic inflammation 

caused by toxic cigarette extract have elevated IL-6 expres-

sion that promotes EMT and CSC formation through the 

STAT3 pathway.97 Moreover, increased IL-6 induces EMT 

through the COX-2/PGE2 pathway and promotes tumor cell 

invasion by activating β-catenin during interactions between 

macrophages and lung cancer cells.94

iL-10
IL-10 is derived from not only leukocytes but also normal and 

malignant epithelial cells in hypoxic conditions.98 However, 

concentration of macrophage-derived IL-10 is almost 

10-fold greater than that from leukocytes within the tumor,99 

playing a role in immunosuppression in tumors, which is 

related to tumor drug resistance,100 cellular growth, and 

proliferation.42,101 IL-10 inhibits both CC and CXC chemok-

ines that are indispensable for activation or recruitment of 

monocytes, dendritic cells, and neutrophils. In addition, IL-10 

directly inhibits cytokine production, CD4+ T-cell prolifera-

tion, and T-cell cloning.102

EMT is also triggered by IL-10. Tumor cells cocultured 

with macrophages go through EMT in an IL-10-dependent 

manner.103,104 IL-10 expression is elevated when M2-TAMs 

are cocultured with pancreatic cancer cell lines such as 

PANC-1 and BxPC-3, causing the EMT of cell lines through 

the TLR4/IL-10 signaling pathway combined with enhancing 

of CD133 and CD44, which suggests that IL-10 is the key 

element in these changes.105

In HCC, hypoxic stress induces the cells to release 

Netrin-1, resulting in EMT and a high-level of IL-10 

expression,106 which may synergistically participate in the 

promotion of CSCs. HIF-1α in a hypoxic environment in the 

HCC mouse model drives hepatocytes to secrete IL-10, which 

activates tissue-resident macrophages to polarize toward the 

M2-TAM phenotype, a positive feedback enhancing tumor 

evolution.107 These studies together demonstrate that in an 

inflammatory microenvironment, IL-10 derived from TAMs 

or tumor cells plays a role in mediating EMT directly or indi-

rectly, which may enhance tumor cell stemness transition.

TNF-α
TNF is a superfamily of proinflammatory cytokines involved 

in various inflammation responses, including rheumatoid 

arthritis and cardiovascular disease, in part through activation 

of the nuclear factor-kappa B (NF-κB) pathway.108 TNF-α is 

chiefly released by host innate immune cells, including acti-

vated macrophages, T lymphocytes, and natural killer (NK) 

cells in tumors. Other cells including fibroblasts, smooth 

muscle cells, and tumor cells also secrete a small quantity 

of TNF-α.109,110 TNF-α is a critical inflammation mediator 

in the TME and exerts its antitumor activity by promoting 

inflammation and immune response, host defense, tumor cell 

apoptosis, and tumor vasculature destruction.111,112 However, 

some recent studies have found that TNF-α plays a com-

pletely reversed role in tumor progression and is involved in 

tumor migration,113 metastasis,114 angiogenesis,115 and nega-

tive regulation of immune homeostasis.116 The mechanism 

of these double-edged effects has not been fully elucidated, 

and they depend on the distribution of TNF-α receptors, the 

tumor stage, and the tumor type.117–120
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TNF-α in the microenvironment promotes EMT of various 

tumor cells and CSC transition in addition to tumorigenesis 

as discussed earlier.121–123 Mikami et al124 found that in clear 

cell renal cell carcinomas (ccRCC), TNF-α is significantly 

correlated with CD44+ cancer cells in late-stage patients, 

inducing ccRCC progression and sunitinib resistance through 

EMT. Murine mammary carcinoma cells show EMT along 

with a high proportion of CD24-/lowCD44+ phenotypes, 

when they are exposed to TGF-β/TNF-α in vitro.125 In that 

study, even the withdrawal of TGF-β/TNF-α from the condi-

tioned medium did not completely reverse the mesenchymal 

phenotype, indicating that TNF-α promotes stemness at the 

gene level. This conclusion is in accordance with TNF-α 

triggering chromosomal instability in liver progenitor cells 

and contributes to their conversion to liver CSCs.126

Conclusion
EMT contributes to drug resistance, tumor invasion, and CSC 

transition, and thus, it is a potential target for inhibition to 

suppress CSC generation. However, critical regulatory path-

ways are still unknown due to the complicated mechanisms 

by which EMT promotes cancer cell stemness. Drugs and 

other methods to suppress this process have only recently 

begun to be investigated in vitro and have thus far achieved 

only modest results (Table 3).

Eliminating CSCs is a critical approach to suppress tumor 

recurrence and increase treatment sensitivity. However, 

targeting CSCs has some difficulties due to the limitations 

of culturing, identifying, and isolating them, which indicates 

that more attention should be paid to the TME, especially 

regarding protumor factors. It is reasonable to regard tumor 

mass and CSCs as parts of a whole, with the physiological 

functioning of the integrated parts requiring support from the 

TME. Therefore, it is desirable to destruct the “soil” that is 

favorable for tumor growth to slow down progression.

In this review, we have summarized TAM-derived cytok-

ines in CSC transition. In addition to secretory pathways and 

direct contact by cell fusion, some recent studies have found 

that exosomes may serve as a delivery vehicle and mediate 

communication between TAMs and cancer cells,136,137 which 

emphasizes that the cardinal work is to figure out interplays 

between TAMs in TME and CSCs.

Targeting TAMs is a promising direction, but additional 

factors need to be considered. First, TAMs infiltrate the TME 

in abundance, but there are no highly specific markers of 

TAMs. One study has shown that cancer cells after coculture 

with TAMs can even express the macrophage-specific marker 

CD163.103 Second, macrophages are the most important 

immune cells, and they exert their antitumor role by discover-

ing and eliminating mutated cells in the early stages of tumor 

initiation. So which macrophage phenotype should be targeted 

and when is the best time to target it? TAMs can paradoxi-

cally promote tumor metastasis and angiogenesis once anti-

TAM therapy has ceased.138 Third, some CSCs are in a dormant 

state where they are arrested in G0/S and have no physi-

ological activity. These CSCs are not regulated by TAMs;139 

whether TAMs break the dormant state of CSCs is unknown. 

These issues and others should be thoroughly studied before 

targeting of TAMs can become a clinical reality.
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