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Abstract: It is believed that genetic factors, immune system dysfunction, chronic inflammation, 

and intestinal microbiota (IM) dysbiosis contribute to the pathogenesis of colorectal cancer 

(CRC). The beneficial role played by the direct regulation of IM in inflammatory bowel disease 

treatment is identified by the decreased growth of harmful bacteria and the increased production 

of anti-inflammatory factors. Interestingly, gut microbiota has been proven to inhibit tumor 

formation and progression in inflammation/carcinogen-induced CRC mouse models. Recently, 

evidence has indicated that IM is involved in the negative regulation of tumor immune response 

in tumor microenvironment, which then abolishes or accelerates anticancer immunotherapy in 

several tumor animals. In clinical trials, a benefit of IM-based CRC therapies in improving the 

intestinal immunity balance, epithelial barrier function, and quality of life has been reported. 

Meanwhile, specific microbiota signature can modulate host’s sensitivity to chemo-/radiotherapy 

and the prognosis of CRC patients. In this review, we aim to 1) summarize the potential methods 

of IM-based therapeutics according to the recent results; 2) explore its roles and underlying 

mechanisms in combination with other therapies, especially in biotherapeutics; 3) discuss its 

safety, deficiency, and future perspectives.
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Introduction
Colorectal cancer (CRC) is one of the leading causes of cancer mortality in the world,1 

being ranked fifth most lethal neoplasia in China.2 In 2015, the National Cancer Center 

of China estimated that approximately 489,000 new CRC cases will be diagnosed in 

China, with more than 246,000 Chinese expected to die of it.2 The pathologic process 

of CRC is from normal epithelium to adenomatoid polyps, and finally to adeno-

carcinoma. Depending on its etiology and pathogenesis, CRC mainly divides into 

sporadic, hereditary, and inflammatory CRC. As part of a multistep process, genetic 

factors, life styles, diet habits, and chronic inflammation are thought to contribute 

to the occurrence and progression of CRC through the accumulation of a variety of 

genetic and epigenetic alterations.3–7 Notably, a number of studies have shown that 

the 5-year accumulative cancerization risk of inflammatory bowel disease (IBD) is up 

to 33%–54%.8–10 In addition, patients with IBD have an increased 2–4 times risk of 

developing CRC than the normal.11 Although multiple mutations are needed for both 

inflammatory and sporadic CRC, IBD-CRC model could accelerate hypermethylation, 

and chromosomal and microsatellite instability, and alter the stability and diversity of 

intestinal microbiota (IM).6,10,12 It is widely identified that intestinal bacteria dysbiosis 

is associated with the loss of epithelial barrier function, the pathogenesis of IBD, and 

colitis-associated CRC.13,14
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Human intestinal microbes contain at least 1,000 species, 

which are essential for digesting food, controlling intestinal 

epithelial homeostasis, intestinal development, and human 

health.15 Intestinal mucosal symbiotic bacteria increase 

intestinal stability and inhibit intestinal colonization by 

pathogens. When the balance of IM is broken, intestinal 

mucosal barrier and innate immunity function are reduced, 

and the relative pathogenic factors are increased so as to 

cause chronic inflammatory and infectious diseases. Inter-

estingly, a new study indicated that IBD susceptibility is 

attributed to specific bacteria communities and that manipu-

lation of the IM alters the induction and/or perpetuation of 

T-cell-induced colitis.16 The important modulation role of 

gut microbiota in inflammation-induced tumorigenesis was 

evident through the inhibition of tumor formation found 

in several CRC mouse models.17,18 In addition, numerous 

bacterial species such as Bacteroides fragilis, Fusobac-

terium nucleatum, and Peptostreptococcus stomatis have 

been found to have significant association with human CRC 

samples.19 A study first assessed that fecal microbiota also 

could directly promote intestinal carcinogenesis in germ-free 

mice and mice given a carcinogen through gavage of stool 

samples from patients with CRC.20 More recently, tumor-

prone mice cocolonized with enterotoxigenic B. fragilis 

(ETBF) and Escherichia coli (expressing colibactin) showed 

increased levels of inflammation markers in the colon and 

DNA damage in colonic epithelium with faster tumor onset 

and greater mortality, compared to mice with either bacterial 

strain alone.21 Mechanistically, gut microbiota may induce 

CRC by numerous processes, including the generation of 

toxic metabolites and genotoxic biosynthesis, the changes 

in DNA damage and chromosome instability, and an effect 

on epithelial cells proliferation and apoptosis.22–24 However, 

the accurate molecular mechanism of gut microbiota-induced 

CRC remains unknown. “Alpha-bug”,25 “Driver-passenger”,26 

and “Integrated function”27 are the three major carcinogenic 

theories for IM-mediated CRC. Among these patterns, 

Gallimore and Godkin perfectly described the combined reac-

tion of gut microecology, chronic inflammation, and intestinal 

mucosal barrier in the occurrence and progression of CRC.

At present, the radical surgery is the only probable 

cure for CRC, but the overall outcome for local and distant 

metastatic patients is barely ameliorated. Traditional chemo/

radiotherapies have improved the survival rate of these 

patients, and reduced the recurrence rate in a certain extent.28 

However, researchers must develop alternative methods or 

drugs to combat the problem that, due to long-term chemo-/

radiotherapy, an increasing number of patients have the 

serious therapy resistance and the occurrence of cancer 

metastasis. Notably, ~35% of patients with CRC have 

metastatic disease at diagnosis, which is a major cause of 

CRC-associated mortality.29 Obviously, the prevention and 

early diagnosis is of great significance in the treatment and 

prognosis of CRC patients. Chronic inflammation is an 

important risk factor for intestinal carcinogenesis. Thus, 

effective prevention and/or treatment of IBD can significantly 

reduce the incidence of colitis-associated CRC. Probiotics 

and fecal microbiota transplantation (FMT) are being increas-

ingly employed to treat IBD through the direct regulation 

of gut microbiome. In addition, probiotics and FMT can 

enhance the secretion of anti-inflammatory factors, reduce 

the growth of harmful bacteria by reconstructing intestinal 

mucosal barrier and immune system function, and thus play 

a preventive and therapeutic role in IBD.30,31 Currently, 

probiotics and FMT have been regarded as a safe treatment 

strategy compared to traditional treatment with significant 

toxicity, high recurrence rates, and poor outcomes. Exhila-

ratingly, a recent study demonstrated for the first time that 

patients with gastric carcinoma exhibit a dysbiotic microbial 

community with genotoxic potential, which is distinct from 

that of patients with chronic gastritis.32 Besides, present 

studies indicated that the structure and characteristics of 

the gut microbiota are markedly altered in CRC. Further 

population-based epidemiologic study is necessary to reveal 

the characteristics of intestinal microbiome in ultraearly 

CRC, which might provide some novel prophylactic and 

early diagnosis strategies for CRC patients.

Different from the traditional treatments, biotherapeutic is 

a new avenue to target cancer mainly through mobilizing the 

body’s natural anticancer ability and restoring the balance of 

the internal microenvironment. Until now, numerous studies 

have been successfully conducted for IM-based CRC thera-

pies in animal models by using pro-/prebiotics.33,34 Addition-

ally, targeted gut microbiome might be an effective strategy 

for preventing the progression of inflammation-driven CRC 

under antibiotic treatment.35 Moreover, IM has been found 

to play a significant modulation role in immune-checkpoint 

inhibitors-mediated anticancer immune response.36,37 

In clinical trials, pro-/prebiotics are widely used to reduce 

postoperative infections, and improve bowel immune 

system and epithelial barrier function in CRC patients.38–40 

Meanwhile, it has identified that the specific intestinal bac-

teria could affect chemo-/radiotherapy sensitivity in CRC 

patients.41,42 Based on these evidences, IM turns out to be 

encouraging in clinical application and shows a promising 

target in CRC biotherapeutics. Here, we mainly review our 
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emerging understanding of IM-based therapies in current 

applications for CRC patients, and discuss its potential in 

biotherapeutics. The general concerns of IM-based CRC 

therapies include underlying methods, the novel roles in com-

bination with other treatments, especially in immunotherapy, 

and analysis of safety, efficacy, and future perspectives.

IM is closely linked to CRC 
pathologies
Recently, it has been demonstrated that gut microbiota con-

tributes to the development of CRC through altering intesti-

nal bacterial biofilms, microenvironment homeostasis, and 

immune reaction. Bacterial biofilms consist of a higher-order 

level of spatial organization of multi-organism structures in 

mucosal microbial communities in the human intestine, and 

act as the first line of defense against invading microbes- 

induced inflammatory responses and the production of 

genotoxic bacterium-derived compounds.43–45 Alteration of 

colonic mucosal biofilms in the colon tissue microenviron-

ment is a distinct feature of proximal CRC.43 Bacterial bio-

films were associated with diminished colonic epithelial cell 

E-cadherin and increased crypt epithelial cell proliferation in 

normal colon mucosa.43 Comparative researches of the stool 

samples of healthy individuals and CRC patients found a 

significant difference in bacterial genera.19,46 It had shown that 

a reduction of biodiversity and richness of microbial commu-

nity with an increase in Fusobacterium, Peptostreptococcus, 

Bacteroides, Eubacterium, Proteobacteria, Prevotella, and 

Clostridium species were associated with CRC patients.19,46–50 

Among these bacteria, F. nucleatum was found to contrib-

ute to serrated pathway, adenoma–carcinoma sequence, 

and pathologic progression in CRC.51,52 Further study had 

identified that F. nucleatum promoted proliferation of CRC 

cells and tumor development in mice by activating toll-like 

receptor (TLR)/myeloid differentiation primary response 

gene 88 (MyD88)/nuclear factor-κB signaling.53 Notably, 

infection with F. nucleatum animalis in colorectal tissue 

could induce inflammatory response and promote CRC 

development.54 In addition, F. nucleatum had been shown 

to expand myeloid-derived immune cells, which suppressed 

T-cell proliferation and induced T-cell apoptosis in CRC.55 

These results suggest that gut microbiota plays a great role 

in the initiation and progression of CRC.

Potential therapeutics for IM
Oral probiotics
Probiotics are live microorganisms, which confer a ben-

eficial role in cancer prevention and treatment by reducing 

harmful bacterial translocation, promoting intestinal immune 

barrier function and antipathogenic activity.56,57 Currently, 

Lactobacillus, Bifidobacteria, Saccharomyces boulardii, 

and Bacillus coagulans are the most common products of 

microbiota used as probiotics.56,57 In addition, synbiotics, as 

a conjunction between prebiotics and probiotics, are used 

to improve the survival of the probiotic bacteria during the 

passage through the upper intestinal tract.56

Several studies had indicated the intelligible effects 

of the cytoplasmic extracts or cell-free supernatants from 

probiotic products or strains in inhibition of CRC cells 

proliferation and prevention of malignant transformation 

in vitro.58–60 Notably, a recent paper61 had revealed that the 

combined application of Propionibacterium freudenreichii 

and tumor necrosis factor (TNF)-related apoptosis-inducing 

ligand (TRAIL) increased proapoptotic gene expression and 

decreased antiapoptotic gene expression in CRC cells, sug-

gesting that P. freudenreichii has potential as a new adjuvant 

for TRAIL-based CRC therapy. In experimental models, 

probiotics could obviously decrease the incidence and devel-

opment of carcinogen-induced CRC.33,62–67 Interestingly, two 

reports demonstrated that probiotics exhibited an inhibitory 

role against colorectal tumorigenesis in adenomatous poly-

posis coli mutation mice.68,69 In addition, murine models of 

colorectal carcinoma fed with the engineered microbes and 

the cruciferous vegetable diet displayed significant tumor 

regression and reduced tumor occurrence.70 In CRC patients 

who were submitted to surgery, oral probiotics effectively 

reduced the tumor recurrence rate, and protected the intestinal 

mucosa physical and biologic barrier.71,72 According to the 

researches, either dietary synbiotics or yogurt attenuated 

the CRC risk factors.40,73 Moreover, it had demonstrated 

that Lactobacillus casei could prevent atypia of colorectal 

tumors.74 To date, 24 clinical trials of pro-/synbiotics thera-

pies had been published and shown a favorable benefit for 

CRC patients (Table 1). The outcomes of these studies are 

highlighted as a possible alternative or adjuvant to conven-

tional methods in CRC therapeutic.

However, four clinical reports indicated that pro-/

synbiotics had no measurable effect on gut barrier func-

tion, inflammatory response, and complications after CRC 

surgery.94–97 In addition, although synbiotic supplementation 

with Bifidobacterium lactis and resistant starch induced 

unique changes in fecal microflora, it did not significantly 

alter any other fecal, serum, or epithelial biomarkers of CRC 

patients.98 These results allow us to consider the patient’s 

family history and lifestyle, including diet, smoking, and 

other factors before treatment with pro-/synbiotics. In line 
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with the above comment that further and in-depth researches 

are taken to gain a keen understanding of their clinical value 

in CRC patients.

Providing prebiotics
In 2016, the International Scientific Association for Probiotics 

and Prebiotics had updated the definition of a prebiotic: 

a substrate that is selectively utilized by host microorgan-

isms conferring a health benefit, not confined to traditionally 

considered fructans (fructooligosaccharides and inulin) and 

galactans (galactooligosaccharides)-based carbohydrate.99 

This new definition will help broaden the scope of prebiotics 

in research studies and clinical applications. Despite that 

both prebiotics and probiotics can improve the integrity of 

the epithelial layer of the intestines, they can also increase 

the resistance against pathogenic colonization, a completely 

different model. Probiotics as new bacteria enter the human 

intestinal tract and then improve intestinal microecology, 

while prebiotics play a direct regulated role in gut microbiota. 

Interestingly, a present study suggested that polyphenols 

from green tea, oolong tea, and black tea could modulate 

the IM and generate short-chain fatty acids, and contribute 

to the improvements of human health.100 There is evidence 

that the consumption of prebiotics may inhibit colorectal car-

cinogenesis in culture and animal models.34,101–104 In healthy 

subjects, intervention trials indicated that palm, blackcurrant 

products, butyrylated starch, and wheat bran extract have a 

possible protective role in decreasing CRC risk.105–108 In addi-

tion, prudent diet (rich in whole grains and dietary fiber) was 

related with a lower risk of F. nucleatum-positive CRCs, 

but not with negative ones, suggesting that the association 

of dietary patterns with CRC significantly differed by tissue 

F. nucleatum status.109 By contrary, data from a Phase II 

chemoprevention trial did not provide convincing evidence 

of CRC risk reduction from 6-month interventions with pre-

biotic dietary fiber.110 Currently, the clinical application of 

prebiotics in CRC treatment mainly focuses on combination 

with probiotics as synbiotics (Table 1), and the most of the 

outcomes are exciting and positive.

Noticeably, pre-/synbiotics therapies from clinical studies 

have not shown satisfactory results in all CRC population, 

which leads us to take into account its imperfect reasons. 

Table 1 Clinical applications and outcomes of pro-/synbiotics formulations in CRC therapy

Pro-/synbiotics Outcome Subjects Reference

Lactobacillus rhamnosus, Bifidobacterium 
lactis, inulin

A reduction of colorectal proliferation and an 
improvement of epithelial barrier function

CRC and 
polypectomized patients

40

Lactobacillus casei Preventing atypia of colorectal tumors CRC removed patients 74
Lactobacillus, Bifidobacterium, 
Thermophilus, Enterococcus faecium

A feasible approach to protect patients against the risk of 
therapy-induced diarrhea

Chemo-/radiotherapy 
CRC patients

75–77

Bifidobacterium, Lactobacillus acidophilus A beneficial effect on the intestinal barrier function and a 
reduction of infection complication
A beneficial effect on the intestinal barrier function and a 
reduction of infection complication

Preoperative therapy of 
CRC patients
Preoperative therapy of 
CRC patients

78–80
Lactobacillus, Pediococcus pentosaceus, 
Leuconostoc mesenteroides, fermentable 
fibers

81

Lactobacillus, Bifidobacterium, 
E. faecium, Saccharomyces boulardii

An improvement of gut mucosal barrier and a reduction 
of infectious complications

Perioperative therapy of 
CRC patients
Perioperative therapy of 
CRC patients
Perioperative therapy of 
CRC patients

71, 82–86

P. pentosaceus, L. mesenteroides, 
Lactobacillus, multiplant fibers

A protective effect in preventing a postoperative 
inflammatory response

87

Lactobacillus, Bifidobacterium, 
Streptococcus thermophiles, 
oligofructose

A reduction in the prevalence of fecal enterobacteriaceae 
and bacterial translocation, but not in inflammatory 
response or septic morbidity

88

Lactobacillus, Bifidobacterium, fruit 
oligosaccharides
Lactobacillus, Bifidobacterium, fruit 
oligosaccharides

An increased production of interferon-gamma, and minor 
stimulatory effects on the systemic immune system

Postoperative therapy of 
CRC patients
Postoperative therapy of 
CRC patients

38
89

A beneficial effect of symbiotic supplementation, and 
CRP reduction in meantime

Lactobacillus plantarum, 
L. acidophilus-11, Bifidobacterium 
longum-88

A reduction of the serum zonulin level, the rate of 
postoperative septicemia, and a maintainment of the liver 
barrier

Perioperative therapy 
of colorectal liver 
metastases

90

E. faecium M-74 An effective and promising method for elimination of 
pathogenic bacteria in the case of iBD and CRC

CRC and iBD patients, 
healthy subjects

91

Bifidobacterium triple viable capsule An inhibited role in small intestinal bacterial overgrowth 
with alleviating its symptoms

Gastric cancer and CRC 
patients

92

Lactobacillus, Bacillus natto An improvement of bowel symptoms and quality of life Postoperative therapy of 
CRC, and CRC survivors

39, 93

Abbreviations: CRC, colorectal cancer; IBD, inflammatory bowel disease; CRP, C-reactive protein.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


OncoTargets and Therapy 2018:11 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

4801

intestinal microbiota in colorectal cancer

The human gut microbiome can be regarded as a “super 

organism” or “second genome” that regulates the host’s 

metabolism and immune system. So, does it also have positive 

and negative feedback regulation or self-regulation model 

similar to the human genome? If the answer is yes, then what 

is the molecular mechanism? In human genome, multiple 

genes and its related signaling exhibit a double effect in dif-

ferent human diseases; for example, c-Jun N-terminal kinase 

and p38α signaling pathways play a “good-cop and bad-cop” 

role in inflammatory and epigenetic modificatory diseases or 

tumorigenesis.111,112 Interestingly, Lactobacillus gasseri could 

increase transforming growth factor (TGF)-β1 mRNA and 

protein secretion in colonic cell lines.113 It is well identified that 

TGF-β plays a contradictory role in premalignant and cancer 

cells, and the mechanism of gut microbiota affecting TGF-β 

levels in the development and progression of malignancies is 

still obscure. Such results invite the plausible hypothesis that 

1) as a result of the different pathogenesis of inflammation, 

genetic mutations, and epigenetic modifications-associated 

CRC, whether pre-/synbiotics have dual function in these dis-

tinct patients; 2) there are some specific species in IM, maybe 

not pathogenic bacteria, which could also reduce/suppress 

the regulatory function of pre-/synbiotics, or even “kidnap” 

pre-/synbiotics and then participate in the procession of CRC 

under certain conditions; 3) although pre-/synbiotics do play 

an important role in modulation of immune development and 

function, and balance of IM, in some patients with severe gut 

microbiota dysbiosis may be beyond the control of prebiotics 

itself. If only these issues are fully investigated, can CRC be 

cured or controlled with simple daily use of pre-/synbiotics 

in the future.

Drugs intervention
Antibiotics are invaluable weapons to fight IBD, but long-

term antibiotic use is associated with an increased risk of 

colorectal adenoma by altering the composition and func-

tions of IM.114 It has been identified that gut microbiota is 

required for heme-induced epithelial hyperproliferation and 

hyperplasia because of the capacity to reduce mucus barrier 

function in colon.115 However, the suppression of microbiota 

by antibiotics was related to a reduction in crypt height and 

heme-induced colorectal carcinogenesis in rats.116 In addi-

tion, antibiotic drugs such as anisomycin, prodigiosin, and 

salinomycin had shown an inhibiting function in the growth 

of colorectal carcinoma cells by targeting different molecu-

lar mechanisms.117–119 In inflammation-driven CRC mouse, 

targeted IM turned out an effective strategy for prevent-

ing the development of CRC under antibiotic treatment.35 

Interestingly, a study by Hamoya et al120 suggested that 

erythromycin is useful as a chemopreventive agent and 

suppresses intestinal polyp development in mice, in part by 

attenuating local inflammation. Furthermore, treatment of 

mice bearing a colon cancer xenograft with the antibiotic 

metronidazole reduced Fusobacterium load, cancer cell 

proliferation, and overall tumor growth, which indicated anti-

microbial interventions as a potential treatment for patients 

with Fusobacterium-associated CRC.121 Now, it is not clear 

whether these drugs found in natural microorganisms exert 

anti-CRC effects by affecting the function and balance of 

gut microbiota, but there is a viable way to explore and 

develop novel antibiotics or antibiotic peptides based on 

human IM itself. In the latest studies, the fingerprint of the 

human gastrointestinal (GI) tract microbiota aimed to study 

many complex bacterial ecosystems, which might push the 

development of narrow spectrum antibiotics and the applica-

tion in CRC treatment, and formulate systems pharmacology 

and personalized therapeutics.122,123

Moreover, a series of medications, including celecoxib, 

berberine, isoliquiritigenin, and curcumin, had been found 

to decrease the incidence of colorectal tumorigenesis by 

modulating the IM.124–127 Another potential agent might be 

the herbal medicines, such as ginseng and astragalus, which 

are metabolized extensively by IM and could act as adjuvants 

for cancer chemoprevention.128 Although these medicines 

are only used in mice models for this study, evidently it 

is feasible that the locus could be an attractive method for 

IM-based strategies.

FMT
FMT is a method of fecal suspension from healthy donors 

into the GI tract of individuals to cure specific diseases by 

reconstructing the normal function and the immune system 

of IM. As early as 1958, Eiseman et al129 had first used FMT 

in mainstream medicine for the treatment of pseudomembra-

nous colitis. In recent years, FMT is no longer considered an 

“alternative”, and is now gaining mainstream acceptance as 

a valuable biotherapeutic; although still poorly understood, 

it is used to treat GI diseases including IBD, Clostridium 

difficile infection, irritable bowel syndrome, and chronic 

constipation as well as a variety of non-GI disorders.31,130 The 

transplants used in FMT could be either fresh stools or fecal 

frozen capsules, or extracts of bacterial flora from normal 

fecal flora.31 A recent study found that the FMT activated 

the tumor-associated Wnt/β-catenin signaling pathway, but 

microbiota depletion by a cocktail of antibiotics was sufficient 

to block deoxycholic acid-induced intestinal carcinogenesis 
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in mice.131 Despite the evidence being lacking at present for 

FMT in CRC treatment, fecal microbiota from patients with 

CRC is identified to directly promote intestinal carcinogen-

esis in germ-free mice and mice given a carcinogen.20 Thus, 

there is a reason to believe that FMT has a potential clinical 

effectiveness in the prevention and treatment of CRC by 

improving the balance and function of human IM.

It is notable that the impact of FMT on the recipient 

immune system is complicated and unpredictable, and the 

risk of dissemination of unknown pathogens through FMT 

cannot be eliminated.132 In addition, numerous outstanding 

questions remain, including FMT methodology – such 

as, what makes a “good donor,” routes of administration, 

preparation of transplant material, regulatory frameworks, 

and long-term effects of FMT.31,133,134 If we can identify 

the favorable fecal microbiota composition or safe and 

functionally well-defined strains, and use prebiotics as the 

parcel material, FMT might be the low-burden alternative to 

chemo-/radiotherapy switch in the near future.

The roles of IM in other treatments
Surgery and chemo-/radiotherapy
Incorporation of pro-/synbiotic formulations in the preop-

erative mechanical bowel preparation is insufficient to be 

supported by the present evidence. Limited clinical trials 

could be promising in supporting their potential role in 

reducing postoperative infection and tumor recurrence, and 

promoting quality of life after CRC resection.39,72 Chemo-/

radiotherapy has become the most common method for 

advanced CRC patients, but the GI side-effect is a serious 

problem that increases the patient’s pain, and even endan-

gers the patient’s life. Microbial β-glucuronidases in the 

intestines can reactivate the excreted, inactive metabolite 

of irinotecan, a first-line chemotherapeutic for metastatic 

CRC, which causes adverse drug responses, including 

severe diarrhea. A recent study applied an approach to 

cancer chemotherapy through the use of a high-turnover 

microbiota metabotype with potentially elevated levels for 

microbial β-glucuronidases, which indicated that inhibiting 

these enzymes may decrease irinotecan-dependent adverse 

drug responses in targeted subsets of CRC patients.135 

It is accepted that chemo-/radiotherapy-induced intestinal 

mucosal inflammation is closely related to the diversity of 

IM.136 Meanwhile, gut microbiota had been found to affect 

host’s sensitivity to these therapies by modulating autophagy 

and metabolism.41,42,137,138 In addition, a mounting body of 

evidence had suggested that pro-/synbiotics could protect 

against chemo-/radiotherapy-induced diarrhea and mucosal 

inflammation.75–77 Interestingly, Singh et al139 developed an 

improved oral delivery system that comprises three com-

ponents, namely nanoparticles of drug coated with natural 

materials such as prebiotics, and probiotics, which plays 

a dual role of protecting the drug in the gastric as well as 

intestinal conditions to allow its release only in the colon. 

Deciphering microbiome–host interactions before and after 

chemo-/radiotherapy may eventually allow prediction of 

CRC course and offer opportunities for the discovery of 

specific gut bacteria or metabolites as bioengineered adjuvant 

for chemo-/radiotherapy.

immunotherapy
Tumor immunotherapy, a novel biotherapeutic, could stimu-

late and mobilize host’s immune system, and enhance anti-

cancer immune response in tumor microenvironment, which 

eventually induces the apoptosis of carcinoma cells and inhib-

its tumor growth. However, the efficacy of immunotherapy 

has been a controversy in recent years. Negative regulation 

of tumor immune response is the most important reason to 

escape the antitumor immunotherapy mainly through recruit-

ing or inducing inflammatory cells, including T regulatory 

cell (Treg), myeloid-derived suppressor cell (MDSC), and 

M2-like macrophage.140 In addition, the immune-checkpoint 

proteins cytotoxic T lymphocyte-associated antigen 4 

(CTLA-4), programmed death-1 (PD-1), and programmed 

death receptor ligand-1 (PD-L1), and immunosuppres-

sive cytokines of anticancer immune responses such as 

TGF-β, interleukin-10 (IL-10), IL-17, and IL-6, are also 

involved in the negative regulation of tumor immunity.141–144 

Notably, several reports have shown that gut microbiota is 

of great accommodative value to anticancer immunotherapy 

responses.145–147

Treg cells could inhibit the function of CD4+ T cells, 

CD8+ T cells, dendritic cells (DC), and natural killer cells 

(NK), and promote the formation of immunosuppressive 

tumor microenvironment.148 A recent study had found 

that the amplification of Treg cells was closely associated 

with the IM, ETBF-triggered chronic inflammation and 

colon tumorigenesis in mice through the enhancement of 

Treg proliferation and IL-17 production.149 Importantly, 

cyclophosphamide (CTX) could induce the translocation of 

Gram-positive bacteria in the small intestine, provide “patho-

genic” T helper 17 (pTh17) cells-based immune environment, 

and enhance the antitumor effect of CTX.150 Additionally, 

Enterococcus hirae translocated from the small intestine 

to secondary lymphoid organs and increased the intratu-

moral CD8+/Treg ratio, and Barnesiella intestinihominis 
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accumulated in the colon and promoted the infiltration of 

interferon-γ-producing γδT cells in cancer lesions, and in 

turn ameliorated the efficacy of anticancer immunomodu-

latory agent CTX.151 Moreover, CTX treatment decreased 

the proportion of Bacteroidetes while it increased the 

proportion of Firmicutes in the microbial community, and 

specific microbiota signatures belonging to Bacteroides and 

Alistipes respond to CTX therapy.152 Evidence of a patho-

genic inflammatory signature in humans colonized with 

ETBF accelerated colorectal carcinogenesis, and promoted 

the differentiation of MDSCs, which selectively upregulated 

arginase-1 and nitric oxide synthase-2, produced NO, and 

suppressed T-cell proliferation.153 Gram-negative strains 

such as Escherichia and Salmonella elevated inducible nitric 

oxide synthase expression,154 and B. fragilis155 also promoted 

the phagocytic functions of macrophages, polarizing them to 

an M1-like phenotype. IM imbalance can drive upregulation 

of IL-17C and B-cell lymphoma-2 in intestinal epithelial 

cells through TLR/MyD88-dependent signaling during 

intestinal tumorigenesis.156 These studies support the notion 

that depressing negative regulator-associated inflammatory 

cells and immunosuppressive cytokines through improving 

IM may be an attractive and promising strategy for antitumor 

immunotherapy (Figure 1).

Additional investigations had established that CD4+ 

CD25+ Treg cells could inhibit the immune function of 

activated T cells by upregulating the CTLA-4 expression,157 

which combines B7 on the antigen-presenting cell, and then 

antagonizes the activation of CD28/B7 signaling and the 

antitumor immune response.158 Findings from animal tumor 

Figure 1 The roles of intestinal microbiota in the regulation of tumor immunity.
Notes: Inflammatory cells including Treg, Th17, myeloid-derived suppressor cells, and M2 macrophage, immunosuppressive cytokines such as IL-17, IL-10, TGF-β, and 
iL-6, and immune-checkpoint proteins CTLA-4 and PD-1/PD-L1 are involved in the negative regulation of tumor immune response. it has shown that pathogenic bacteria 
(such as ETBF) or intestinal dysbacteriosis could drive amplification of inflammatory cells and upregulation of immunosuppressive cytokines through TLR-MyD88-dependent 
signaling. in addition, microbiota dysbiosis could inhibit the function of effector CD4+/CD8+ T cells, DC, and NK and promote the formation of immunosuppressive tumor 
microenvironment. By contrary, beneficial bacteria (such as Bacteroidales and Bifidobacterium) or microbiota eubiosis could favor the immune response of DC and T cells 
with anticancer properties through increasing the intratumoral effector CD4+/CD8+ proliferation and tumor necrosis factor, iL-2, iL-21, and iFN-γ production, which in 
turn inhibits the negative regulation of tumor immunity. Simultaneously holding immune-checkpoint antibody and probiotics could augment the function of DC and beneficial 
T cells, leading to enhanced CD8+ T-cell priming accumulation and sensitized CD28/B7 or blocked PD-1/PD-L1 axis in the tumor microenvironment.
Abbreviations: CTLA-4, cytotoxic T lymphocyte-associated antigen 4; DC, dentritic cells; eBTF, enterotoxigenic Bacteroides fragilis; iL, interleukin; NK, natural killer cells; 
PD-1, programmed death-1; PD-L1, programmed death receptor ligand-1; TGF, tumor growth factor.
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models and human studies, and simultaneous holding of anti-

CTLA-4 antibody and Bacteroidales favored the immune 

response of DC and T cells with anticancer properties.36 

In addition, it had shown that increased representation of 

Bacteroidetes was correlated with resistance to the develop-

ment of CTLA-4 blockade-induced colitis.159 In addition to 

CTLA-4, another immune-checkpoint inhibitor, PD-1, could 

bind to tumor cell surface receptor PD-L1, sensitize PD-1/

PD-L1 signaling pathway, and promote tumor cells to escape 

immune surveillance and killing.141 A new study claimed that 

enriched Clostridiales bacteria was found in responders’ 

gut microbiome undergoing anti-PD-1 immunotherapy in 

melanoma patients, and its underlying mechanism might be 

promoting the proliferation of beneficial T cells, and then 

inhibiting the level of immunosuppressive cells.160 Oral 

administration of Bifidobacterium and PD-L1-specific anti-

body could augment DC function leading to enhance CD8+ 

T-cell priming accumulation in the tumor microenvironment, 

and then nearly abolish tumor outgrowth.161 Similar to these 

studies, Akkermansia muciniphila was identified to have a 

beneficial role in epithelial tumor patients who showed a 

good response to anti-PD-1 therapy, and oral supplementa-

tion with A. muciniphila post-FMT with nonresponder feces 

restored the efficacy of PD-1 blockade through increasing 

the recruitment of CCR9+ CXCR3+ CD4+ T cells into 

tumor beds.37 Additionally, more abundant bacterial species 

was observed to have greater clinical response to immune-

checkpoint inhibitor therapy, which suggested that the 

commensal microbiome may have a mechanistic impact on 

antitumor immunity in human cancer patients.162,163 Besides 

these, commensal microbes combined with CpG oligo-

nucleotide induced the release of TNF leading to antitumor 

immune response and tumor hemorrhagic necrosis through 

TRL4 signaling.164 To this end, we summarized the regulated 

roles of anticancer immunotherapy using IM (Table 2) and 

explored its underlying mechanism in the regulation of tumor 

immune response (Figure 1).

Safety, deficiency, and future 
direction
Although studies of IM have just begun, gut microbiota-

based CRC therapy is a comparatively safe method with 

less side effects that is easily accepted by patients. Because 

of individual heredity, dietary preference, and life habit, the 

prevention and curative effects of IM-based CRC treatment 

may also vary from each other. How to formulate reason-

able prescriptions for different groups and races to prevent 

generating new IM disorders or derangements, especially 

when using FMT? Another concern relates to the long-term 

efficacy, novel administration routes, and new formulations, 

which also require a systematic and scientific evaluation 

approach.

Moreover, several important scientific problems remain 

to be addressed, such as follows: 1) For now, the classification 

of IM mostly depends on 16S rRNA sequencing, which is a 

relatively rough method that can distinguish family and genus 

of bacteria, but usually not species and strains. Therefore, a 

huge difference in the percentage of single bacteria may be 

omitted. DNA microarray,122 matrix-assisted laser desorption 

ionization time-of-flight mass spectrometry,165 H-nuclear 

Table 2 The effects and mechanisms of intestinal microbiota in anticancer immunotherapy

Therapeutics Regulation mechanism Signatures Reference

CTX Stimulated memory Th1 immune responses, and provided “pathogenic” 
T helper 17 cells-based immune environment

Gram-positive bacteria 150

increased the intratumoral CD8+/Treg ratio, and promoted the infiltration 
of iFN-γ-producing γδT cells in cancer lesions

Enterococcus hirae and 
Barnesiella intestinihominis

151

CTLA-4 antibody Favored the immune response of DC and T cells with anticancer 
properties

Bacteroidales 36

Resisted to the development of checkpoint-blockade-induced colitis, 
reduced the risk of inflammatory complications

Bacteroidetes 36, 159

PD-1/PD-L1 antibody Promoted the proliferation of beneficial T cells, and then inhibited the 
level of immunosuppressive cells

Clostridiales bacteria 160

Augmented DC function leading to enhanced CD8+ T-cell priming 
accumulation in the tumor microenvironment

Bifidobacterium 161

increased the recruitment of CCR9+ CXCR3+ CD4+ T cells into 
tumor beds

Akkermansia muciniphila 37

CpG-ODN induced the release of tumor necrosis factor leading to anti-tumor 
immune response and tumor hemorrhagic necrosis through TRL4 signaling

Gram-negative Alistipes 
genera

164

Abbreviations: CCR9, CC chemokine receptor 9; CpG-ODN, CpG oligonucleotide; CTX, cyclophosphamide; CTLA-4, cytotoxic T-lymphocyte-associated antigen 4; 
CXCR3, C-X-C motif chemokine receptor 3; DC, dendritic cells; iFN, interferon; PD-1, programmed death 1; PD-L1, programmed death receptor ligand 1; TRL4, toll-like 
receptor 4.
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magnetic resonance spectroscopy,166 as well as other newer 

methods might help to study many complex bacterial eco-

systems and constitute personalized medicine for CRC 

patients. 2) Current data suggest that the association between 

Helicobacter pylori and colorectal neoplasms may be popu-

lation dependent, indicating that certain CRC subtypes may 

also be infectious diseases.167 The roles of gut microbiota in 

different CRC subtypes (including infection, inflammation, 

genetic mutations, and epigenetic modifications-associated 

CRC) are complex, and its maladjustment is the cause of 

tumorigenesis, or the result of tumor development is still 

uncertain. 3) Most studies on IM are based on animal models, 

especially the germ-free mice. Sterile mice are themselves 

a disease state; besides this, gut microbiota of humans and 

mice is also quite different, so using these animal studies 

to expand to clinical data needs to be carefully handled. 

4) Despite that there are many clinical and preclinical tests 

about gut microbiota and CRC treatment, basically, a single 

or a few special bacterial communities are involved in these 

studies. The broad impact of commensal bacterial species 

on a wide range of health and/or CRC subjects will require 

consideration in settings of microorganism reconstitution 

with designer microbial syndicates, which is a commensal 

microbiome model including several gut strains. Notably, 

molecular pathologic epidemiology can enhance causal 

inference by linking putative etiology, and contribute to 

biomarker research and precision medicine. It can be used for 

research on dietary and environmental factors, microbiome, 

various omics, in combination with CRC phenotype includ-

ing microbial profiling in tissues.168,169

According to the data obtained over the past few years, 

it is plausible that gut microbiome could be used as an early 

diagnostic biomarker of CRC by using fecal proteomics and 

microbiota-based prediction, monitoring IM profile.165,170–172 

In addition, checking specific biomarker of IM in urine has 

been predicted to reduce intestinal graft-versus-host disease 

and treatment-related mortality.173 Gastric microbial compo-

sition can be used to distinguish chronic gastritis and gastric 

carcinoma.32 There is a reason to believe that CRC might be 

diagnosed in near future only through detecting character-

istic markers of microbiota in feces, urine, or blood. Recent 

studies revealed that genetically modified bacteria as a tool 

to detect microscopic solid tumor masses even could effec-

tively colonize solid tumors and act as antitumor therapeutics, 

suggesting that genetically manipulated bacteria has great 

potential in CRC treatment/prevention in the future.174,175 

Given the immunomodulatory effects and modern theories, 

gut microbiota can also be used to research CRC vaccines 

or adjuvant, which is applied for the maintainment of intes-

tinal normal barrier and immune response. Moreover, IM 

might be used to monitor the sensitivity and outcomes of 

chemo-/radiotherapy and immunotherapy in CRC patients 

based on the recent studies in mice models. Besides these, 

immunotherapies or chemoimmunotherapies might also have 

variable reliance on gut microbiota for T-cell activation and 

function, and thus have a potential as novel strategies in 

individualized treatment.

Conclusion
Despite that there are still lots of deficiencies and problems 

associated with utilizing IM in CRC treatment, IM-based 

CRC therapy is well tolerant, comparatively safe, and of a 

comfortable pattern. Combined application of gut microbiota 

and other therapeutics, especially immunotherapy, shows 

a powerful synergistic efficiency to treat CRC settings or 

restrain side effect. Systematic and credible preclinical 

and clinical studies will help to get a good understanding 

of molecular mechanism, which could further expand the 

application of IM in the early diagnosis and prevention of 

CRC. We believe that it offers opportunities for the develop-

ment of novel therapeutic or prophylactic strategies.
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