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Abstract: MicroRNAs are short regulatory RNAs that posttranscriptionally modulate gene 

expression and thus play crucial roles in controlling cancer-onset, growth, and progression 

processes. miR107, a highly conserved microRNA that maps to intron 5 of the PANK1 gene, 

contributes to the regulation of normal and tumor biological processes. Studies have reported 

that miR107 has oncogenic or tumor-suppressor functions in different human tumors. The 

pleiotropic functions of miR107 in various cancers are achieved via its targeting different 

genes that are involved in tumor proliferation, invasiveness, metastasis, angiogenesis, and 

chemotherapy-response pathways. The carcinogenicity or cancer-suppressor effects of miR107 

occur in a tissue- and cell-specific manner, and the expression level of miR107 can be affected 

by various factors, including epigenetic and genetic factors, treatment exposure, and daily diet. 

A comprehensive analysis of the current literature suggests that miR107 functions as a central 

element in the regulation of cancer networks and can be used as a potential diagnostic and 

prognostic biomarker and drug target for therapeutic intervention.
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Background
MicroRNAs (miRNAs) are a family of small (20–25 base pair nucleotides long) 

noncoding RNAs, most of which play important regulatory roles in regulating 

normal development and physiology.1,2 miRNAs cause these biological effects 

through sequence-specific binding of a seed sequence to the 3′-end of the untrans-

lated regions (UTRs) of a target mRNA, which causes either mRNA degradation 

or inhibition of translation and further leads to posttranscriptional downregula-

tion of target-protein expression.3 Thousands of miRNAs have been identified in 

humans, and it is thought that expression of two-thirds of all genes are regulated 

by miRNAs.4 Deregulated expression levels of many miRNAs are associated with 

carcinogenesis, and have been proposed to be novel prognostic and predictive 

biomarkers.5–7

Tumor cells are distinguished from normal cells by several peculiar biological 

traits, such as sustaining proliferative signaling, evading growth suppressors, resist-

ing cell death, enabling replicative immortality, angiogenesis, and activating invasion 

and metastasis.8 The alternation of miRNA expression has a crucial role in cancer, as 

miRNAs can act either as oncogenes or tumor suppressors in the early disease stages, 

and they can also influence the progression of invasion and metastasis, as well as 

predict the clinical outcomes of antitumor therapies.9,10

This review focuses on the pleiotropic functions of miR107 in cancers. miR107 is a 

highly conserved miRNA that maps to intron 5 of the PANK1 gene. miR107 belongs to 
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the miR15/107 group, whose members regulate genes involved 

in cell division, metabolism, stress response, and angiogenesis 

in vertebrate species. All miRNAs in this group share the 

sequence AGCAGC, starting at either the first or the second 

nucleotide from the 5′-end of the mature miRNA sequence.11 

miR107 is ubiquitously expressed in a range of tissues, with 

relatively high abundance in the brain. Altered expression of 

miR107 has been reported in metabolism diseases, such as 

adipogenesis and diabetes, as well as in neurological diseases 

and cancers.12

The biological functions of miR107 vary significantly in 

physiological and pathological processes of various cancers, 

probably as a result of being targeted to different pathways or 

genes.13,14 Both clinical and non- or preclinical studies have 

shown that miR107 is deregulated in several human tumors 

and its expression level significantly associated with disease 

staging, metastasis, and treatment outcomes.15,16 We present 

a systematic review of the complex roles of miR107 in tumor 

pathogenesis, progression, and prognosis, and of the factors 

that regulate miR107-expression levels.

Carcinogenic effects of miR107 
in various types of cancer
The association between miR107-expression level and carci-

nogenic effects has been widely researched in various human 

cancers. However, the functions of miR107 in carcinogenesis 

are controversial and highly cell-type-dependent, as it acts as 

either a tumor suppressor or an oncogene by presenting differ-

ent expression levels in various human tumors. The opposing 

results found between and within studies are not an uncommon 

phenomenon in the field of miR107 biology, and these incon-

sistencies may be due to variations in its mechanism of action.17 

To help decipher miR107’s function in specific cancer, Table 1 

lists detail of miR107’s function by tumor type.

miR107 functions as an oncogenic 
miRNA
Hepatocellular carcinoma
Hepatocellular carcinoma (HCC) is the most common type 

of live cancer and the third leading cause of cancer-related 

death in the world. Previous studies have shown that miRNAs 

play a fundamental role in HCC, thereby opening a novel 

avenue for investigating the molecular mechanisms of HCC 

pathogenesis. The function of miR107 in HCC continues 

to be researched, as it has been found to have increased 

expression in HCC tumors compared to paired non-HCC 

tissue in cancer patients.18,19 Serum miR107 levels are higher 

in HCC patients compared with healthy controls, and a 

logit prediction model has shown that the serum levels of 

miR107, miR92a-3p, miR3126-5p, and α-fetoprotein can 

serve as sensitive, specific, and noninvasive biomarkers for 

the diagnosis of HCC, especially in patients at early stages 

or with low α-fetoprotein levels.20 Moreover, high miR107 

expression has been significantly correlated with poor out-

come (tumor differentiation and tumor vascular invasion) in 

HCC by repressing the expression of HMGCS2.21

Pituitary adenomas
Pituitary adenomas are common benign neoplasms that often 

grow invasively, but very rarely progress to true carcinomas. 

miR107 expression is significantly upregulated in both 

sporadic growth hormone-secreting pituitary adenomas and 

in nonfunctioning pituitary adenomas when compared with 

normal pituitaries.22 miR107 acts as an oncogenic miRNA 

in pituitary adenomas, negatively regulating the expression 

of the pituitary tumor-suppressor gene AIP.

Prostate cancer
Prostate cancer is the most commonly diagnosed male malig-

nancy and the second leading cause of male cancer-related 

death. A study investigating changes in circulating miRNA 

levels associated with prostate cancer found that miR107 

had higher concentrations in the urine of men with prostate 

cancer compared with controls.23 There is also evidence 

that the growth factor granulin is dysregulated via miR107 

in prostate cancer, which may provide a potential common 

therapeutic target.24

Colorectal cancer
Colorectal cancer (CRC) is the fourth most common cancer in 

the world, with a high mortality rate. Researchers first found 

that miR107 is a prometastatic miRNA in CRC, in which the 

expression level of miR107 was positively correlated with 

the metastatic potential of different CRC cell lines.13 

Table 1 miR107 function by cancer type

Cancer Function

Hepatocellular carcinoma Oncogenic
Pituitary adenomas Oncogenic
Prostate cancer Oncogenic
Colorectal cancer Oncogenic
Glioma Tumor suppressor
Non-small-cell lung cancer Tumor suppressor
Hematological malignancies Tumor suppressor
Bladder cancer Tumor suppressor
Renal clear-cell carcinoma Tumor suppressor
Cervical cancer Tumor suppressor
Head and neck/oral cancer Oncogenic and tumor suppressor
Pancreatic cancer Oncogenic and tumor suppressor
Gastric cancer Oncogenic and tumor suppressor
Breast cancer Oncogenic and tumor suppressor
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Elevated levels of miR107 have been observed in stage III 

compared with stage II tumors, and higher expression of 

miR107 is associated with lymph node metastasis and dis-

tant metastasis.13 miR107 exerts its prometastatic function 

by negatively regulating two metastasis suppressors: DAPK 

and KLF4. The expression level of miR107 has also been 

associated with both progression-free survival and overall 

survival (OS), and overexpression of miR107 is significantly 

associated with improved objective response to chemother-

apy in CRC patients.25 A recent study showed that miR107 

expression was aberrantly increased in human CRC tumor 

tissue and cell lines when compared with colonic control 

tissues and colon epithelial cells.26

miR107 as a tumor suppressor
Glioma
Glioma is the most common primary malignant tumor in the 

central nervous system, and is associated with poor prog-

nosis and rapid mortality. Perhaps the strongest evidence 

of miR107 acting as a tumor suppressor has been found in 

glioma studies. miR107 is ubiquitously expressed in a range 

of tissue, with relatively high abundance in the brain. The 

expression level of miR107 has been shown to be significantly 

downregulated in human glioma tissue and cell lines when 

compared with normal brain tissue.15 Low levels of miR107 

expression are also significantly associated with advanced 

pathological features and poor prognosis of human gliomas, 

such as larger tumor size, lower Karnofsky performance 

score, and shorter OS and progression-free survival.16

The antitumorigenic roles of miR107 in glioma include 

the inhibition of cell apoptosis, migration, and invasion. 

Upregulation of miR107 inhibits the proliferation of gliomas 

by repressing the expression of SALL4 and activating the 

FADD–caspase 8–caspase 3/7 cell-apoptosis pathway.15 

miR107 exerts its anti-invasion effects through the NOTCH2-

signaling pathway.14,27 Overexpression of miR107 inhibits 

the proliferation of gliomas by arresting the cell cycle at 

the G
0
–G

1
 phase, and also downregulates the expression of 

CDK6 and NOTCH.28

Non-small-cell lung cancer
Lung cancer (LC) is one of the most common and deadli-

est cancers in the world, and non-small-cell LC (NSCLC) 

accounts for 80%–85% of all LC. Two studies have shown 

that miR107 expression is reduced in lung tumors and LC 

cell lines compared to normal lungs.29,30 Furthermore, low 

miR107 expression has been found to be significantly cor-

related with higher clinicopathological staging stage, regional 

lymph-node involvement, and tumor differentiation, as well 

as poor prognosis.29 Recently, it was shown that miR107 

suppresses LC-cell proliferation, inhibits metastasis, impedes 

the cell cycle, and promotes apoptosis by directly targeting 

EGFR.31

Hematological malignancies
There is limited information on miR107 in hematological 

cancers. miR107 was initially reported to be upregulated 

in acute promyelocytic leukemia (APL) cells treated with 

all-trans retinoic acid (ATRA) compared with untreated 

cells.32 Further study showed that miR107 was downregu-

lated in APL blasts compared with normal promyelocytes 

differentiated in vitro from CD34+ progenitors, and its 

expression level was upregulated after cells had been treated 

with ATRA.33 Chronic lymphocytic leukemia (CLL) is the 

most common leukemic disorder, and is characterized by an 

accumulation of mature B cells in the blood, bone marrow, 

and secondary lymphoid organs. A recent study assessed 

global miRNA expression between purified B cells from 

treatment-naïve CLL patients and healthy controls, and 

found that miR107 was downregulated in CLL patients.34 

Evidence has shown that miR107 acts in CLL by targeting 

a calcium-channel protein (Cacna2d1) to promote erythroid 

differentiation.35

Bladder cancer
Bladder cancer is the most prevalent malignant tumor of the 

urinary system, ranks ninth in cancer incidence around the 

world, and is the 13th most common cause of death by cancer. 

Expression of miR107 is decreased in bladder carcinomas in 

situ when compared with normal bladders from UPK II SV40 

mice.36 CircRNAs, a type of noncoding RNA, have been 

shown to exert major functions in gene regulation. A recent 

study showed that mechanisms underlying circRNAs in 

cancer-related pathway might involve miRNA sponge 

effects via interactions with miRNAs.37 Further results on 

circRNA in bladder carcinoma found that circTCF25 was 

significantly more highly expressed in carcinoma tissue 

compared with control tissue.38 An additional study on the 

circRNA–miRNA–mRNA axis in bladder cancer showed 

that overexpression of circTCF25 downregulated miR107, 

increased CDK6 expression, and promoted proliferation and 

migration in vitro and in vivo.38

Renal clear-cell carcinoma
Renal cell carcinoma (RCC), which accounts for approxi-

mately 85% of all kidney cancers, is the most common type 

of kidney cancer. Clear-cell RCC occupies the major pro-

portion of RCC cases.39 miR107 plays a tumor-suppressor 
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role in clear-cell RCC by inhibiting cell proliferation and 

invasiveness.39

Cervical cancer
Cervical cancer is the second most prevalent type of cancer 

among women worldwide and a complex disease involving 

numerous oncogenes or the abnormal expression of tumor 

suppressors. miR107 contributes to the development of 

cervical cancer by directly targeting CCR5, which acts as a 

tumor oncogene in cervical cancer.40

Controversy
Head and neck/oral cancer
Head and neck/oral cancer (HNOC) is the sixth most com-

mon cancer worldwide, accounting for 4% of cancers in men 

and 2% of cancers in women.41 miR107 was first found to be 

highly expressed in nine HNOC cell lines.41,42 However, sub-

sequent studies showed that miR107 is downregulated in oral 

squamous cell carcinoma (SCC) cell lines and tongue SCC.43–45 

Molecular research has found that downregulation of miR107, 

which targets the PRKCE gene, is a pathogenetic event in 

HNSCC, and miR107 may thus be a potential anticancer 

therapeutic for this patient population. Another recent study 

unraveled the tumor-suppressor role of miR107 in esophageal 

carcinogenesis, by targeting CDC42.46 HNOC can divide into a 

severe subtype, and the roles of miR-107 were poorly studied 

in some kinds of HNOC.47 Based on these in vitro studies, we 

concluded that further clinical and in vivo studies should be 

conducted to identify roles of miR107 in HNOC.

Pancreatic cancer
Pancreatic cancer (PCa) is a devastating disease with a poor 

5-year survival rate, and local recurrence and systematic 

metastasis are the major reasons for treatment failure. A study 

analyzing global miRNA expression in 12 nontumor pancreas 

and 44 pancreas primary tumors, including 12 insulinomas, 

28 nonfunctioning endocrine tumors, and four acinar carci-

nomas, showed that miR107 is overexpressed in pancreatic 

endocrine tumors versus normal pancreatic tissue.48 Data 

from this study suggest that alteration in miR107 expression 

is related to endocrine and acinar neoplastic transformation, 

but its expression cannot be used as a biomarker of PCa, due 

to the very small sample.

In contrast to this result, there is evidence suggesting that 

miR107 is a tumor-suppressive factor in PCa. BxPC3LN, a 

lymphatic PCa cell line that exhibits highly metastatic stem-

cell-like properties, expresses lower levels of miR107 than 

the parental BxPC3 cell line.49 Another recent study found 

that plasma miR107 levels were significantly downregu-

lated in PCa patients compared with healthy volunteers.50 

Moreover, low plasma miR107 levels were significantly 

associated with advanced T and N stage, liver metastasis, and 

shown to be an independent factor predicting poor prognosis 

in PCa patients.50 miR107 plasma levels were increased in 

PCa patients who had undergone curative pancreatectomy 

compared with preoperative expression levels.50

Gastric cancer
Gastric cancer (GC) is the fourth most common malignancy 

and the second leading cause of cancer-related death across 

the world.51 Gastric adenocarcinoma accounts for over 90% 

of GC cases. miR107 is commonly upregulated in GC and 

can promote GC-cell migration, invasion, and metastasis, 

both in vitro and in vivo.52 The first study on miR107 in 

GC investigated miR107 expression levels in tissues from 

50 cases of GC and matched normal tissue by quantitative 

reverse-transcription polymerase chain reaction.53 The 

authors discovered that miR107 is frequently upregulated 

in GC and its overexpression significantly associated with 

GC metastasis.53 A subsequent study conducted with a larger 

sample showed that miR107 expression was significantly 

higher in tumor tissue, and showed significant associations 

with tumor invasion, lymph-node metastasis, and stage.54 

In addition, OS and disease-free survival of patients with high 

miR107 expression were significantly worse than those of 

patients with low miR107 expression.54 The overexpression 

of miR107 in GC has also been evidenced in other studies.55–58 

Furthermore, circulating miR107-expression levels are also 

higher in diffuse-type GC in a mouse model.59

In contrast to previous findings, one study reported that 

miR107 expression was significantly decreased in GC (deter-

mined by comparing miRNA-expression profiles between 

80 gastric tumor tissues and matched adjacent nonneoplas-

tic tissues), and the reexpression of miR107 in GC cells 

significantly decreased proliferation by targeting CDK6.60 

In contrast to the mouse model, plasma miR107 levels are 

not altered in the patients with diffuse-type GC.60

Because of the complex results, it is critical to expand 

sample sizes and affirm the function of miR107 in the 

pathogenesis of GC. Also, several questions remain. Dose 

the expression level of miR107 alter with cancer stage? Why 

does miR107 expression correlate with response to GC-

treatment outcome? Finally, how can miR107 have opposing 

effects in the same cancer in two different studies? As these 

questions are answered, researchers will gain a better under-

standing of the precise function of miR107 in GC.
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Breast cancer
Breast cancer is a common highly heterogeneous malignancy 

and one of the main gynecological cancers worldwide. 

In breast cancer, hormone-receptor status is one of the most 

important predictive factors. In one study, miR107 expres-

sion was decreased in 30 breast cancer specimens compared 

with adjacent normal breast tissue,61 and miR107 can inhibit 

the proliferation and migration of MDA-MB231 cells in a 

dose- and time-dependent manner. There is also evidence 

that miR107 is markedly downregulated in both breast cancer 

cell lines and breast tumors.62

These results are different from previous studies, in 

which miR107 was shown to be upregulated in breast tumors 

and cells and elevated miR107 levels associated with more 

advanced tumor status, increased lymph-node metastasis, 

and increased metastasis in distant organs.63–65 The complex 

behavior of miR107 presented in breast cancer are possibly 

the result of high tumor heterogeneity and hormone respon-

siveness. Since the expression of miR107 can be downregu-

lated by estrogen treatment, endogenous estrogen levels may 

significantly influence miR107 levels.66 As breast cancer 

can be classified into different subgroups based on the state 

of ER, PR, and HER2, differences in the carcinogenicity of 

miR107 may also be caused by the statuses of ER, PR, and 

HER2 in different breast cancer patient groups.

miR107 functions and downstream 
targets in cancer
Understanding the functions of miRNAs will provide broad 

prospects for understanding and overcoming tumors. Altered 

miR107-expression levels in several cancers have led numer-

ous researchers to investigate its tumor-specific functions 

and identify its targets in various steps of tumor formation 

and development. The pleiotropic roles and direct targets of 

miR107 are further summarized in Figure 1 and discussed 

in detail herein.

Proliferation, cell cycle, and apoptosis
Altered levels of miR107 have been demonstrated to be 

associated with proliferation, differentiation, and cell-cycle 

progression in cancer cells. However, the existing data 

are controversial. miR107 is effective in suppressing the 

tumorigenicity of HNSCC in vitro and in vivo by inhibiting 

proliferation, blocking DNA replication and colony forma-

tion, and inhibiting cell invasion. It acts by downregulating 

the expression of PRKCE, which plays critical roles in the 

signal-transduction pathways involved in proliferation, dif-

ferentiation, apoptosis, and migration.67 Evidence has also 

shown that miR107 can suppress cell proliferation in two LC 

cell lines and induces G
1
 cell-cycle arrest by downregulating 

CCNE1 and CDK6.30 Upregulation of miR107 suppresses 

glioma cell growth through direct targeting of SALL4, 

CDK6, and NOTCH, leading to the activation of the FADD–

caspase 8–caspase-3/7 apoptosis-signaling pathway.15,28 The 

antitumor effects of miR107 in inhibiting proliferation and 

inducing cell-cycle arrest in HNOC, LC, and glioma need 

further verification.

Data from Song et al suggested that miR107 promotes the 

proliferation of GC cells by posttranscriptionally targeting 

CDK8, a key protein in the regulation of cell cycle and cell 

growth, and thus promoting the development and progression 

of GC.56 In addition, it also promotes cell proliferation by tar-

geting the transcription factor FOXO1, repressing expression 

of the cell-cycle inhibitors p21Cip1 and p27Kip1 and increasing 

the expression of cell-cycle regulator cyclin D1.57 Further-

more, miR107 regulates the expression of GRN, a mitogen 

and growth factor, in multiple human cancers, implying that 

a therapeutic strategy of restoring the expression of the miR-

15/107 gene group may decrease the malignant potential of 

tumors by attenuating GRN expression.24,68 Li et al found that 

miR107 expression was decreased in breast cancer, while 

overexpression of miR107 suppressed MDA-MB231 breast 

cell proliferation by targeting CDK8, leading cells to arrest 

at the G
0
–G

1
 phase.61

Revascularization
Tumor vascularization, partly driven by hypoxia, plays 

a critical role in the progression of solid tumors. HIF1 is 

significant in hypoxic signaling in tumors. miR107 can 

decrease hypoxia signaling and inhibit the differentiation of 

endothelial progenitor cells by targeting HIF1B.69 Overex-

pression of miR107 in HCT116 colon cancer cells suppresses 

angiogenesis, tumor growth, and tumor VEGF expression 

in mice. These in vitro results support the hypothesis that 

miR107 can act as a tumor suppressor by inhibiting tumor 

vascularization in tumor-cell lines and tissue.

Migration, invasion, and metastasis
Migration is one of the main reasons for failure of tumor 

therapy and neoplasm recurrence. High miR107 expression 

can increase the tumorigenic and metastatic potential of breast 

cancer by inhibiting LET7 and DICER,64,65 and the expression 

level of miR107 is significantly elevated in triple-negative 

metastatic breast cancer patients compared with disease-free 

patients.63 However, there is also evidence that overexpression 

of miR107 suppresses breast cancer-cell migration by targeting 
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CDK8.61 miR107 has been shown to function as a prometa-

static factor in CRC by negatively regulating the expression 

of two metastasis suppressors: DAPK and KLF4.13

miR107 overexpression is not only an important factor in 

the pathological process of GC but also related to increased 

tumor invasion, metastasis, prognosis, and tumor stage.53,54 

In addition, circulating miR107 was significantly increased 

in a mouse model of early- and late-stage diffuse-type GC.59 

miR107 functions as a positive metastatic regulator for GC 

by targeting DICER.53,54 In contrast, Feng et al found that 

miR107 was decreased in gastric tumor tissues and could 

inhibit the invasion of GC cells by targeting CDK6.60

α

β

ε

Figure 1 miR107 directs target genes and their multiple functions in cancer cells.
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High miR107 expression probably serves a metastasis-

inhibiting role in PCa.49,50 Additional studies have shown that 

the inhibitory effects on the migration and invasion exerted 

by miR107 in glioma and cervical cancer are due to its 

involvement in the modulation of NOTCH2–TNC–MMP12 

and NOTCH2–COX2 signaling through direct targeting 

of NOTCH214,27 and through activation of the ATR–CHK1 

pathway,70 respectively.

Cancer therapy resistance mediators
Vast evidence has shown that the expression level of miR107 

is associated with chemotherapeutic sensitivity in different 

cancers, as shown in Table 2. For example, low miR107 

expression significantly correlated with poor prognosis 

for NSCLC patients, and mimics transfected with miR107 

significantly increased cisplatin resistance by targeting the 

CDK8 protein in NSCLC cells.29,73 miR107 expression can 

mediate the sensitivity of PARP inhibitors by targeting 

genes or factors in the DNA-damage-response pathway, 

such as RAD51.74

In the previous section, we summarized that miR107 has 

oncogenic and tumor-suppressive effects by suppressing 

both tumor-suppressive mRNAs and oncogenic mRNAs in 

different cancer types. Due to the opposite roles of miR107 

in the pathogeneses of difference cancer types, it also has 

various influences on treatment outcomes. Most studies on 

miRNA-expression levels in cancer have viewed positive 

correlations between miRNA-expression levels and increased 

survival as evidence that the miRNA is tumor-suppressive. 

However, this kind of interpretation can be misleading some-

times. It is critical first to validate the association between 

miR107-expression levels and clinical treatment outcomes 

if further studies aim to explore the roles of miR107 in the 

treatment outcome of cancers. Authors should also further 

illuminate molecular mechanisms via in vitro and animal 

studies. We are still far from using miR107 as a potential 

biomarker for personalized treatment strategies and a poten-

tial therapeutic target.

Factors influencing miR107 
expression in cancer cell lines
The roles of miRNAs in human disease and treatment 

response have been widely studied. However, which factors 

influence the expression and stability of miRNAs have barely 

been considered. In this section, we summarize various fac-

tors that can influence miR107 expression, including genetic 

and epigenetic factors, treatment exposure, and multiple 

dietary factors.

epigenetic and genetic factors
epigenetic factors
Epigenetic mechanisms, including promoter methylation 

and histone modification, are critical in the regulation of 

gene expression. Previous studies have underscored the role 

of epigenetic regulation of noncoding miRNAs in human 

cancer, typically through the methylation of CpG islands 

within miRNA primary transcript-promoter regions.75–77 

Recently, Lee et al reported that miR107 was a candidate 

miRNA that may undergo transcriptional silencing through 

the methylation of a conserved CpG island in its promoter 

sequence in pancreatic carcinomas.78 The primary transcript 

of miR107 (located at chromosome 10q23.31) is coexpressed 

from an intronic segment of PANK1, a coding gene on chro-

mosome 10. We used two commonly used DNA-methylation 

prediction programs (MethPrimer and CpG Island Searcher) 

to predict CpG-island distribution 1,000 base pairs upstream 

Table 2 Pleiotropic effects of miR107 expression on sensitivity to cancer therapy

Cancer Therapeutic 
method

Association between miR107 expression and treatment 
sensitivity

Reference

NSCLC Cisplatin Low expression of miR107 significantly correlated with poor prognosis
Transfected with miR107, mimics significantly increased cisplatin 
resistance by targeting the CDK8 protein

29
71

Gastric cancer Chemotherapy Patients with high miR107 expression had lower OS and DFS 54
High miR107-expression levels correlated strongly with increased 
distant disease-free survival relative to tumors with low miR107

53

Colorectal cancer Chemotherapy Overexpression of miR107 associated with improved objective 
response to chemotherapy in colorectal cancer patients

25

Acute myeloid leukemia Cytarabine miR107 expression positively associated with worse OS 71
Triple-negative breast cancer Chemotherapy Low miR107 expression significantly associated with lower OS and RFS 63
Glioma Chemotherapy Low miR107 expression associated with poor prognosis 16
Gastrointestinal stromal tumor imatinib miR107 overexpressed in gastrointestinal stromal tumor specimens, 

which was associated with imatinib resistance
72

Abbreviations: NSCLC, non-small-cell lung cancer; OS, overall survival; DFS, disease-free survival; RFS, recurrence-free survival.
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from the 5′UTR, and confirmed that a CpG island exists imme-

diately upstream (-442 to -338) of the PANK1-transcription 

starting site. Interestingly, a recent study showed that the 

promoter CpG islands of mir107 were not methylated in 

NSCLC,79 suggesting that epigenetic silencing of miR107 

by DNA methylation is cell-specific and any epigenetic 

alteration of miR107 in other tumors should not be ignored 

in further studies.

circRNAs are a class of single-stranded closed RNA 

molecules and produced from precursor mRNA back-splicing 

of thousands of genes in eukaryotes.80 circRNAs function 

as an miRNA- or RNA-binding protein sponge and regulate 

splicing or transcription. circRNAs are involved in cancer 

pathogenesis.81 Recent research demonstrated that circTCF25 

has a miRNA sponge effect that sequesters miR107 and 

finally increases CDK6 expression and promotes prolifera-

tion and migration in bladder carcinoma.38

lncRNAs are transcripts with no protein-coding function 

that are longer than 200 nucleotides. lncRNAs are emerg-

ing as new factors in the cancer paradigm, demonstrating 

potential roles in both oncogenic and tumor-suppressive 

pathways.82 lncRNAs can regulate the expression of miRNA 

by various mechanisms. miR107-expression levels are 

regulated by lncRNAs. As an lncRNA, HULC is correlated 

with the development of HCC. HULC sequesters miR107 

and promotes tumor angiogenesis in liver cancer through 

miR107–E2F1–SPHK1 signaling in liver cancer.83 NEAT1 

plays an oncogenic role in human laryngeal SCC and regu-

lates CDK6 expression of laryngeal SCC cells, mediated by 

miR107.84 c-Myc is an inducible gene that is regulated by 

specific growth signals in a cell-cycle-dependent manner. 

c-Myc upregulates the expression and strengthens the activity 

of lncRNA H19, and H19 promotes cell-cycle progression of 

NSCLC cells by downregulating miR107 and upregulating 

CDK6 expression.85

Genomic and transcription factors
The tumor suppressor p53 is a transcription factor that 

responds to stress and maintains cellular control by deregu-

lating stress responses and thereby maintaining cell and 

tissue integrity. Mutations in P53 or other disruptions in 

the p53 pathway are associated with tumor growth and 

angiogenesis.86,87 P53 can activate the transcription of a group 

of miRNAs, which in turn suppresses the transcription of 

genes that regulate apoptosis, DNA repair, and cell-cycle 

progression.88,89

Computer analysis reveals a potential p53-binding 

site (1,811 base pairs upstream) of the PANK1/miR107-

transcription starting site, and several studies have dem-

onstrated that miR107 belongs to the group of miRNAs 

regulated by p53.89 Chen et al demonstrated that p53 inhibits 

the proliferation of glioma cells by targeting miR107, and 

wild-type p53 protein binding to the promoter region of 

miR107, leading to increased miR107 expression relative to 

that of glioma cells expressing mutated P53.28 Furthermore, 

Toll-like receptors modulate the expression of multiple 

miRNAs. TLR4 can downregulate miR107 expression 

through the NFKB pathway, and it can further influence the 

innate immune system by increasing macrophage adhesion 

via CDK6.90

Treatment exposure
Surgery
Circulating miRNAs have been identified as potentially con-

venient biomarkers for many diseases, as they can be easily 

measured without invasive biopsies. miRNAs in circulation 

are protected from RNase degradation by binding to protein 

complexes. It has been hypothesized that circulating miRNAs 

enter the circulation by passive leakage from apoptotic or 

necrotic cells or by active secretion of microvesicle-free 

miRNA or miRNA containing microvesicles,91 and many cir-

culating miRNAs have been used to determine the diagnosis 

and prognosis of human cancer.92,93 Changes in circulating 

miRNA levels between pre- and postsurgery samples may be 

used as biomarkers for cancer diagnosis.67–69 However, it has 

not yet been explained why miRNA levels change between 

before and after surgery.

Kodahl et al investigated changes in the circulating 

miRNA profiles of 24 postmenopausal women with ER-

positive early-stage breast cancer before surgery and 3 weeks 

after tumor resection, and found that the postoperative 

patients had significant higher miR107 levels compared with 

preoperative samples.91 On the other hand, Cookson et al 

showed the opposite result, in which circulating miR107 

levels were decreased after surgery in a group of 10 breast 

cancer patients assessed before and after resection.92–94 

To explain this difference, we propose several possible 

hypotheses. First, if surgery can influence miRNA expres-

sion, the time at which samples are taken after surgery should 

be considered carefully. Second, as miR107 levels in breast 

cancer are associated with tumor status, increased lymph-

node metastasis, and increased metastasis in distant organs, 

the histopathological stage of the cancer before surgery 

should be taken into account. Third, since estrogen levels 

can influence miR107 expression, pre- and post-surgery ER 

status should also be considered carefully.
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Drug exposure
miRNAs are not only associated with disease pathogenesis 

but also with treatment response to many drugs. Interestingly, 

disease and drug exposure can inversely influence miRNA 

expression.95–99 As shown by studies on miR107 and drug 

treatment, miR107-expression level is not only associated 

with treatment response but can also be regulated by treat-

ment with various drugs.

Evidence has shown that miR107 is upregulated during 

ATRA and arsenic trioxide treatment in APL cells.32,100,101 

Zhou et al showed that the effects of taxol in attenuating 

migration and invasion are due to the upregulation of miR107 

expression in cervical cancer cells, in which miR107 plays 

an important role in regulating the expression of MCL1.102 In 

addition to chemotherapy, radiotherapy can also significantly 

influence miR107 expression. miR107 is overexpressed in 

mouse renal cortical tissue after administration of 177Lu-

octreotate, which is a radiopharmaceutical used for treatment 

of neuroendocrine cancers.103 However, a recent study found 

that long-term and excessive use of 900 MHz radiofrequency 

radiation downregulated rno-miR107 expression in Wistar 

albino adult male rat brains.104

There is also evidence that chronic morphine treatment 

can significantly upregulate miR107 and miR103 levels, lead-

ing to downregulation of downstream target genes in vivo 

and in vitro.105 Soluble β-amyloid peptides have specific 

repression effects on miR107 expression on neuronal.106 

Since miR107 plays a critical role in many cancers, we 

propose the hypothesis that the antineoplastic effects and 

treatment resistance of some antitumor drugs are partly due 

to the exceptional expression of miR107 under treatment 

exposure.

Lipopolysaccharide (LPS) is recognized as the most 

potent microbial mediator presaging the threat of inva-

sion of Gram-negative bacteria. Blood miR107 expression 

levels are upregulated in mice exposed to LPS.107 Another 

study showed that LPS downregulated miR107 expression 

level in an MyD88- and p65-dependent manner, as well as 

PANK1α and PPARα, and then upregulated the expression 

of CDK6.90

Dietary factors
In addition to drug factors, dietary factors (such as fats, 

carbohydrates, proteins, vitamins, minerals, and trace 

elements) may also influence cellular processes by regu-

lating endogenous miRNA expression.108 Davidson et al 

showed that exposure to fish oil, in which the main effec-

tive constituent is a chemoprotective n3-polyunsaturated 

fatty acid, can selectively upregulate the expression of 

miR107 in rat colons.109 Studies have further demonstrated 

that dietary lipids modulate the expression of miR107110 

and plant-derived polyphenols can regulate the expres-

sion of miR103/107 and prevent diet-induced fatty liver 

disease in hyperlipidemic mice.111 There is also evidence 

that miR107 expression can be altered by chronic ethanol 

feeding.112

Conclusion
We can conclude that miR107 has pleiotropic functions in 

cancer by controlling the expression of genes involved in 

several cancer cell-signaling networks. miR107 is involved 

in tumor proliferation, cell-cycle progression, apoptosis, 

invasiveness, metastasis, angiogenesis, and chemotherapy 

response.

As miR107 levels are potential biomarkers for the diag-

nosis and prognosis of multiple cancers,13,16,29 the diagnostic/

prognostic value of circulating miR107 should be explored 

further in various tumors. Almost all clinical studies on 

the association between miR107 deregulation and cancer 

onset compared the expression levels between tumor tissue 

and corresponding healthy tissue. The results of a study by 

Boominathan supported the view that circulating miR107 can 

be used as a novel diagnostic biomarker for breast cancer, 

as patients with newly diagnosed ER-positive breast cancer 

had higher circulating miR107 levels than healthy controls.89 

Whether circulating miR107 can be used as a novel cancer 

diagnostic and prognostic biomarker requires further inves-

tigation in various cancers.

miR107 can significantly influence the treatment out-

comes of various cancers. Conversely, exposure to therapy 

can also affect the expression of miR107 through unknown 

mechanisms, a similar phenomenon as observed for other 

miRNAs.90,91 Based on the complex association between 

miR107 expression and drug exposure, the relationship 

between miR107-expression levels, cancer susceptibility, 

and therapy sensitivity must be considered in future studies. 

Finally, and most importantly, as miRNA-based in vivo 

therapy attempts have already been successful,113,114 the 

potential use of miR107 as a therapeutic target merits careful 

investigation.
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