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Purpose: GSK3B and AKT1 genes have been implicated in the pathogenesis of a number of 

psychiatric and neurological disorders. Furthermore, their genetic variants are associated with 

response to antidepressant pharmacotherapy. As the evidence is still incomplete and inconsistent, 

continuing efforts to investigate the role of these two genes in the pathogenesis and treatment of 

brain disorders is necessary. The aim of our study was thus to evaluate the association of variants 

of these two genes with depressive disorders and drug treatment response.

Patients and methods: In the present study, 222 patients with a depressive disorder who under-

went pharmacological antidepressant treatment were divided into remitters and non-remitters 

following a 28-day course of pharmacotherapy. The association of a depressive disorder and 

remission rates with polymorphisms rs334558 in the GSK3B gene and rs1130214 and rs3730358 

in the AKT1 gene was evaluated with a chi-square test.

Results: Neither of the studied genetic variants was associated with a depressive disorder. 

Furthermore, frequencies of alleles and genotypes for rs1130214 and rs3730358 were not 

different in the groups of remitters and non-remitters. However, the activating allele T of the 

functional polymorphism rs334558 was significantly associated with remission, when all types 

of antidepressant drugs were included. This association continued as a trend when only patients 

taking selective serotonin reuptake inhibitors were considered.

Conclusion: The present study provides support that the functional polymorphism rs334558 

of GSK3B may play a role as a useful genetic and pharmacogenetic biomarker in the framework 

of personalized medicine approach.

Keywords: depressive disorder, association study, AKT1, GSK3B, genetic biomarker

Introduction
Depressive disorders are the third leading cause of disability worldwide, according to 

a 2015 report.1 The phenotype is complex, indicating the existence of numerous types 

and subtypes,2 as are genetic factors contributing to these disorders.3–5 Inheritance of 

one type, major depressive disorder (MDD), is only 30–40%, as was shown by twin 

studies.6,7 Therefore, environmental factors, translated as epigenetics, must play a sub-

stantial role in the etiology.8,9 Despite the apparent difficulties in the study of genetics 

of depressive disorders, there have been some breakthroughs in the last several years.4 

An apparent reason that replicable results in genetic studies of depressive disorders 

have been difficult to achieve is that the patients constitute a very heterogeneous group 

and the most appropriate approach would be to view depressive disorders from the 

angle of personalized medicine.10–19 An example of personalized approach is Research 
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Domain Criteria that take account of molecular factors in 

the pathogenesis of mental illnesses.20–22 This approach is 

particularly relevant, given the fact that, for example, MDD 

is pharmacotherapy-resistant in 30–40% of cases.23 Indeed, 

without understanding the precise etiopathological mecha-

nisms in different groups of patients, it will not be possible 

to treat these disorders efficiently.

An important volume of pharmacogenetic studies of 

depressive disorders exists, including genome-wide associa-

tion studies and case–control association studies using candi-

date genes24–28 (pharmacoepigenetics of depressive disorders 

is also a developing field29). One of the candidate genes used 

in pharmacogenetic studies in psychiatry is AKT1, a gene 

implicated in the pathogenesis of psychiatric disorders and 

response to medication via the AKT/GSK3 pathway.28,30–34 

Single nucleotide polymorphisms (SNPs) rs1130214 and 

rs3730358 in this gene were investigated in the present 

study because of association of the TC haplotype with lower 

protein levels of AKT1, which suggests impaired mRNA 

expression or processing.34 In addition, SNP rs3730358 was 

found to be associated with late-onset depression.35 Another 

candidate gene is GSK3B, one of the major regulators of 

multiple molecular pathways, including WNT36,37 and AKT/

GSK3 pathways.30,32 In fact, implication of GSK3B and of 

its pathways in psychiatric disorders has been extensively 

investigated.32–34,38–48 This gene is directly or indirectly 

inhibited by antipsychotics, lithium, and antidepressants.30,31 

The variant rs334558, found in the promoter of GSK3B, 

is known to be functional, as it determines the expression 

level of GSK3B, possibly by regulating the transcription 

factor binding to the promoter.49 In particular, the allele T is 

associated with a 1.4-fold increased transcriptional strength, 

compared to the ancestral allele C, apparently because the 

nucleotide T  creates a new binding site at the promoter for 

the transcription factor AP4.

In the present study, we report the association of remission 

following pharmacological antidepressant treatment with 

the functional SNP rs334558. Other SNPs and phenotypes 

showed no association.

Patients and methods
Study subjects
The study was carried out in accordance with The Code of 

Ethics of the World Medical Association (Declaration of 

Helsinki 1975, revised in Fortaleza, Brazil, 2013) for experi-

ments involving humans. After approval of the study protocol 

by the Local Bioethics Committee of the Mental Health 

Research Institute in Tomsk, Russia (Siberian region), 222 

patients were recruited from an inpatient facility of the same 

institute. One hundred and twenty-seven control subjects 

without psychiatric disorders were also recruited into the 

study. Only subjects of European ancestry were considered. 

All subjects gave written informed consent after a proper 

explanation of the prospective study.

In particular, we included patients with a depressive dis-

order, determined using the following diagnostic criteria of 

the International Statistical Classification of Diseases and 

Related Health Problems, 10th Revision (ICD-10): depres-

sive episode (ICD-10: F32, 44.4%), recurrent depressive 

disorder (ICD-10: F33, 34.4%), bipolar disorder (ICD-10: 

F31, 15.3%), and dysthymia (ICD-10: F34.1, 2.9%). The 

available demographic data comprised age (18–70 years 

or 49.93 ± 10.76 years), gender (177 women and 45 men), 

education (university 43.8%, professional college 44.4%, 

secondary school 11.8%), employment (employed 68.4%, 

unemployed or retired 31.6%), and marital status (married 

53.2%, widowed 19.3%, divorced 17%, single 10.5%).

Clinical and demographic data were initially recorded in 

hard-copy medical files by psychiatrists at the Department 

of Affective Disorders of the Mental Health Research Insti-

tute in Tomsk, and this work was supervised by Dr. German 

Simutkin. These collected data were then transferred to a 

digital file (an electronic database) and were extracted from 

it during our study.

During their follow-up in the clinic, patients were given 

several different groups of antidepressants: selective sero-

tonin reuptake inhibitors (SSRIs) (escitalopram, fluoxetine, 

paroxetine, fluvoxamine, sertraline, citalopram) (57.9% of 

patients), tricyclic antidepressants (clomipramine, pipofe-

zine) (20.0%), serotonin–norepinephrine reuptake inhibitors 

(duloxetine, venlafaxine) (7.1%), noradrenergic and spe-

cific serotonergic antidepressants (mirtazapine, mianserin) 

(2.7%), and agomelatine (12.3%). All antidepressants were 

used in recommended average therapeutic doses. The dura-

tion of treatment was not less than 28 days. For definition 

of remission, Hamilton Depression Rating scale 17 items 

(HDRS-17)50 was used. The evaluation was made on the 28th 

day of treatment. Remitters were identified if the HDRS-17 

scores were ≤7.

Genotyping
Evacuated blood collection tubes “Vacutainer” (Becton 

Dickinson, Franklin Lakes, NJ, USA) with EDTA as the 

anticoagulant were used. Extraction of DNA from whole 

venous blood was performed using the phenol–chloroform 

method. Concentration and purity of DNA were measured 
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using NanoDrop 8000 UV-Vis (ultraviolet-visible) spectro-

photometer (Thermo Fisher Scientific, Waltham, MA, USA).

SNPs rs334558 of the GSK3B gene and rs1130214 and 

rs3730358 of the AKT1 gene were genotyped by polymerase 

chain reaction (PCR) using the fluorogenic 5′-exonuclease 

TaqMan technology and the real-time PCR system “StepOne-

Plus” (Applied Biosystems, Foster City, CA, USA).

Statistical procedures
Statistical analyses were performed using SPSS software, V 

20.0 (IBM Corporation, Armonk, NY, USA) for Windows. 

Pearson’s chi-square test was used for the between-group 

comparison of genotypic and allelic frequencies at sig-

nificance level α = 0.05. Deviation from Hardy–Weinberg 

equilibrium of genotypic frequencies was also calculated 

with a chi-square test.

Results
Of the three SNPs tested, none were associated with depres-

sive disorders when genotypes and alleles were compared 

between cases and controls. Association was significant only 

for the SNP rs334558, constituted by alleles T and C, when 

the group of remitters was compared to non-remitters, for 

all pharmacological classes of medication taken together. 

Allele T was found to be associated with remission after 28 

days of treatment. In particular, genotypes and alleles were 

different between remitters and non-remitters, at p = 0.049 

and p = 0.015, respectively (odds ratio [OR] genotype T/T 

= 2.49, 95% CI: 0.98–6.30; OR allele T = 2.19, 95% confi-

dence interval [CI]: 1.01–4.75). There was no deviation from 

Hardy–Weinberg equilibrium in the groups of remitters and 

non-remitters. Table 1 shows these results.

We also measured the association separately for the SSRI 

group, a class of medication used by the greatest proportion 

of patients in the cohort. Results of comparison between 

remitters and non-remitters, shown in Table 2, were signifi-

cant, at p = 0.039, only when alleles were compared, but not 

genotypes (OR genotype T/T = 3.05, 95% CI: 0.83–11.22; 

OR allele T = 2.37, 95% CI: 0.82–6.86). The same as for 

all classes of medication taken together, in the SSRI group 

remission was associated with allele T.

Discussion
Previous studies presented apparently conflicting results 

for rs334558, some reporting association of neurological 

and psychiatric phenotypes, such as Parkinson’s disease, 

Alzheimer’s disease, bipolar disorder, schizophrenia, adverse 

reaction to medication tardive dyskinesia, and resistance to 

treatment in the case of MDD and bipolar disorder, with the 

activating allele T,49,51–59 while others identified allele C as 

potentially pathogenic in the case of Alzheimer’s disease and 

multiple sclerosis.60,61 Meta-analyses similarly reported either 

allele T associated with Alzheimer’s disease and MDD,62,63 

or allele C associated with schizophrenia.64

Table 1 Distribution of alleles and genotypes of GSK3B and AKT1 polymorphisms in groups of remitters and non-remitters

Polymorphism,  
allele frequencies (%)*

Genotype, 
allele

Remitters (%) Non-
remitters (%)

Hardy–Weinberg 
equilibrium (c2, p)

c2, p

GSK3B
T/T 31.1 15.8 c2

1 = 0.082, p1 = 0.775; c2
2 = 

0.139, p2 = 0.709
c2 = 6.022, p = 0.049

rs334558 C/T 50.3 50.0
T = 71.2 C/C 18.6 34.2

C = 28.8 T 56.3 40.8 c2 = 5.919, p = 0.015
C 43.7 59.2

AKT1
G/G 47.3 55.0 c2

1 = 1.384, p1 = 0.239; c2
2 = 

3.265, p2 = 0.071
c2 = 1.366, p = 0.505

rs1130214 G/T 40.0 30.0
G = 72.2 T/T 12.7 15.0

T = 27.8 G 67.3 70.0 c2 = 0.219, p = 0.640
T 32.7 30.0
C/C 72.7 65.0 c2

1 = 0.539, p1 = 0.463; c2
2 = 

0.178, p2 = 0.673
c2 = 1.150, p = 0.563

rs3730358 C/T 24.2 32.5
C = 80.8 T/T 3.0 2.5

T = 19.2 C 84.8 81.2 c2 = 0.625, p = 0.429
T 15.2 18.8

Notes: Numbers 1 and 2 in subscript represent group of remitters and group of non-remitters, respectively. *The allele frequencies are in the reference population of 198 
Utah (USA) residents with Northern and Western European ancestry, as listed in the 1000 Genomes Project, Phase 3 (population CEU).
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The present study reports association of remission fol-

lowing pharmacological antidepressant treatment with allele 

T of rs334558, but a previous study reported that this allele 

is associated with resistance to antidepressant medication53 

and others reported association of this allele with poorer 

response to lithium treatment.54–56 In all these studies, 

contribution of other molecular factors, including different 

genetic and epigenetic backgrounds, was not taken account 

of. Treatment-resistant depression is a phenomenon far from 

being fully understood, with multiple molecular factors 

likely contributing to its development.2,65,66 Different genetic 

and epigenetic backgrounds may modulate the influence of 

rs334558 on the response to drug treatment. In particular, 

the genetic landscape in different human populations could 

explain the changing direction of association depending on 

the population studied. In fact, allele frequencies of this 

functional variant change drastically in different human 

populations: according to data in the 1000 Genomes Project, 

the frequency of allele T goes from 67.1% in populations 

with European ancestry to 5.9% in populations with Afri-

can ancestry (https://www.ncbi.nlm.nih.gov/projects/SNP/

snp_ss.cgi?ss=ss1305845106). This may mean that different 

genetic factors interact with this functional variant in differ-

ent human populations. It is thus possible that in our cohort 

a different genetic and/or epigenetic background defines the 

different outcome in the presence of allele T, namely remis-

sion following pharmacological treatment. Further examples 

of extensively investigated functional candidate genes, whose 

association with mental disorders and treatment response 

changes in different populations, are the brain-derived 

neurotrophic factor, encoded by BDNF,67 and the serotonin 

transporter, encoded by SLC6A4.68

Because drug treatment of depressive disorders, due to 

their extensive heterogeneity, seems to be better viewed from 

the standpoint of personalized medicine, it is important to 

define actionable molecular biomarkers that will help predict 

treatment response.10–19 The functional variant rs334558 could 

be such a genetic and pharmacogenetic biomarker for a num-

ber of phenotypes, including mood disorders, schizophrenia 

and neurodegenerative disorders. This biomarker could even-

tually be used in clinical settings, together with other relevant 

multidimensional data, such as levels of GSK3B’s promoter 

methylation or levels of expression of downstream targets 

of this gene, analyzed by machine-learning algorithms,69–71 

in order to determine the precise molecular etiopathologi-

cal processes and recommend the appropriate personalized 

medicine-driven treatment.27,72–75

It is important to note that the personalized medicine 

approach, in the context of treatment of depressive disorders 

in particular, will be substantially complex because the task of 

determining actionable biomarkers will require an important 

volume of functional studies referring to treatment response. 

Multiplex functional studies76 should be the most appropri-

ate way to proceed, given the substantial volume of data 

involved. In addition, personalized medicine applications in 

clinic, including pharmacogenetic testing, have not yet been 

convincingly shown to be cost-effective,73,74 so more prospec-

tive studies evaluating cost-effectiveness and development of 

new cost-effective treatment schemes are needed.

Conclusion
This study reported data, suggesting the role of the functional 

variant rs334558 as a pharmacogenetic biomarker for depres-

sive disorders in the context of personalized medicine-driven 

treatment. The results of genotyping should be used in con-

junction with other relevant biomarkers because the pheno-

typic outcome in the case of this potential biomarker depends 

on other genetic and epigenetic factors that modulate it.
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Table 2 Distribution of alleles and genotypes of rs334558 in groups of remitters and non-remitters (selective serotonin inhibitors 
only)

Polymorphism Genotype,  
allele

Remitters 
(%)

Non- 
remitters (%)

Hardy–Weinberg 
equilibrium (c2, p)

c2, p

rs334558 T/T 33.7 14.3 c2
1 = 0.001, p1 = 0.975; 

c2
2 = 0.159, p2 = 0.690

c2 = 4.248, p = 0.120
C/T 48.8 52.4
C/C 17.4 33.3
T 58.1 40.5 c2 = 4.250, p = 0.039
C 41.9 59.5

Note: Numbers 1 and 2 in subscript represent group of remitters and group of non-remitters, respectively.
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