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Abstract: Genome-wide mRNA expression profiling using microarrays is widely available 

today, yet analysis and interpretation of the resulting high dimensional data continue to be a 

challenge for biomedical scientists. In a typical microarray experiment, the number of biologi-

cal samples is quite modest compared with the number of genes on a microarray, and a prob-

ability of falsely declaring differential expression is unacceptably high without any adjustment 

for multiple comparisons. However, a stringent multiple comparison procedure can lead to an 

unacceptably high false negative rate, potentially missing a large fraction of truly differentially 

expressed genes. In this paper we propose a new “balancing factor score” (BFS ) method for 

identifying a set of differentially expressed genes. The BFS method combines a traditional 

P value criterion with any other informative factors (referred to as balancing factors) that may 

help to identify differentially expressed genes. We evaluate the performance of the BFS method 

when the observed fold change is used as a balancing factor in a simulation study and show that 

the BFS method can substantially reduce the false negative rate while maintaining a reasonable 

false discovery rate.

Keywords: balancing factor score method, microarrays, multiple comparisons, false discovery 

rate, false negative rate

Introduction
High-throughput genomic technologies such as genome-wide mRNA expression arrays 

(microarrays) and single nucleotide polymorphisms (SNPs) produce thousands of mea-

surements for each sample. A common goal in a microarray experiment is to identify 

genes that are differentially expressed between two or more experimental conditions.1 

A typical statistical approach is to perform an appropriate statistical significance test 

for each gene (eg, gene-by-gene unpaired t-test or two-sample Wilcoxon test) followed 

by a multiple comparison procedure (MCP), controlling either for the overall rate of 

false positives or of false discoveries. Many different MCP methods have been pro-

posed for high dimensional data sets, and a comprehensive review of these methods 

can be found in Dudoit and colleagues.2 The false discovery rate (FDR) method3 is 

perhaps the most popularly used MCP method in microarrays.4 Storey and colleagues 

proposed a Q value as an extension of FDR.5 The Q value is similar to the well known 

P value. The Q value is a measure of significance in terms of the FDR, while the P 

value is a measure of significance in terms of the false positive rate (FPR). The Q value 

is implemented in the Significance Analysis of Microarrays (SAM), a popularly used 

free software for the microarray analysis (http://www-stat.stanford.edu/∼tibs/SAM/) 

developed by Tibshirani’s group at Stanford University.
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Until recently MCP methods focused mostly on controlling 

the number of false positives, but when a difference between 

two groups is of a modest magnitude, the existing methods 

can result in a poor power to detect genes that are truly 

differentially expressed.6 To improve a power of selecting 

truly differentially expressed genes, some authors proposed 

a hybrid approach such as evaluating FDR in conjunction 

with secondary measures, for example, the FNR or fold 

change. Norris and colleagues proposed a “balance prob-

ability analysis”6 which provides a biologist with a method 

for interpreting results in the context of the total number of 

truly differentially expressed genes, FDRs and FNRs for the 

list of genes reaching any significance threshold. Rosenfeld 

suggested a modification of the classical t-test,7 which is 

specifically designed to enhance the sensitivity of detection 

of differentially expressed genes. Rosenfeld proposed a 

test statistic called a “bio-weight”, which is defined as the 

product of the absolute fold change and the negative decimal 

logarithm of the t-test P value. In this paper, we propose a 

“balancing factor score” (BFS ) method which combines 

the P values from the conventional significance test and any 

other informative factors that may increase the sensitivity of 

identifying differentially expressed genes (eg, fold change or 

P value from another microarray experiment). Under certain 

circumstances, the proposed BFS method can substantially 

improve the detection of truly differentially expressed genes by 

reducing the FNR while keeping a reasonable level of FDR.

Material and methods
Motivating example
The BFS method was motivated by an actual microarray 

experiment conducted by a biomedical scientist from the 

Oregon National Primate Research Center at the Oregon 

Health and Science University. The experiment examined the 

effect of age and gender on gene expression of hippocampus 

among rhesus macaques. The experiment was performed as 

a 2 × 3 factorial design with a total of six groups defined by 

two gender levels (male, female) and three age levels (adult, 

middle-aged, old). There were approximately four animals 

per group with a total of 24 animals. The microarray experi-

ment was carried out by the OHSU Gene Microarray Shared 

Resource Affymetrix Microarray Core using the Rhesus 

Macaque GeneChip. After appropriate pre-processing and 

normalization, a two-way analysis of variance was fitted to 

each gene separately, and the FDR adjustment was applied 

to each factor (gender, age, gender by age interaction) inde-

pendently. After the FDR adjustment, there were no genes 

that met a FDR P value  0.05 for the interaction effect and 

only a handful of genes that met the FDR P value  0.05 for 

gender and age main effects. Because the cost of obtaining 

additional samples was prohibitive, we explored alternative 

methods of identifying a set of differentially expressed genes 

and for assessing the FNR of the FDR-adjusted P value cri-

terion. Although our motivation came from one particular 

study, we expect that similar situations arise elsewhere. In 

some experiments, the cost of obtaining biologic samples is 

very high, and it is not always possible to increase the sample 

size. In addition, many microarray experiments are performed 

primarily as a screening procedure with identified genes being 

evaluated by another experimental platform (such as quan-

titative real time transcription – polymerase chain reaction 

[qRT-PCR]). In those circumstances, it may be acceptable 

to have a slightly higher FDR in exchange for a larger pool 

of potentially differentially expressed genes. These consid-

erations prompted us to investigate a hybrid approach which 

is based on both P values and other factors that may help 

identify a set of differentially expressed genes.

Notations and definitions
To simplify, we will focus on a problem of identifying a 

set of differentially expressed genes between two groups 

(eg, normal vs disease), where one may apply a simple 

unpaired t-test or Wilcoxon rank sum test to each gene 

individually. Table 1 summarizes the resulting test outcomes 

and the definition of key concepts used in this paper. Spe-

cifically we focus on the FNR and FDR.

Illustration using simulated data
We simulated a microarray data set with the following 

conditions: (1) 52,865 genes; (2) 30 samples (15 samples per 

group) and (3) 10% of genes (N
1
 = 5,287) truly differentially 

expressed with the mean difference of 0.748 standard devia-

tion unit [ie, t-statistics of 2.05 (t
0.025, 28

)]. In each gene, the 

FDR P value threshold of 5% is used to identify differentially 

expressed genes. As expected, the FDR is approximately 5%, 

Table � Possible outcomes from N significant tests and definitions 
of FNR, FPR, FDR, and FNDR

Declare DE Declare non-DE Total

True De TP FN N1

Truly not De FP TN N2

Total S1 S2 N

Notes: Sensitivity is 1-FNR, while specificity is 1-FPR.
Abbreviations: TP, true positive; FN, false negative; FP, false positive; TN, true negative; 
FNR, false negative rate = FN/N1; FPR, false positive rate = FP/N2; FDR, false discovery 
rate = FP/S1; FNDR, false non-discovery rate = FN/S2.
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that is, 69 genes are identified as differentially expressed 

with only four being false positives. Surprisingly, however, 

5,222 genes are false negative, ie, falsely declared as not dif-

ferentially expressed, and the FNR is 0.99. The FDR-adjusted 

P value criterion sacrifices too many false negatives in order 

to control the number of false positives. If the raw P values 

without any MCP adjustments are used, the FNR is 0.49, but 

the FDR is 0.47, and thus too high to be acceptable, leading 

to costly follow-up experiments with very few conformed 

genes. Figure 1 displays the volcano plot, ie, a scatter plot 

of observed mean differences in the x axis vs -log
10

 (FDR 

P values) in the y axis. The red dots represent true differen-

tially expressed genes, and the vertical line represents the 

FDR-adjusted P value threshold value of 0.05. In a typical 

microarray study, genes above the vertical line are declared 

as differentially expressed genes. As seen in Figure 1, most 

of the false negative genes are associated with a larger fold 

change value. An alternative method that incorporates the 

fold change information may lead to a better detection of 

differentially expressed genes, and may balance between 

the FDR and FNR.

BFS method
A balancing factor is any informative factor that may help 

identify differentially expressed genes in addition to the 

standard p values from statistical significance testing. A BFS 

is defined as a quantitative measure of a balancing factor 

ranging from 0 (strong differential expression) to 1 (no 

differential expression), analogous to the p value. A BFS 

can be created by first transforming it to the standardized z 

score and computing the standard normal probability. For 

example, consider a fold change (FC) defined as: sign(∆)*2|∆|, 

where ∆ is a mean difference of normalized log signal values 

between the experimental and control groups. A fold change 

of -2 implies twofold downregulation, while a fold change 

of 2 means twofold upregulation in the experimental group 

compared with the control group. A fold change can be used 

as a balancing factor, and the BFS can be created by using 

the standardized normal probability as:

BFS
FC FC

FC

= >
-







P Z

SD

| | | |
.

| |

For each gene, a BFS statistic (T
BFS

) can be computed as:

T p BFSBFS i i
i

k

= +
=
∑λ λ0

1

where p is the unadjusted P value for the conventional test, 

λ
0
 is the weight for the unadjusted P value, and λ

i
 is a 

weight for the ith balancing factor so that λ λ0
1

1+ =
=
∑ i
i

k

. T
BFS

is always between 0 and 1, and one can consider it as a 

modified P value. We will then apply the FDR method to 

T
BFS

 to calculate the FDR-adjusted T
BFS

 value, denoted by 

FDR(T
BFS  

). A gene is then declared as differentially expressed 

Figure � Volcano plot: scatter plot of log (fold change) in the x axis vs -log10 (FDR P value) in the y axis. The red dots represent true differentially expressed genes, and the 
vertical line represents the FDR-adjusted P value threshold value of 0.05.
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if FDR(T
BFS  

) is less than α, specified cut-off value (usually 

0.05), and otherwise declared not differentially expressed. 

Note that if λ
0
 = 1 and λ

I
 = 0 for all i  0, then this is equiva-

lent to the FDR-adjusted P value criterion.

A choice of balancing factors is not unique, but there 

are obvious candidates including a fold change, P value 

from the previous microarray experiment, P value from the 

published study or publicly available data, or P value repre-

senting biologic relevance (eg, a likelihood of a particular 

gene belonging to a pathway of interest).

If BFS
i
 follows beta distributions for the ith test, λ

0
 is the 

probability of there being no difference, and λ
1
is the P value 

of being truly differentially expressed in ith test, then the BFS 

method has the same structural form as the mixture model 

proposed by Allison and colleagues.8 The BFS method can 

be extended to identify a set of differentially expressed genes 

when the microarray experiment is performed at multiple 

times or using different platforms such as DNA methylation. 

In a special case when a balancing factor is a P value from 

another, independently conducted experiment, the BFS test 

statistic can be expressed as: T
BFS

 = λ
0 
p

0
 + λ

1 
p

1
, where p

0
 

is the P value from the current experiment and p
1
 is the P 

value from another study. In this case, we can determine the 

actual distribution and cut-off value for the BFS method that 

provides a specified error rate (see Appendix 1).

Results
A simulation study is conducted to evaluate the perfor-

mance of the BFS method when a fold change is consid-

ered as a balancing factor. A total of 500 simulated data 

sets are generated under the following conditions: (1) Two 

groups; (2) 15 samples per group; (3) 10,000 genes (N) on 

each microarray; (4) the proportion of truly differentially 

expressed genes (N
1
) is either 5% or 10%; (5) among truly 

differentially expressed genes, the fold change varies from 

1.5, 2.0 and 3.0, and (6) the expression values are normally 

distributed. The following procedure is applied to each 

simulated data set:

1. Define

 

BFS P Z
FC FC

SD FC

= >
-









| | | |

| |

, where SD
|FC|

 is the

 
 standard deviation of the absolute fold change values

2. Calculate the BFS using T
BFS

 = λ
0 
p + λ

1
BFS, where p is 

a P value from two-sample t-test

3. Calculate Benjamini Hochberg FDR-adjusted T
BFS

, 

denoted as FDR(T
BFS

)

4. If FDR(T
BFS

) is smaller than the pre-determined threshold 

value, typically 0.05, then declare the gene as differen-

tially expressed.

Simulation results are summarized in terms of empirical 

FDR and FNR. We evaluate FDR (T
BFS

) for various values of 

λ
1
 between 0 to 1. If λ

1
 = 0, this is equivalent to the standard 

FDR-adjusted P value criterion. The performance of the 

BFS method is shown as a function of the weight λ
1
 and is 

compared with the FDR-adjusted P value criterion as well 

as the criterion based on unadjusted P values. Table 2 shows 

the performance of the BFS method when the proportion of 

truly differentially expressed genes is 10% with a relatively 

large fold change (FC = 3.0). The FNR of the FDR-adjusted 

P value criterion is 0.12, whereas the FNR of the BFS 

method is consistently smaller for all λ
1
 (0.07–0.11) while 

maintaining a comparable FDR level. In this simulation 

scenario, regardless of a choice of λ
1
, the BFS method not 

only identifies more true positive genes but also identifies 

fewer false positives than typically used selection methods. 

Table 3 shows the simulation results for the other extreme 

when the proportion of truly differentially expressed 

Table � Total true De = 1000 10%, true difference FC = 3.0, cutoff α = 0.05

Number of genes identified as DE False discovery rate FDR False negative rate FNR

Mean SE Mean SE Mean SE

Raw P value 1438.60 0.9303 0.31 0.0004 0.01 0.0002

FDR P value 925.81 0.6382 0.05 0.0003 0.12 0.0005

BFS λ1
0.1 927.92 0.6129 0.04 0.0003 0.11 0.0005

0.2 930.02 0.5859 0.04 0.0003 0.11 0.0005

0.3 932.58 0.5572 0.04 0.0003 0.10 0.0005

0.4 935.30 0.5278 0.04 0.0003 0.10 0.0004

0.5 938.78 0.5052 0.04 0.0003 0.09 0.0004

0.6 943.02 0.4935 0.03 0.0003 0.09 0.0004

0.7 947.87 0.4764 0.03 0.0003 0.08 0.0004

0.8 953.73 0.4533 0.03 0.0003 0.08 0.0004

0.9 961.66 0.4683 0.04 0.0003 0.07 0.0004
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genes is small (5%) with a moderate change (FC = 1.5). 

In this setting, the FDR-adjusted P value criterion fails to 

identify true differentially expressed genes. It only detects 

0.54 genes on average. If the unadjusted P value criterion is 

used, on average, 647 genes are declared to be differentially 

expressed, while 476 genes are false positives. Even in this 

extreme case, the BFS method provides a reasonable number 

of genes (0–85 genes depending on λ
1
) that can be pursued 

further for confirmation. Figures 2a and 2b illustrate the FDR 

(2a) and FNR (2b), respectively, as a function of λ
1
, when 

Table � Total true De = 500 5%, true difference FC = 1.5, cutoff α = 0.05

Number of genes identified as DE Number of false positives Number of false negatives

Mean SE Mean SE Mean SE

Raw P value 646.81 1.0700 476.81 0.9495 329.99 0.4820

FDR P value 0.54 0.0454 0.08 0.0148 499.55 0.0384

BFS λ1
0.1 0.61 0.0504 0.09 0.0152 499.48 0.0433

0.2 0.73 0.0559 0.11 0.0164 499.37 0.0483

0.3 0.89 0.0641 0.13 0.0197 499.25 0.0559

0.4 1.08 0.0763 0.19 0.0250 499.11 0.0641

0.5 1.43 0.0949 0.27 0.0348 498.84 0.0754

0.6 1.96 0.1159 0.39 0.0413 498.43 0.0910

0.7 3.74 0.1937 0.88 0.0713 497.14 0.1445

0.8 10.32 0.4203 3.12 0.1654 492.80 0.2816

0.9 84.71 1.8028 42.30 1.0927 457.59 0.7604

False discovery rate

Total 1000 true DE, True difference FC = 3
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Figure � Operating characteristics of the BFS analysis in comparison with FDR alone analysis in terms of FDR and FNR. Figure 2a displays the FDR of various choice of λ1; 
2b) the FNR of various choice of λ1. 2c) displays the performs of balancing factor score analysis when there are 10% of truly De genes in the sample and the true change 
between groups was assumed to be threefold changes. y axis represents number false negatives, and x axis represents number of false positives from the simulation.
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10% of genes are truly differentially expressed. The BFS 

method appears to make the most impact on FNR when the 

fold change is moderate (FC = 2.0) as shown in Figure 2b. 

Figure 2c demonstrates that the BFS method is superior not 

only for reducing false negatives but also false positives 

when compared with the FDR-adjusted P value criterion 

in some conditions. Tables 4 and 5 summarize additional 

simulations results on FDR and FNR.

Discussion
Genome-wide mRNA expression profiling using microarrays 

is widely available in biomedical research. However, the cost 

of a microarray experiment including sample generation, 

preparation, assays and chips can be prohibitive, and many 

microarray experiments are performed using modest number 

of biologic samples and are often inadequately powered. 

Therefore it is not surprising that we have to balance our 

risk of false positives and false negatives when identifying 

a set of differentially expressed genes. We have shown that 

the BFS method incorporating additional informative factors 

such as a fold change in addition to P values from statistical 

significance testing can improve the overall detection rate 

by reducing the number of false negatives while keeping 

the number of false positives at a reasonable level. The BFS 

method can be extended easily to incorporate other balanc-

ing factors, such as P values from the previous experiment 

or another study.

In this paper, we focused on the FNR and FDR. Geno-

vese and Wasserman introduced the false nondiscovery rate 

(FNDR)9 and proposed methods that incorporate both FDR 

and FNDR. The FNDR may be a conceptually better measure 

because it complements the FDR. Genovese and Wasser-

man suggested using 1-π as a risk function to compare the 

performance of various multiple testing procedures,5 where 

π = 1 – FDR – FNDR. This is equivalent to the concept of 

power introduced by Sarkar,10 reflecting how well a multiple 

comparison procedure performs in terms of the overall 

correct decisions. However in most studies, the number of 

genes that are declared as differentially expressed is much 

smaller, and the FNDR contributes very little relative to the 

FDR. Hence, the FNDR may not contribute significantly to 

the risk function.

Table � 5% True differentially expressed genes

Cutoff 0.0� Cutoff 0.�0

FC = �.� FC = �.0 FC = �.0 FC = �.� FC = �.0 FC = �.0

FDR SE FNR SE FDR SE FNR SE FDR SE FNR SE FDR SE FNR SE FDR SE FNR SE FDR SE FNR SE

Raw  
P value

0.74 0.66 0.56 0.25 0.49 0.01 0.80 0.53 0.69 0.15 0.66 0.01

0.0007 0.0010 0.0006 0.0009 0.0005 0.0002 0.0004 0.0010 0.0004 0.0007 0.0003 0.0001

FDR  
P value

0.04 1.00 0.05 0.88 0.05 0.18 0.09 1.00 0.09 0.76 0.10 0.11

0.0075 0.0001 0.0013 0.0012 0.0005 0.0010 0.0098 0.0002 0.0013 0.0015 0.0006 0.0007

λ1
0.1 0.04 1.00 0.05 0.86 0.05 0.17 0.09 1.00 0.11 0.75 0.10 0.10

0.0076 0.0001 0.0012 0.0013 0.0005 0.0009 0.0096 0.0002 0.0013 0.0015 0.0007 0.0007

0.2 0.05 1.00 0.06 0.85 0.05 0.16 0.10 1.00 0.12 0.73 0.11 0.09

0.0079 0.0001 0.0013 0.0013 0.0005 0.0009 0.0096 0.0002 0.0013 0.0015 0.0007 0.0006

0.3 0.06 1.00 0.07 0.83 0.06 0.15 0.12 1.00 0.14 0.70 0.12 0.08

0.0089 0.0001 0.0013 0.0013 0.0005 0.0008 0.0098 0.0002 0.0014 0.0015 0.0007 0.0006

0.4 0.07 1.00 0.08 0.81 0.06 0.13 0.14 0.99 0.17 0.67 0.14 0.07

0.0098 0.0001 0.0013 0.0013 0.0006 0.0008 0.0097 0.0003 0.0014 0.0015 0.0007 0.0006

0.5 0.09 1.00 0.10 0.79 0.07 0.12 0.18 0.99 0.21 0.64 0.15 0.06

0.0098 0.0002 0.0014 0.0013 0.0006 0.0007 0.0097 0.0004 0.0014 0.0015 0.0007 0.0005

0.6 0.10 1.00 0.13 0.75 0.08 0.10 0.24 0.99 0.26 0.60 0.18 0.05

0.0096 0.0002 0.0015 0.0013 0.0006 0.0007 0.0092 0.0006 0.0015 0.0014 0.0008 0.0005

0.7 0.14 0.99 0.19 0.71 0.10 0.08 0.30 0.97 0.36 0.55 0.21 0.04

0.0097 0.0003 0.0016 0.0013 0.0006 0.0006 0.0070 0.0009 0.0015 0.0013 0.0008 0.0004

0.8 0.24 0.99 0.29 0.66 0.12 0.06 0.48 0.92 0.54 0.48 0.27 0.03

0.0092 0.0006 0.0017 0.0012 0.0007 0.0005 0.0039 0.0015 0.0014 0.0012 0.0009 0.0003

0.9 0.47 0.92 0.58 0.58 0.17 0.04 0.81 0.49 0.80 0.40 0.36 0.02

0.0039 0.0015 0.0018 0.0012 0.0008 0.0004 0.0004 0.0011 0.0014 0.0012 0.0008 0.0002
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We applied the BFS method to the microarray experiment 

described previously as the motivating example. The BFS 

method did not offer a larger set of differentially expressed 

genes than the set identified by the FDR P value  0.05 

criterion. For example, there were 24 genes that met FDR 

P value  0.05 for gender difference. When the BFS method 

is applied, the number of genes actually decreased to 12. This 

was due to the fact that the average fold change was 1.05 with 

only 18 genes showing more than a twofold change. Based 

on these analyses, we concluded that age and gender effects 

on gene expression were very subtle in hippocampus.

In some cases, there may exist a unique λ
1
 that satisfies 

FPR(λ
1
) = FNR(λ

1
); however, our simulation results show 

that λ
1
 does not always exist, as seen in Figure 2. When 

the magnitude of differential expression is relatively small 

(eg, FC = 1.5), the FDR-adjusted P value criterion fails 

to identify differentially expressed genes (see Table 3). 

However, the BFS method offers at least a handful of genes 

that biomedical researchers can pursue and then perform a 

confirmation experiment. In this situation, the choice of λ
1
 

should depend on the resources available to the researcher 

for follow-up experiments and her/his willingness to take a 

risk for potential false positive genes. When the magnitude of 

differential expression is large (eg, FC = 3.0), a medium range 

of λ
1
 reduces the number of false negatives as well as false 

positives. In the real experiment we have no idea regarding 

the proportion of truly differentially expressed genes or the 

magnitude of differential expression, therefore an analytical 

and/or empirical approach for finding an optimal choice of 

λ
1
 would be helpful in the future.
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Table � 10% True differentially expressed genes

Cutoff 0.0� Cutoff 0.�0

FC = �.� FC = �.0 FC = �.0 FC = �.� FC = �.0 FC = �.0

FDR SE FNR SE FDR SE FNR SE FDR SE FNR SE FDR SE FNR SE FDR SE FNR SE FDR SE FNR SE

Raw  
P value

0.57 0.66 0.37 0.25 0.31 0.01 0.66 0.53 0.51 0.15 0.48 0.00

0.0007 0.0007 0.0006 0.0006 0.0004 0.0002 0.0005 0.0007 0.0004 0.0006 0.0003 0.0001

FDR  
P value

0.05 1.00 0.04 0.77 0.05 0.12 0.09 0.99 0.09 0.63 0.09 0.06

0.0074 0.0001 0.0006 0.0011 0.0003 0.0005 0.0072 0.0002 0.0007 0.0012 0.0004 0.0004

λ1
0.1 0.05 1.00 0.05 0.76 0.04 0.11 0.09 0.99 0.10 0.61 0.09 0.06

0.0075 0.0001 0.0006 0.0011 0.0003 0.0005 0.0066 0.0003 0.0007 0.0011 0.0004 0.0004

0.2 0.05 1.00 0.06 0.73 0.04 0.11 0.11 0.99 0.11 0.58 0.09 0.06

0.0071 0.0001 0.0006 0.0011 0.0003 0.0005 0.0065 0.0003 0.0007 0.0011 0.0004 0.0004

0.3 0.06 1.00 0.06 0.71 0.04 0.10 0.12 0.99 0.12 0.55 0.09 0.05

0.0070 0.0001 0.0007 0.0011 0.0003 0.0005 0.0059 0.0004 0.0007 0.0011 0.0004 0.0003

0.4 0.07 1.00 0.07 0.67 0.04 0.10 0.15 0.98 0.14 0.51 0.09 0.05

0.0070 0.0002 0.0007 0.0012 0.0003 0.0005 0.0054 0.0005 0.0008 0.0011 0.0004 0.0003

0.5 0.09 0.99 0.08 0.63 0.04 0.09 0.18 0.98 0.17 0.46 0.10 0.05

0.0072 0.0002 0.0007 0.0012 0.0003 0.0004 0.0047 0.0006 0.0008 0.0010 0.0004 0.0003

0.6 0.11 0.99 0.10 0.58 0.03 0.09 0.22 0.96 0.20 0.41 0.10 0.04

0.0065 0.0003 0.0007 0.0011 0.0003 0.0004 0.0034 0.0009 0.0008 0.0010 0.0004 0.0003

0.7 0.15 0.98 0.13 0.52 0.03 0.08 0.30 0.92 0.25 0.34 0.10 0.04

0.0054 0.0005 0.0007 0.0011 0.0003 0.0004 0.0024 0.0011 0.0009 0.0009 0.0004 0.0003

0.8 0.22 0.96 0.17 0.43 0.03 0.08 0.44 0.80 0.33 0.26 0.11 0.03

0.0034 0.0008 0.0007 0.0009 0.0003 0.0004 0.0015 0.0015 0.0009 0.0008 0.0003 0.0003

0.9 0.43 0.80 0.27 0.30 0.04 0.07 0.68 0.48 0.44 0.17 0.12 0.03

0.0015 0.0014 0.0007 0.0007 0.0003 0.0004 0.0005 0.0008 0.0008 0.0006 0.0003 0.0002
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Appendix �
Proposition: Let X

1
 and X

2
 be independent random variables 

with continuous density functions f
1
,  f

2
 and distribution 

functions F
1
, F

2
, respectively. For 0  λ  1, let P denote 

the distribution function of Tλ = λX
1
 + (1–λ) X

2
 and let 

G(t; λ) = P{Tλ  t}.

G t F t x x f x dx( ; ) [ ( ) ] ( )λ λ= - +
-∞

∞ -∫ 1
1

2

Proof

G t P T t T t X

T t X f x dx

( ; ) { } | }]

| } ( )

λ λ λ

λ

= ≤ = ≤

= ≤
-∞

∞

∫
E[P{

P{

2

2 2

Because of independence we can write:

P{Tλ  t | X
2
 = x} = P{λX

1
 + (1 – λ) x  t | X

2
 = x}

	 = P{λX
1
 + (1 – λ) x  t} = F

1
(λ–1 [t + (1 – λ)x]) 

 = F
1
(λ–1 (t – x) + x)

This can be easily extended to k  1.  
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