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Background: Hypoxia in tumors is associated with resistance towards various therapies includ-

ing radiotherapy. In this study, we assessed if hypoxia in cancer spheres could be effectively 

reduced by adding etomoxir (a β-oxidation inhibitor) immediately after cell irradiation. 

Methods: We employed cancer cells’ sphere model to target hypoxia. Confocal imaging was 

used to analyze hypoxia and expression of specific biomarkers in spheres following various 

treatments (radiation and/or etomoxir).   

Results: Etomoxir (32.5 μM) treatment improved the radiation (2.5 Gy) efficacy against growth 

of lung adenocarcinoma H460 spheres. More importantly, radiation and etomoxir combination 

significantly reduced the hypoxic regions (pimonidazole+ areas) in H460 spheres compared to 

either treatment alone. Also, etomoxir and radiation combination treatment reduced the protein 

level of biomarkers for proliferation (Ki-67 and cyclin D1), stemness (CD44) and β-oxidation 

(CPT1A) in H460 spheres. We observed similar efficacy of etomoxir against growth of prostate 

cancer LNCaP cells’ spheres when combined with radiation. Further, radiation treatment strongly 

reduced the hypoxic regions (pimonidazole+ areas) in CPT1 knockdown LNCaP cells’ spheres. 

Conclusions: Together, these results offer a unique approach to target hypoxia in solid tumors 

via combining etomoxir with radiation, thereby improving therapeutic efficacy.

Keywords: Hypoxia, radiation, β-oxidation, Etomoxir, CPT1A

Introduction
Hypoxia (low oxygen condition) in solid neoplasms is an early phenomenon, which 

induces genetic and epigenetic changes in cancer cells and various tumor microenviron-

ment components leading to increased angiogenesis, stemness, metabolic alterations, 

and selection of resistant clones.1 Tumor hypoxia status and hypoxia-related biomarkers 

are associated with poor prognosis, treatment failure, and disease relapse.1 For example, 

Hung et al reported that higher hypoxia-inducible factor-1 alpha (HIF-1α) expression 

in lung cancer patients was associated with a shorter recurrence-free survival.2 Turaka 

et al also reported that hypoxia in prostate cancer (PCa), that is, low mean hypoxic 

prostate/muscle pO
2
 ratio, significantly predicts poor long-term biochemical outcome.3 

Milosevic et al reported that tumor hypoxia is associated with early biochemical relapse 

after radiotherapy and predicts local recurrence.4 Similarly, several other studies have 

shown that hypoxia is involved in radioresistance in various cancers.5–9 Therefore, it 

is important to simultaneously target hypoxia in tumors along with various therapies 

for effective treatment and better outcomes.

Several approaches have been tried to overcome or target hypoxia or hypoxia-induced 

signaling in tumors. Numerous specific or nonspecific inhibitors of HIF-1α and HIF-2α 
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have been tested to improve the efficacy of various therapies 

against cancer.10 For example, YC-1 treatment reduced radia-

tion-induced HIF-1α activation and delayed tumor growth.11 

Similarly, the selective inhibitor of Ataxia telangiectasia and 

Radd3-related protein (ATR), VE-821, increased the radiation-

induced loss of cell viability under hypoxic conditions in differ-

ent cancer cells.12 These studies confirm that tumor hypoxia is 

an important target to overcome radioresistance and to improve 

the therapeutic efficacy of fractionated radiation. However, 

one unique challenge is the delivery of these pharmacological 

agents (HIF-1α or ATR inhibitors) to hypoxic cells as hypoxic 

areas have reduced blood supply and are mostly beyond the 

diffusion limit for drug penetrance to hypoxic core. Therefore, 

additional and novel measures are warranted to better target 

hypoxic cancer cells.

A complex metabolic reprogramming is an essential 

feature of cancer cells to satisfy the demand of energy and 

macromolecules for sustained proliferation under extreme 

tumor microenvironment.13,14 Especially, many facets of 

lipid metabolism including accumulation of lipid droplets, 

lipogenesis, and β-oxidation, are important in the survival and 

adaptation of cancer cells to low oxygen conditions.15–18 We 

have recently reported that PCa cells accumulate lipids under 

hypoxia in association with increased HIF-1α, ATP-citrate 

lyase, and fatty acid synthase expression.19 We also reported 

that PCa cells rapidly used their stored lipids for proliferation 

following reoxygenation of hypoxic cells. Importantly, inhibi-

tion of carnitine palmitoyltransferase 1 (CPT1) by etomoxir 

and stable CPT1 knockdown resulted in compromised growth 

of hypoxic PCa cells following reoxygenation.19 These stud-

ies suggested that hypoxic cancer cells could be effectively 

targeted by etomoxir following reoxygenation. To evaluate 

this hypothesis, in the present study, we combined etomoxir 

with radiation treatment in a spheroid model, where radiation 

would reduce the sphere size and reoxygenate the hypoxic 

cells resulting in elimination by etomoxir treatment due to 

their dependence on β-oxidation for their survival. Results 

showed that etomoxir added to radiation could effectively 

reduce hypoxia and inhibit cancer cell growth in a sphere 

model.

Methods and materials
Reagents and cell culture
Human lung epithelial carcinoma H460 and prostate carci-

noma LNCaP cells were from ATCC (American Type Culture 

Collection, Manassas, VA, USA) and cultured in Roswell Park 

Memorial Institute (RPMI) 1640 medium with 10% fetal 

bovine serum (FBS) and 1% penicillin–streptomycin antibiot-

ics. RPMI1640, FBS, DMEM/F12, penicillin–streptomycin 

antibiotics, trypsin (0.25% and 0.05%), B27, N2, recombinant 

epidermal growth factor, fibroblast growth factor, Alexa Fluor 

488/594 secondary antibodies, and gold antifade reagent with 

4′,6-diamidino-2-phenylindole (DAPI) were from Life tech-

nologies (Grand Island, NY, USA). Etomoxir was from Sigma 

Aldrich Co. (St. Louis, MO, USA). Pimonidazole was from 

Hypoxyprobe Inc. (Burlington, MA, USA). Primary antibody 

for cyclin D1 was from Cell Signaling Technologies (Beverly, 

MA, USA), CD44 from Santa Cruz Biotechnology (Dallas, 

TX, USA), CPT1A from Proteintech (Rosemont, IL, USA), 

and Ki-67 from Abcam (Cambridge, MA, USA).

Spheroid culture assay
H460 cells (2,500–5,000 cells/well) or LNCaP cells (10,000 

cells per well) were seeded in ultralow attachment six-well 

culture plates (Corning, St. Louis, MO, USA) in stem cell 

media (DMEM/F12 media supplemented with B27 and N2). 

Additionally, for LNCaP spheroid culture, 0.5 mL media 

with recombinant EGF (20 ng/mL) and FGF (10 ng/mL) 

were added every 72 h. At day 7 (or as indicated), spheres 

were irradiated (2.5 Gy as a single fraction dose) using an RS 

2000 Biological Irradiator (Rad Source Technologies, Buford, 

Georgia 30518, USA). Spheres were immediately treated 

with etomoxir (experiment day 0) and every 48 h thereafter. 

At the end, sphere numbers was counted and spheres’ area 

was measured using AxioVision Release 4.7 software. A brief 

summary of the experimental scheme is shown in Figure 1A.

For second-generation spheres, primary spheres were 

collected by brief centrifugation and incubated with trypsin 

(0.05%) for 5 min with frequent gentle pipetting to dissoci-

ate the spheres. Once the single cells were formed, cells 

were counted and replated in ultralow attachment plates as 

described above. Cells were treated with etomoxir 32.5 μM 

after 24 h of seeding and every 48 h thereafter. The number 

of spheres was counted after day 6 of treatment.

Clonogenic assay
Spheres were dissociated, counted, and seeded in 6-well 

plates (1 × 103 cells/well) in regular culture media. Cells 

were treated as indicated, and at the end of day 7, cells were 

fixed with 4% formalin, stained with 1% crystal violet, and 

colonies with ≥50 cells were counted under a microscope.

Hypoxia staining with pimonidazole
Spheres were treated with pimonidazole (200 μM) for 2 h. 

Thereafter, spheres were centrifuged at 1,000 rpm for 5 min 

and fixed in 4% buffered formalin. Next, spheres were trans-

ferred in eight-well chamber slides coated with a thin layer 

of matrigel, permeabilized with PBS with Tween 20 (PBST; 
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Figure 1 Etomoxir combination improves radiation efficacy against sphere formation by H460 lung epithelial cancer cells.
Notes: (A) Experimental scheme. (B) At the end of experiment (day 6), sphere images were captured and representative images are presented (100×). (C) Average sphere 
area presented as mean±SEM. (D) Number of spheres in each group presented as mean±SEM. (E) Experimental scheme. (F) At the end of 7 days, number of colonies with 
≥50 cells were counted and presented as mean±SEM in the bar diagram. In the bar diagram, a represents control group, b represents etomoxir alone, c represents radiation 
alone, and d represents radiation plus etomoxir.*p<0.001; $p<0.01; #p<0.05.
Abbreviations: Eto, etomoxir; Rad, radiation; SEM, standard error of the mean.
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1× PBS + 0.3% Triton X-100) followed by blocking in 5% 

bovine serum albumin (BSA) block buffer (PBS + 0.3% 

Triton X-100 + 5% BSA). Spheres were then incubated with 

fluorescein isothiocyanate-conjugated monoclonal antibody 

against pimonidazole for overnight and mounted with gold 

antifade reagent with DAPI. Stained spheres images were 

captured at 200× magnification using a Nikon D-Eclipse C1 

confocal microscope and analyzed using EZ-C1 Free viewer.

Confocal imaging
Spheres were collected, transferred to eight-well chamber 

slides coated with matrigel, and permeabilized as above. 

Thereafter, blocking was performed in 5% BSA block buf-

fer (PBS + 0.3% Triton X-100 + 5% BSA). Next, spheres 

were incubated with respective primary antibodies, Ki-67 

(1:100), cyclin D1 (1:200), CD44 (1:100), or CPT1A (1:200) 

in PBST (with 1% BSA) overnight in a humidified chamber. 

Thereafter, spheres were incubated with Alexa-Fluor 488 or 

594 secondary antibody (1:250) with DAPI (1:1,000) for 1 h 

and mounted with prolong gold antifade reagent with DAPI. 

Stained spheres were imaged using a Nikon D-Eclipse C1 

confocal microscope and analyzed using EZ-C1 free viewer 

software. Z stacking was done by complete scanning of 

spheres in depth, and then a reference point was selected 

in middle where scans of 5 μm interval were taken in both 

directions. The fluorescence intensity was quantified using 

ImageJ software (NIH, Bethesda, MD, USA).

Statistical analysis
Statistical analysis was performed using SigmaStat 2.03 

(Jandel Scientific, San Rafael, CA, USA). Data were analyzed 

by one-way analysis of variance (ANOVA) (Tukey test) and 

statistically significant differences were considered at p<0.05.

Results
Etomoxir enhances radiation cytotoxicity
Lung adenocarcinoma H460 cells were cultured as spheres 

to serve as a three-dimensional (3D) model to study hypoxia 

and effect of radiation and etomoxir treatment. Spheres were 

irradiated one time with a 2.5 Gy dose (experiment day 0) fol-

lowed by treatment with vehicle (dimethyl sulfoxide [DMSO], 

0.1%) or etomoxir (32.5 μM). Thereafter, spheres were treated 

with DMSO or etomoxir on experiment days 2 and 4 (Figure 

1A). At the end of the sixth day, sphere number and average 

sphere area were determined. As shown in  Figure 1B and C, 

radiation exposure reduced the average H460 sphere area by 

67.87% (p<0.001), and etomoxir combination further reduced 

the sphere area by 71.04% (p<0.001) compared with control. 

Etomoxir alone treatment reduced the sphere area by 47.06% 

(p<0.001). Further, radiation treatment reduced the H460 

sphere  number by 34.78% (p<0.001), while combination with 

etomoxir reduced the sphere number by 61.37% (p<0.001) 

compared with control; etomoxir alone treatment reduced the 

sphere number by 53.41% (p<0.001; Figure 1D).

Next, we assessed the colony forming ability of spheres 

after completion of treatments (vehicle, radiation, etomoxir, 

or radiation plus etomoxir). In the clonogenic assay, only 

etomoxir treatment was replenished (wherever mentioned) 

for continuous inhibition of β-oxidation (experimental 

scheme shown in Figure 1E). The etomoxir alone-treated 

single cells of spheres showed reduced capacity to form 

colonies by 49.27% (p<0.001), while irradiated (2.5 Gy) 

sphere cells showed reduced clonogenic potential by 68.04% 

(p<0.001). The combination of radiation and etomoxir further 

inhibited the clonogenic potential of cells from spheres by 

85.05% (p<0.001), and the combined inhibitory effect was 

significantly better than either radiation or etomoxir alone 

(Figure 1F). These results further suggested the inhibition of 

β-oxidation by etomoxir could improve the cytotoxic effect 

of radiation against cancer cells.

Etomoxir combination with radiation 
reduces hypoxic areas
Next, we examined the effect of etomoxir treatment along with 

radiation on hypoxia by staining spheres with pimonidazole. 

Pimonidazole, a hypoxia marker, is a 2-nitroimidazole com-

pound which forms covalent bond with peptide thiols at oxy-

gen levels below 1.3% and can visualize poorly oxygenated 

regions in histological samples.20,21 Spheres were incubated 

with pimonidazole (200 μM) for 2 h and then processed as 

described in the “Methods” section. As shown in Figure 2, 

hypoxic areas were present in spheres treated with radiation 

alone; however, combination of etomoxir with radiation 

reduced the hypoxic areas by 59% compared with control 

spheres. The radiation and etomoxir combination effect was 

significantly better than either radiation or etomoxir alone 

(Figure 2).

Etomoxir combination with radiation 
reduces the expression of proliferation, 
stemness, and β-oxidation biomarkers
H460 spheres treated with radiation alone showed higher 

Ki-67 expression compared with control; whereas, spheres 

treated with etomoxir (32.5 μM) in combination with 

radiation showed reduced Ki-67 expression compared with 

radiation treatment alone (Figure 3A and quantification 
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Figure 2 Etomoxir treatment following radiation exposure reduces hypoxic areas in H460 spheres.
Notes: H460 spheres were irradiated (2.5 Gy) and then treated with etomoxir 32.5 µM. Spheres were re-treated with etomoxir on experiment day 2 and 4. At the end 
of day 6, H460 spheres were treated with pimonidazole (200 µM) for 2 h and then processed for immunofluorescence. Representative confocal images are shown (at 200× 
magnification). The bar diagram represents the mean fluorescence intensity per unit sphere area as mean±SEM. *p<0.001; $p<0.01.
Abbreviations: DAPI, 4′,6-diamidino-2-phenylindole; Eto, etomoxir; Rad, radiation; SEM, standard error of the mean.
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shown in  Figure 3D). Cyclin D1 fluorescence intensity was 

not significantly affected by etomoxir or radiation alone 

 treatment but the combination showed a significant decrease 

in cyclin D1 level compared with control (Figure 3B and 

quantification shown in Figure 3D). Further, etomoxir alone 

treatment reduced the level of CD44 in H460 spheres; 

however, radiation alone treatment did not affect the CD44 

expression (Figure 3C). The combination of etomoxir and 

radiation treatment reduced the CD44 expression compared 

with radiation treatment alone (Figure 3C and quantification 

shown in Figure 3D).

As expected, etomoxir treatment alone strongly reduced 

the CPT1A expression (a biomarker for β-oxidation) in 

spheres (Figure 4). However, spheres treated with radiation 

alone showed higher CPT1A expression (Figure 4). Impor-

tantly, the combination of etomoxir with radiation effectively 

reduced the CPT1A expression compared with the radiation 

alone group (Figure 4).

Figure 3 Etomoxir treatment following radiation exposure reduces the expression of proliferation and stemness biomarkers in H460 spheres.
Notes: (A–C) 5 × 103 H460 cells were plated in six-well ultralow attachment plates for sphere formation for 6 days. Thereafter, spheres were irradiated with a dose of 2.5 
Gy and then treated with etomoxir 32.5 µM. Spheres were retreated with etomoxir on experiment days 2 and 4. At the end of day 6 after first etomoxir treatment, H460 
spheres were processed to analyze (A) Ki-67, (B) cyclin D1, and (C) CD44 expression by immunofluorescence as described in the “Methods” section. Representative images 
are shown (at 200× magnification). (D) The bar diagram represents the mean fluorescence intensity per unit sphere area for Ki-67, cyclin D1, and CD44 as mean±SEM. 
*p<0.001; $p<0.01; #p<0.05.
Abbreviations: DAPI, 4′,6-diamidino-2-phenylindole; Eto, etomoxir; Rad, radiation; SEM, standard error of the mean.
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Figure 4 Etomoxir treatment following radiation exposure reduces CPT1 expression in H460 spheres.
Notes: 5 × 103 H460 cells were plated in six-well ultralow attachment plates for sphere formation for 6 days. Thereafter, spheres were irradiated with a dose of 2.5 Gy and 
then treated with etomoxir 32.5 µM. Spheres were retreated with etomoxir on experiment days 2 and 4. At the end of day 6 after first etomoxir treatment, H460 spheres 
were processed to analyze CPT1A expression by immunofluorescence as described in the “Methods” section. Representative images are shown (at 200× magnification). The 
bar diagram represents the mean fluorescence intensity per unit sphere area as mean±SEM. *p<0.001; $p<0.01.
Abbreviations: CPT1A, carnitine palmitoyltransferase 1A; DAPI, 4′,6-diamidino-2-phenylindole; Eto, etomoxir; Rad, radiation; SEM, standard error of the mean.
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Radiation treatment effectively reduces 
sphere size and hypoxic areas in CPT1A 
knockdown LNCaP cells
Subsequently, we confirmed the efficacy of radiation and 

etomoxir combination to reduce sphere growth in human 

PCa LNCaP cells. As shown in Figure 5A, radiation alone 

reduced the sphere number by 39.2% (p<0.05), while the 

combination of radiation and etomoxir reduced the LNCaP 

sphere number by 47.2% (p<0.01). Etomoxir alone treatment 

reduced the LNCaP sphere number by 28% (Figure 5A). Next, 

we prepared single-cell suspension of spheres from different 

treatment groups and seeded in ultralow attachment plates to 

generate second generation spheres. In the second generation 

spheres, only etomoxir treatment was continued for effec-

tive inhibition of β-oxidation. The etomoxir alone treatment 

inhibited the second generation sphere numbers by 42.4% 

(p<0.001). The total number of second generation spheres was 

reduced by 76.8% (p<0.001) in the radiation only treatment 

group, and combination of radiation and etomoxir showed 

89.3% decrease in the sphere formation (p<0.001; Figure 5B).

To further assess CPT1A role, we performed a similar 

experiment as above in LNCaP cells with stable CPT1A 

knockdown (LNCaP CPT1A KD). Radiation treatment 

reduced the sphere number and size in both LNCaP vector 

control and LNCaP CPT1A KD cells (Figure 5C and D). 

Interestingly, pimonidazole staining showed that hypoxic 

areas were significantly reduced following radiation treatment 

in LNCaP CPT1A KD cells (Figure 5E).

Discussion
Cancer is an extremely complex disease where in addition 

to several genetic and epigenetic factors, various tumor 

microenvironment components also affect cancer develop-

ment and progression. Hypoxia in tumor microenvironment 

is one such major factor that appears to correlate with tumor 

growth, progression, and relapse. A variety of approaches 

have been used to target tumor hypoxia, which include 

hyperbaric oxygenation (HBO), accelerated radiotherapy 

with carbogen and nicotinamide (ARCON) (a combination 

of carbogen breathing and nicotinamide), anemia correction, 

and antiangiogenic therapy, thereby increasing plasma and 

tissue oxygen level.22,23 However, so far, these therapies have 

not shown significant efficacy in clinic. For example, the 

effect of HBO is transient and diminishes in minutes, and 

the pressure is not tolerated by several patients.23 Similarly, 

clinical trials with inhibitors of HIF and hypoxia-induced 

signaling such as PI3K, Akt, and mTOR inhibitors have not 

shown promising results owing to poor tissue penetration 

to reach hypoxic region as well as pharmacokinetics and 

pharmacodynamics properties of the tested drugs.10,24 These 

clinical outcomes have warranted testing additional novel 

and innovative measures to target hypoxic cells in tumors.

The reprogramming of lipid metabolism in tumor is now 

being recognized as an important event for tumor cell growth 

and progression.25 Cancer cells fulfill their elevated needs 

of lipids including fatty acids and phospholipids by de novo 

lipogenesis.26,27 Cellular lipids also help in survival and prolif-

eration of cancer cells under hypoxia.18,28,29 We have recently 

reported that lipid oxidation is important following reoxygen-

ation in the survival and increased proliferation of hypoxic 

PCa cells.19 CPT1 is a major regulator of fatty acid oxidation, 

which translocates fatty acids conjugated with carnitine to the 

mitochondria where they can be oxidized to produce acetyl-

CoA, which then goes to Krebs cycle and produces NADH and 

FADH2 for oxidative phosphorylation. Hence, targeting CPT1 

can inhibit cancer cell growth by limiting the energy supply of 

the cell. Currently, several CPT1 inhibitors are in clinical use/

trials for treatment of heart disease30 and could be potentially 

useful for combination cancer therapy along with radiation. We 

reported that CPT1 knockdown or inhibition by etomoxir makes 

hypoxia-reoxygenated cancer cells sensitive toward growth 

inhibition.19 Results from the present study further showed that 

etomoxir combination could improve the anticancer efficacy of 

radiation and reduce the hypoxic areas in spheres.

In the present study, we employed a sphere model to target 

physiological hypoxia by single fraction radiation and eto-

moxir. This model is currently widely used to determine the 

stemness of cancer cells in in vitro conditions.31–33 The core 

region of fully grown spheres is less oxygenated and offers 

a useful model to understand the hypoxia-mediated biologi-

cal effects such as radioresistance. We confirmed the extent 

of hypoxia in spheres using pimonidazole, a nitroimidazole 

compound considered more sensitive than the microelec-

trode method of oxygen concentration measurement.34 As 

expected, hypoxic regions stained with pimonidazole were 

located primarily in the irradiated spheres, and etomoxir 

combination reduced the pimonidazole-stained areas. This 

combination also reduced the expression of proliferation and 

stemness biomarkers, as well as decreased the CPT1 expres-

sion in the spheres. The increased sensitivity to radiation 

in combination with etomoxir could be through inhibition 

of fatty acid oxidation in reoxygenated cells resulting in 

reduced proliferation and stemness. Alternatively, the reduced 

pAKT observed in CPT1 KD cells35 could be responsible for 

increased sensitivity to the radiation treatment. These results 

suggest CPT1 as a novel target to overcome radioresistance 
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Figure 5 Radiation treatment effectively reduces sphere size and hypoxic areas in CPT1A knockdown LNCaP cells.
Notes: LNCaP spheres were irradiated (2.5 Gy) and then treated with etomoxir 32.5 µM. At the end of day 6, LNCaP spheres number was counted and presented as 
mean±SEM in the bar diagram (A). Thereafter, spheres in each group were dissociated into single cells and plated 1,000 cells/well in ultralow attachment six-well plates. Cells 
were treated with etomoxir 32.5 µM after 24 h of seeding and every 48 h thereafter. Number of spheres were counted after day 6 of treatment and presented as mean±SEM 
in the bar diagram (B). In the bar diagram, a represents control group, b represents etomoxir alone, c represents radiation alone, and d represents radiation plus etomoxir. 
(C, D) Vector control LNCaP cells and LNCaP CPT1A KD cells were cultured to form spheres and then treated with radiation (2.5 Gy). After 6 days, sphere number and 
area were measured and presented as mean±SEM in the bar diagrams. (E) LNCaP CPT1 KD spheres were treated with 200 µM of pimonidazole for 2 h and processed for 
immunofluorescence. Representative confocal images are shown (at 200× magnification). The bar diagram represents the mean fluorescence intensity per unit sphere area 
as mean±SEM. *p<0.001; $p<0.01; #p<0.05.
Abbreviations: CPT1A, carnitine palmitoyltransferase IA; DAPI, 4′,6-diamidino-2-phenylindole; Eto, etomoxir; KD, knockdown; Rad, radiation; SEM, standard error of the 
mean.
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in tumors. The limitation of this model is that spheres are 

enriched in stem-like cells and might not represent the bulk 

cancer cells present in solid tumors. However, the success of 

the radiation and etomoxir against stem cell-enriched spheres, 

which are relatively difficult to target, further underscores 

the value of this combination. Furthermore, the applicability 

of these results to the clinic is much feasible, since clini-

cally approved CPT1 inhibitors like perhexiline or partial 

β-oxidation inhibitors like ranolazine36 could be administered 

to patients concomitantly with their radiation treatment or 

immediately after.

Conclusion
Results from the present study suggest that combining 

β-oxidation inhibitor etomoxir with radiation could be a 

novel and effective strategy for reducing hypoxia in solid 

tumors (depicted in Figure 6), thereby reducing chances of 

disease relapse.
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