Open Access Full Text Article

ORIGINAL RESEARCH

Risk of bleeding associated with antiangiogenic monoclonal antibodies bevacizumab and ramucirumab: a meta-analysis of 85 randomized controlled trials

Bingkun Xiao¹ Weilan Wang² Dezhi Zhang³

¹Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China; ²Department of Pharmacy, Chinese PLA General Hospital, Beijing, China; ³Department of Pharmacy, The 264th Hospital of PLA, Taiyuan, Shanxi, China

Correspondence: Weilan Wang Department of Pharmacy, Chinese PLA General Hospital, No 28, Fuxing Rd, Beijing 100853, China Tel +86 10 6693 7243 Email 13661282643@163.com **Aim:** Bevacizumab and ramucirumab are antiangiogenic monoclonal antibodies, which target vascular endothelial growth factor-A and vascular endothelial growth factor receptor-2, respectively, used in various cancers. Bleeding events have been described with these two agents. We conducted an up-to-date meta-analysis to determine the relative risk (RR) associated with the use of antiangiogenic monoclonal antibodies, bevacizumab and ramucirumab.

Methods: This meta-analysis of randomized controlled trials was performed after searching PubMed, American Society for Clinical Oncology Abstracts, European Society for Medical Oncology Abstracts, and the proceedings of major conferences for relevant clinical trials. RR and 95% CIs were calculated by random-effects or fixed-effects models for all-grade and high-grade bleeding events related to the angiogenesis inhibitors.

Results: Eighty-five randomized controlled trials were selected for the meta-analysis, covering 46,630 patients. The results showed that antiangiogenic monoclonal antibodies significantly increased the risk of all-grade (RR: 2.38, 95% CI: 2.09–2.71, p<0.00001) and high-grade (RR: 1.71, 95% CI: 1.48–1.97, p<0.00001) bleeding compared with control arms. In the subgroup analysis, bevacizumab significantly increased the risk of all-grade (RR: 2.73, 95% CI: 2.24–3.33, p<0.00001) and high-grade bleeding (RR: 1.98, 95% CI: 1.68–2.34, p<0.00001), but ramucirumab only increased the risk of all-grade bleeding (RR: 1.94, 95% CI: 1.76–2.13, p<0.00001) and no difference was observed for the risk of high-grade bleeding (RR: 1.04, 95% CI: 0.78–1.39, p=0.79) compared with the control group. For lung cancer patients, bevacizumab significantly increased the risk of all-grade (RR: 4.72, 95% CI: 1.99–11.19, p=0.0004) and high-grade (RR: 3.97, 95% CI: 1.70–9.29, p=0.001), but no significant differences in the risk of all-grade (RR: 1.09, 95% CI: 0.76–1.57, p=0.64) and high-grade (RR: 1.22, 95% CI: 0.35–4.21, p=0.75) pulmonary hemorrhage were observed for ramucirumab. The increased risk of all-grade and high-grade bleeding was also observed in colorectal cancer or non-colorectal tumors and low-dose or high-dose angiogenesis inhibitors.

Conclusion: Antiangiogenic monoclonal antibodies are associated with a significant increase in the risk of all-grade and high-grade bleeding. Ramucirumab may be different from bevacizumab in terms of the risk of high-grade bleeding and the risk of all-grade and high-grade pulmonary hemorrhage in lung cancer patients.

Keywords: bevacizumab, ramucirumab, antiangiogenic monoclonal antibodies, bleeding, meta-analysis

OncoTargets and Therapy 2018:11 5059-5074

© 2018 Xiao et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work lates ve paragraphs 4.2 and 5 of our Terms. (http://www.dovepress.com/terms.php).

5059

Introduction

Angiogenesis is a complex biological process that plays an important role in sustaining growth, invasion, and the metastatic potential of tumors, and this process is mainly driven by vascular endothelial growth factor (VEGF).^{1,2} One of the VEGF family members, VEGF-A (commonly referred to as VEGF), has been demonstrated to be important in angiogenesis. Among all receptors, vascular endothelial growth factor receptor (VEGFR)-2 is widely thought to be principally linked to the stimuli of angiogenesis in malignancies. Blocking the function of VEGF-A or its receptor VEGFR-2 has been the most important antiangiogenic strategy for cancer therapy.³

Bevacizumab and ramucirumab are the most important antiangiogenic monoclonal antibodies, which target VEGF-A and its receptor VEGFR-2, respectively, used in various cancers. Bevacizumab is approved by the Food and Drug Administration (FDA) for the treatment of patients with metastatic colorectal cancer, advanced non-squamous non-small cell lung cancer (NSCLC), metastatic renal cell carcinoma, recurrent glioblastoma, advanced cervical cancer, and platinum-resistant ovarian cancer, and ramucirumab is approved by the FDA for the treatment of advanced gastric or gastroesophageal junction adenocarcinoma, metastatic NSCLC, and advanced colorectal cancer.

Bleeding events are a kind of major adverse events reported in clinical trials of bevacizumab and ramucirumab, which may cause severe outcomes that could be even life threatening.⁴ The main mechanism of bleeding is that angiogenesis inhibitors disrupt tumor vasculature through inhibition of VEGF signaling and lead to thrombosis or bleeding.^{1,5}

However, the relative risk (RR) of bleeding events in patients with cancer treated with these two antiangiogenic monoclonal antibodies has yet to be defined. Therefore, we conducted an up-to-date meta-analysis of available clinical trials to determine the RR of bleeding in cancer patients treated with antiangiogenic monoclonal antibodies, bevacizumab and ramucirumab.

Materials and methods Search strategy

This study was conducted in accordance with the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement⁶ (Supplementary material). We searched PubMed, American Society for Clinical Oncology Abstracts, and European Society for Medical Oncology Abstracts for relevant trials till September 2017. Moreover, we also searched the clinical trial registration website (https:// www.ClinicalTrials.gov) to obtain information on registered randomized controlled trials (RCTs). Keywords used in the search were "bevacizumab," "avastin," "ramucirumab," "IMC1121B," "LY3009806," and "randomized controlled trials." The search was limited to RCTs published in English.

Selection of trials

Data abstraction and quality assessment were conducted independently by two reviewers. Disagreements were resolved by discussion with an independent expert. The RCTs were eligible for inclusion in our meta-analysis: 1) prospective Phase II and Phase III RCTs in patients with cancer, 2) random assignment of participants to these two antiangiogenic monoclonal antibodies treatment or control groups, 3) available data, including the event or incidence of bleeding and sample size for analysis. Phase I and single-arm phase II trials were excluded because of their lack of control groups.

Data extraction

We extracted details on study characteristics, treatment information, results, and safety profiles from the selected trials. Clinical endpoints were obtained from the safety profile of each clinical trial. All-grade, high-grade bleeding and all-grade, high-grade pulmonary hemorrhage in lung cancers were recorded according to the version of National Cancer Institute-Common Terminology Criteria for Adverse Events used in each trial.

Statistical analysis

Data were calculated by Review Manager version 5.2 (The Nordic Cochrane Centre, Copenhagen, Denmark). For the outcomes, the RR was calculated for dichotomous data. Statistical heterogeneity in the results of the trials was assessed by the chi-square test, and expressed by the I^2 index.⁷ When there was no statistically significant heterogeneity, a pooled effect was calculated with a fixed-effect model. When considerable heterogeneity was found (p < 0.1, or $I^2 > 50\%$), a random-effect model was employed. Subgroup analysis was conducted to examine whether the RRs of all-grade and high-grade bleeding varied by drug type, drug dosage, and cancer type.

Results Search results

We reviewed 2,045 potentially relevant articles from our initial search strategies. A total of 1,906 articles were excluded on screening abstracts and titles for the following reasons: review articles, case reports, basic researches,

Phase I or single-arm Phase II studies, irrelevant topics, and duplicate reports. The remaining 139 articles were retrieved for full evaluation, and 54 articles were excluded for unavailable data for assessment of bleeding or antiangiogenic monoclonal antibodies in both treatment and control arms. Finally, 85 RCTs were included in this meta-analysis.^{8–92} The study search process is shown in a flow chart (Figure 1).

Patients

A total of 85 studies and 46,630 patients were included for the analysis. Bevacizumab was investigated in 72 trials⁸⁻⁷⁹ and ramucirumab was investigated in 13 trials.⁸⁰⁻⁹² All of the studies included 21 colorectal cancer,^{8-26,85,86} 15 breast cancer,^{27–39,87,88} 16 lung cancer,^{40–52,80–82} three renal cell cancer, 53,54 two pancreatic cancer, 55,56 five ovarian cancer, 57-61 six gastric or gastroesophageal junction adenocarcinoma, 62-65, ⁸⁹⁻⁹¹ three glioblastoma,⁶⁶⁻⁶⁸ one lymphoma,⁶⁹ one lymphocytic leukemia,70 two melanoma,71,72 two malignant mesothelioma,^{73,74} one prostate cancer,⁷⁵ one cervical cancer,⁷⁶ one leiomyosarcoma,⁷⁷ two urothelial carcinoma,^{83,84} two hepatocellular carcinoma,78,92 and one soft tissue sarcoma.79 In addition, 35 trials^{9,10,12–20,22–26,46,49,52,55,58,62–65,72,78–84,87,88} were treated with low-dose drugs (28 trials for bevacizumab at 2.5 mg/kg/week, seven trials for ramucirumab at 3.3 mg/kg/ week) and 46 trials^{11,21,27,28,30-39,41,42,44,45,47,48,50,51,53,54,56,57,59-61,66-71,} ^{73–77,85,86,89–92} were treated with high-dose drugs (40 trials for bevacizumab at 5 mg/kg/week, six trials for ramucirumab at 4 mg/kg/week). Other 4 three-arm trials^{8,29,40,43} were two

arms of different dosage levels of bevacizumab and one arm of control. All of these RCTs were judged to be of adequate quality (Jadad score is 3–5). Baseline characteristics of the 85 RCTs are provided in Table 1.

RR of all-grade bleeding

Forty-three RCTs were available to calculate the RR of allgrade bleeding in patients assigned to angiogenesis inhibitors arms versus control arms. The results showed that antiangiogenic monoclonal antibodies significantly increased the risk of all-grade (RR: 2.38, 95% CI: 2.09–2.71, p<0.00001) bleeding compared with control arms. There was statistically significant heterogeneity (I^2 =74%) across the trials; we incorporated it into a random-effects model (Figure 2).

RR of high-grade bleeding

The RR of high-grade (\geq grade 3) bleeding was determined in 82 RCTs. The results showed that antiangiogenic monoclonal antibodies significantly increased the risk of all-grade bleeding (RR: 1.71, 95% CI: 1.48–1.97, *p*<0.00001) with a fixed-effects models (*I*²=19%) (Figure 3).

RR according to drug type

As an exploratory analysis, patients were stratified according to drug type. We found that bevacizumab significantly increased the risk of all-grade (RR: 2.73, 95% CI: 2.24–3.33, p < 0.00001) and high-grade bleeding (RR: 1.98, 95% CI: 1.68–2.34, p < 0.00001), but ramucirumab only increased

Figure I Outline of the search flow diagram. Abbreviation: RCTs, randomized controlled trials.

Author	Year	Malignancy	Phase	No. in	Concurrent treatment	Dose	No. of ble	No. of bleeding events
				intervention/ control		(mg/kg/week)	in interver All grade	in intervention/control All grade Grade ≥3
Bevacizumab								
Kabbinavar et al ⁸	2003	CRC	=	67/35	Fluorouracil + leucovorin	2.5 or 5	NR	3/0
Hurwitz et al ⁹	2004	CRC	≡	393/397	lrinotecan + fluorouracil + leucovorin	2.5	NR	12/10
Kabbinavar et al ¹⁰	2005	CRC	=	100/104	Fluorouracil + leucovorin	2.5	NR	5/3
Giantonio et al ¹¹	2007	CRC	Ξ	287/285	Oxaliplatin + fluorouracil + leucovorin	S	NR	1/01
Saltz et al ¹²	2008	CRC	≡	694/675	Capecitabine + oxaliplatin/fluorouracil +	2.5	NR	13/8
					folinic acid + oxaliplatin			
Allegra et al ¹³	2009	CRC	≡	1,326/1,321	Oxaliplatin + fluorouracil + leucovorin	2.5	NR	25/25
Tebbutt et al ¹⁴	2010	CRC	≡	157/156	Capecitabine	2.5	19/19	2/4
Statopoulos et al ¹⁵	2010	CRC	≡	114/108	Irinotecan + fluorouracil + leucovorin	2.5	3/0	NR
Guan et al ¹⁶	2011	CRC	≡	141/70	lrinotecan + fluorouracil + leucovorin	2.5	NR	1/1
Dotan et al ¹⁷	2012	CRC	=	12/11	Capecitabine + oxaliplatin + cetuximab	2.5	6/4	0/0
De Gramont et al ¹⁸	2012	CRC	≡	1,145/1,126	Oxaliplatin + fluorouracil + leucovorin	2.5	NR	14/6
Bennouna et al ¹⁹	2013	CRC	≡	401/409	Fluorouracil/capecitabine + oxaliplatin/irinotecan	2.5	NR	8/1
Cunningham et al ²⁰	2013	CRC	≡	134/136	Capecitabine	2.5	34/9	0/1
Cao et al ²¹	2015	CRC	=	65/77	Irinotecan + fluorouracil + leucovorin	5	NR	5/0
Hegewisch-Becker et al ²²	2015	CRC	≡	156/158	None	2.5	14/11	0/1
Passardi et al ²³	2015	CRC	≡	176/194	lrinotecan + fluorouracil + leucovorin/oxaliplatin +	2.5	30/9	NR
					fluorouracil + leucovorin			
Masi et al ²⁴	2015	CRC	=	91/92	lrinotecan + fluorouracil + leucovorin/oxaliplatin +	2.5	19/2	0/0
					fluorouracil + leucovorin			
Koeberle et al ²⁵	2015	CRC	≡	131/131	None	2.5	5/1	0/0
Snoeren et al ²⁶	2017	CRC	≡	39/36	Capecitabine + oxaliplatin	2.5	NR	1/0
Miller et al ²⁷	2005	BC	≡	229/215	Capecitabine	5	66/24	1/1
Miller et al ²⁸	2007	BC	≡	365/346	Paclitaxel	5	NR	2/0
Miles et al ²⁹	2010	BC	≡	499/23 I	Docetaxel	2.5 or 5	NR	5/2
Brufsky et al ³⁰	2011	BC	≡	458/221	Capecitabine/taxane/gemcitabine/vinorelbine	5	NR	8/0
Robert et al ³¹	2011	BC	≡	817/403	Capecitabine/taxane/anthracycline	5	NR	14/1
von Minckwitz et al ³²	2012	BC	≡	956/969	Epirubicin/cyclophosphamide/docetaxel	5	NR	4/3
Gianni et al ³³	2013	BC	≡	215/206	Docetaxel + trastuzumab	5	NR	3/1
Cameron et al ³⁴	2013	BC	≡	1,288/1,271	Anthracycline/taxane	5	NR	8/2
Coudert et al ³⁵	2014	BC	=	47/25	Trastuzumab + docetaxel	5	NR	0/0
von Minckwitz et al ³⁶	2014	BC	Ξ	245/238	Taxane/anthracycline/capecitabine/vinorelbine/	5	33/18	1/4
					gemcitabin/cyclophosphamide			
Sikov et al ³⁷	2015	BC	=	215/218	Paclitaxel \pm carboplatin–doxorubicin + cyclophosphamide	5	NR	2/0
Diéras et al ³⁸	2015	BC	=	56/57	Trebananib + paclitaxel	5	29/17	0/0
Miles et al ³⁹	2017	BC	=	238/233	Paclitaxel	5	106/62	2/2
Johnson et al ⁴⁰	2004	LC	=	66/32	Carboplatin + paclitaxel	2.5 or 5	NR	0/9

19/3	3/1	28/6	10/7	2/0	3/0	2/0	2/1	0/0	0/0	0/0	0/0	1/11	4/1	22/16	5/4	I 4/5	9/2	2/2	15/2	6/3	6/6	1/3	12/4	2/2	15/8	4/2	5/0	8/1		0/1	2/5	1/1	4/1	2/0	35/16	10/2	1/0	3/1	2/6	(Continued)
NR	NR	NR	NR	94/18	2/0	54/22	NR	7/2	20/3	NR	NR	112/28	21/4	124/67	NR	NR	295/87	NR	170/78	140/27	NR	NR	NR	15/7	186/97	NR	NR	77/31		NR	NR	153/13	NR	91/16	NR	NR	1/2	3/1	NR	
5	5	2.5 or 5	ъ	5	2.5	ъ	S	2.5	ъ	S	2.5	5	5	2.5	5	5	2.5	S	5	5	2.5	2.5	2.5	2.5	5	S	5	5		5	5	2.5	5	5	5	5	5	2.5	2.5	
Paclitaxel + carboplatin	Docetaxel/pemetrexed	Cisplatin + gemcitabine	Erlotinib	Carboplatin + paclitaxel	Docetaxel + carboplatin \pm erlotinib	Erlotinib	Carboplatin, paclitaxel	${\sf Cisplatin}+{\sf etoposide}\pm{\sf epidoxorubicin}+{\sf cyclophosphamide}$	Docetaxel	Pemetrexed	Cisplatin + etoposide	Interferon α	Interferon $lpha$	Gemcitabine + erlotinib	Gemcitabine	Paclitaxel + carboplatin	Paclitaxel + carboplatin	PLD/paclitaxel/topotecan	Gemcitabine + carboplatin	Paclitaxel + carboplatin	Cisplatin + capecitabine	Epirubicin + cisplatin + capecitabine	Capecitabine + cisplatin	Epirubicin + cisplatin + capecitabine	Radiotherapy + temozolomide	None	Temozolomide	Rituximab + doxorubicin + vincristine +	cyclophosphamide + prednisone instead of R-CHOP	Pentostatin + cyclophosphamide + rituximab	Paclitaxel + carboplatin	None	Gemcitabine + cisplatin	Pemetrexed + cisplatin	Docetaxel + prednisone	Paclitaxel/topotecan + cisplatin	Gemcitabine + docetaxel	TACE	<pre>lfosfamide + vincristine + actinomycin-D + doxorubicin</pre>	instead of VADO/IVA/cyclophosphamide + vinorelbine
427/440	39/42	659/327	313/313	119/58	116/113	75/77	140/134	37/37	50/50	45/35	95/103	337/304	362/347	296/287	277/263	608/601	745/753	12/181	247/233	330/327	386/381	101/66	101/001	468/477	461/450	260/233	48/45	395/386		33/32	143/69	671/672	53/55	222/224	504/505	220/219	52/51	16/11	71/79	
≡	=	≡	≡	=	≡	=	≡		=	=	≡	≡	≡	≡	≡	≡	≡	≡	≡	≡	≡	11/11	≡	/	≡	≡	=	≡		=	=	≡	=	≡	≡	≡	≡	=	=	
LC	ГC	LC	ГC	ГC	ГC	ГC	ГC	ГC	ГC	ГC	ГC	RCC	RCC	PC	PC	oC	00	00	00	00	GC	CC	GC, GEJC	GEJC	Glioblastoma	Glioblastoma	Glioblastoma	Lymphoma		Lymphocytic leukemia	Melanoma	Melanoma	ΜМ	ΜМ	Prostate cancer	Cervical cancer	nLMS	HC	STSs	
2006	2007	2009	2011	2012	2013	2014	2015	2015	2016	2016	2017	2007	2010	2009	2010	2011	2011	2014	2015	2017	2011	2013	2015	2017	2014	2014	2016	2014		2016	2012	2014	2012	2016	2012	2014	2015	2015	2017	
Sandler et al ⁴¹	Herbst et al ⁴²	Reck et al ⁴³	Herbst et al ⁴⁴	Niho et al ⁴⁵	Boutsikou et al ⁴⁶	Seto et al ⁴⁷	Zhou et al ⁴⁸	Pujol et al ⁴⁹	Takeda et al ^{so}	Karayama et al ⁵¹	Tiseo et al ⁵²	Escudier et al ⁵³	Rini et al ⁵⁴	Van Cutsem et al ⁵⁵	Kindler et al ⁵⁶	Burger et al ⁵⁷	Perren et al ⁵⁸	Pujade-Lauraine et al ⁵⁹	Aghajanian et al ⁶⁰	Coleman et al ⁶¹	Ohtsu et al ⁶²	Okines et al ⁶³	Shen et al ⁶⁴	Cunningham et al ⁶⁵	Chinot et al ⁶⁶	Gilbert et al ⁶⁷	Balana et al ⁶⁸	Seymour et al ⁶⁹		Kay et al ⁷⁰	Kim et al ⁷¹	Corrie et al ⁷²	Kindler et al ⁷³	Zalcman et al ⁷⁴	Kelly et al ⁷⁵	Tewari et al ⁷⁶	Hensley et al 77	Pinter et al ⁷⁸	Chisholm et al ⁷⁹	

Dovepress

Author	Year	Malignancy	Phase	No. in	Concurrent treatment	Dose	No. of blee	No. of bleeding events
				intervention/		(mg/kg/week)	in interven	in intervention/control
				control			All grade	Grade ≥3
Ramucirumab								
Yoh et al ⁸⁰	2016	ГC	=	76/81	Docetaxel	3.3	39/23	2/0
Doebele et al ⁸¹	2015	LC	=	67/69	Pemetrexed + cisplatin	3.3	26/13	2/1
Garon et al ⁸²	2014	ГC	≡	627/618	Docetaxel	3.3	181/94	15/14
Petrylak et al ⁸³	2016	nc	=	46/45	Docetaxel	3.3	31/12	2/1
Petrylak et al ⁸⁴	2017	nc	≡	263/267	Docetaxel	3.3	67/46	8/12
Tabernero et al ⁸⁵	2015	CRC	≡	529/528	None	4	232/120	13/9
Moore et al ⁸⁶	2016	CRC	=	52/49	Oxaliplatin + fluorouracil + leucovorin	4	25/9	NR
Mackey et al ⁸⁷	2015	BC	≡	752/382	Docetaxel	3.3	361/85	7/7
Yardley et al ⁸⁸	2016	BC	=	69/65	Eribulin	3.3	13/3	1/1
Fuchs et al ⁸⁹	2014	GC or GEJC	≡	236/115	None	4	30/13	8/3
Wilke et al ⁹⁰	2014	GC or GEJC	≡	327/329	Paclitaxel	4	137/59	14/8
Yoon et al ⁹¹	2016	GC, EC, or GEJC	=	82/80	Oxaliplatin + fluorouracil + leucovorin	4	36/20	5/5
Zhu et al ⁹²	2015	HC	≡	277/276	None	4	90/55	17/21

the risk of all-grade bleeding (RR: 1.94, 95% CI: 1.76–2.13, p < 0.00001) and no difference was observed for the risk of high-grade bleeding (RR: 1.04, 95% CI: 0.78–1.39, p=0.79) compared with the control group. RR of all-grade and high-grade bleeding according to drug type is summarized in Tables 2 and 3, respectively.

Dovepress

In addition, we further assessed the risk of pulmonary hemorrhage of bevacizumab and ramucirumab in all lung cancer patients. The results showed that bevacizumab significantly increased the risk of all-grade (RR: 4.72, 95% CI: 1.99–11.19, p=0.0004) and high-grade pulmonary hemorrhage (RR: 3.97, 95% CI: 1.70–9.29, p=0.001), but no significant differences in the risk of all-grade (RR: 1.09, 95% CI: 0.76–1.57, p=0.64) and high-grade (RR: 1.22, 95% CI: 0.35–4.21, p=0.75) pulmonary hemorrhage were observed for ramucirumab. RR of all-grade and high-grade pulmonary hemorrhage is shown in Figures 4 and 5, respectively.

RR according to drug dosage

In the subgroup analysis by dosage, the increased risk of allgrade and high-grade bleeding was observed in both low-dose and high-dose angiogenesis inhibitors.

The risks of all-grade bleeding were comparable between patients with low-dose angiogenesis inhibitors (RR: 2.46, 95% CI: 1.95–3.11) and high-dose angiogenesis inhibitors (RR: 2.34, 95% CI: 2.00–2.73) (Table 2). The risk of high-grade bleeding was more frequently observed in patients with high-dose angiogenesis inhibitors (RR: 2.17, 95% CI: 1.79–2.64) than in those with low-dose angiogenesis inhibitors (RR: 1.31, 95% CI: 1.06–1.60) (Table 3).

RR according to tumor type

Studies were further stratified according to tumor type (colorectal cancer vs non-colorectal tumors). Increased risk of all-grade and high-grade bleeding was observed in both the colorectal cancer arm and non-colorectal tumors arm. The risks of all-grade (RRs for colorectal cancer and non-colorectal tumors were 2.24, 95% CI: 1.58–3.19 and 2.42, 95% CI: 2.09–2.80, respectively) (Table 2) and high-grade bleeding (RRs for colorectal cancer and non-colorectal tumors were 1.52, 95% CI: 1.13–2.03 and 1.77, 95% CI: 1.50–2.09, respectively) (Table 3) were comparable between patients with colorectal cancer and non-colorectal tumors.

Publication bias

To minimize publication bias, we selected papers strictly according to the inclusion criteria. Furthermore, a funnel plot

Xiao et al

Study or subgroup	Experimental events	Total	Control events	Total	Weight (%)	Risk ratio M–H, random, 95% Cl	Risk ratio M–H, random, 95% Cl	
Aghajanian et al60	170	247	78	233	3.8	2.06, 1.68–2.51	-	- 2
Boutsikou et al ⁴⁶	7	116	0	113	0.2	14.62, 0.84–252.94		
Chinot et al ⁶⁶	186	461	97	450	3.8	1.87, 1.52–2.31	-	
Coleman et al ⁶¹	140	330	27	327	3.1	5.14, 3.50–7.53	-	
Corrie et al ⁷²	153	671	13	672	2.4	11.79, 6.76–20.55	-	
Cunningham et al ²⁰	34	134	9	136	1.9	3.83, 1.91–7.68		
Cunningham et al ⁶⁵	15	468	7	477	1.4	2.18, 0.90–5.31		
Diéras et al ³⁸	29	56	17	57	2.7	1.74, 1.08–2.78		
Doebele et al ⁸¹	26	67	13	69	2.3	2.06, 1.16–3.66		
Dotan et al ¹⁷	6	12	4	11	1.3	1.38, 0.52–3.61		
Escudier et al53	112	337	28	304	3.1	3.61, 2.46–5.30	-	
Fuchs et al ⁸⁹	30	236	13	115	2.2	1.12, 0.61–2.07		
Garon et al ⁸²	181	627	94	618	3.7	1.90, 1.52–2.37	-	
Hegewisch-Becker et al ²²	14	156	11	158	1.7	1.29, 0.60–2.75		
Hensley et al ⁷⁷	1	52	2	51	0.3	0.49, 0.05–5.24		
Koeberle et al ²⁵	5	131	1	131	0.3	5.00, 0.59–42.21		_
Mackey et al ⁸⁷	361	752	85	382	0.3 3.8	2.16, 1.76–2.64	-	
Masi et al ²⁴	19	732 91	2	92	0.7	9.60, 2.30–40.05		_
Miles et al ³⁹	106	238	2 62	233	3.6	9.00, 2.30–40.03 1.67, 1.30–2.16		
Miller et al ²⁷	66	238 229	02 24	233 215	3.0 2.9	,	*	
Moore et al ⁸⁶	25	229 52	24 9	49	2.9	2.58, 1.68–3.96	-	
Niho et al ⁴⁵	25 94	52 119				2.62, 1.36–5.04		
Passardi et al ²³	94 30	176	18 9	58 194	3.0 1.9	2.55, 1.72–3.78	-	
	295	745		753		3.67, 1.79–7.52		
Perren et al ⁵⁸			87		3.8	3.43, 2.76–4.26	Ŧ	
Petrylak et al ⁸³	31	46	12	45	2.5	2.53, 1.50–4.27		
Petrylak et al ⁸⁴	67	263	46	267	3.3	1.48, 1.06–2.07	-	
Pinter et al ⁷⁸	3	16	1	11	0.3	2.06, 0.25–17.34		
Pujol et al ⁴⁹	7	37	2	37	0.6	3.50, 0.78–15.75		
Rini et al ⁵⁴	21	362	4	347	1.1	5.03, 1.75–14.51		
Seto et al ⁴⁷	54	75	22	77	3.1	2.52, 1.72–3.69	-	
Seymour et al ⁶⁹	77	395	31	386	3.0	2.43, 1.64–3.59	-	
Statopoulos et al ¹⁵	3	114	0	108	0.2	6.63, 0.35–126.96		
Tabernero et al ⁸⁵	232	529	120	528	3.9	1.93, 1.60–2.32		
Takeda et al⁵⁰	20	50	3	50	1.0	6.67, 2.11–21.02		
Tebbutt et al ¹⁴	19	157	19	156	2.2	0.99, 0.55–1.80		
Van Cutsem et al55	124	296	67	287	3.6	1.79, 1.40–2.30	-	
von Minckwitz et al ³⁶	33	245	18	238	2.4	1.78, 1.03–3.07		
Nilke et al ⁹⁰	137	327	59	329	3.6	2.34, 1.79–3.04	-	
Yardley et al ⁸⁸	13	69	3	65	0.9	4.08, 1.22–13.67		
Yoh et al ⁸⁰	39	76	23	81	3.0	1.81, 1.20–2.72		
Yoon et al ⁹¹	36	82	20	80	2.8	1.76, 1.12–2.76		
Zalcman et al ⁷⁴	91	222	16	224	2.6	5.74, 3.49–9.44		
Zhu et al ⁹²	90	277	55	276	3.5	1.63, 1.22–2.18	-	
Total, 95% Cl		10,141		9,490	100	2.38, 2.09–2.71	•	
Total events	3,202		1,231					
Heterogeneity: $\tau^2=0.11$; χ^2); <i>I</i> ²=74%					
Test for overall effect: Z=1	2.95 (p<0.00001)						0.005 0.1 1 10	20
							Favors Favo	

Figure 2 RR of all-grade bleeding. Abbreviations: M–H, Mantel–Haenszel; RR, relative risk.

was used to detect publication bias and no apparent bias was found according to it for all-grade and high-grade bleeding.

Discussion

To the best of our knowledge, this is the first and the largest meta-analysis to assess the risk of bleeding associated with antiangiogenic monoclonal antibodies bevacizumab and ramucirumab. The results of our meta-analysis showed a significant 2.38-fold increased all-grade bleeding risk and a 1.71-fold increased high-grade bleeding risk with these agents. A similar risk of bleeding is also associated with other VEGF receptor tyrosine kinase inhibitors.⁹³

In order to identify potential risk factors, we performed subgroup analysis according to drug types. The results

ubujonjo Potel	Oto da ca			a				Bill of the training
Weigen at all 25 1.328 25 1.321 8.5 1.00.088-1.73	Study or subgroup				Total			
alama et al" 5 48 0 46 0 2 103. 0.59-191.54	Aghajanian et al ⁶⁰	15	247		233		7.07, 1.64-30.60	
Bernoma all ¹¹ 5 401 1 460 0.3 B. B. 1, 106-6494 4 4 4 4 4 4 4 4 5 4 4 5 4 4 5 4 4 4 5 4 5 4 4 4 5 4 5 4 4 4 5 5 4 5 4 5 4 5 4 5 4 5 5 4 5 4 5 4 5 4 5 5 4 5 4 5 4 5 5 4 5 4 5 4 5 5 4 5 4 5 5 4 5 4 5 5 4 5 4 5 5 4 5 4 5 5 4 5 5 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Allegra et al ¹³							-
Society of at ¹⁶ 3 116 0 113 0.2 8.82, 0.38-190, 67 Society of at ¹⁶ 6 6 0 211 0.2 8.82, 0.48-14, 81 Society of at ¹⁶ 5 6.65 0 77 0.2 8.82, 0.48-14, 81 Society of at ¹⁶ 5 6.65 0 77 0.2 130, 0.78-427 Society of at ¹⁶ 5 6.65 0 77 0.2 130, 0.78-427 Society of at ¹⁶ 6 6.6 0 77 0.2 0.50, 0.07-427 Society of at ¹⁶ 0 6.7 0 0.00, 0.05-15, 8								
backsy et al ²⁰ 8 468 0 221 0.2 82.2 0.4-14.18 American et al ²⁰ 1.28 0.27 1.28 0.07-764								
Jager et al ²⁷ , 14 4 500 5 001 1,7 2,77, 10,7-7.4 4 4 4 1,7 2,77, 10,7-7.4 4 4 4 1,7 2,8 2,7 1,0 7,8 4 4 4 1,7 2,7 1,0 7,8 4,7 1,0 1,0 8,0,5 7,8 6 4 4 4 1,7 1,0 7,9 1,0 1,0 8,0,0 7,8 6 4 4 4 1,7 1,0 7,9 1,0 1,0 8,0,0 7,8 6 4 4 4 1,0 1,0 7,2 1,0 1,0 8,0,0 7,8 6 4 4 4 1,0 1,0 7,2 1,0 1,0 8,0,0 7,8 6 4 4 4 1,0 1,0 7,2 1,0 1,0 8,0,0 7,8 6 4 4 4 1,0 1,0 7,2 1,0 1,0 8,0,0 7,8 6 4 4 4 1,0 1,0 7,1 1,0 2,0 1,0 7,1 1,0 2,0 1,0 7,1 1,0 2,0 1,0 7,1 1,0 2,0 1,0 7,1 1,0 2,0 1,0 7,1 1,0 2,0 1,0 7,1 1,0 2,0 1,0 7,1 1,0 1,0 1,0 7,1 1,0 2,0 1,0 7,1 1,0 2,0 1,0 7,1 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1								
Damber of all 6 1.288 2 1.271 0.7 33.06.0.8-18.55 Dance of all 5 6 6 0 77 0.2 133.0.79-427 Camber of all 6 6.30 3.27 10.0 133.0.79-427 Camber of all 6 6.30 3.27 10.0 10.0.05-786 Camber of all 6 7.7 0.5 Not estimable Consolid et all 0 7.7 0.5 Not estimable Consolid et all 0 7.7 0.5 0.52.0.0.1-7.21 Consolid et all 1.144 1.6 0.7 Not estimable Consolid et all 1.126 2.2 0.2.2.0.0.1-2.21								
Date data ¹¹ 5 65 0 77 0.2 13.00.073-23.07 Date data ¹¹ 15 451 5 65 0 77 0.2 13.00.073-23.07 Date main 15 15 15 15 150.00-7.65 150.00-7.65 Date data ¹¹ 1 671 1 672 0.3 10.00.00-7.82.07 Date data ¹¹ 1 671 1 672 0.3 10.00.00-7.82.07 Date data ¹¹ 0 47 0 257 0.00.00-1.82.1 Date data ¹¹ 0 434 1.145 6 1.126 21 2.28.0.08-5.95 Date data ¹¹ 0 1.33 1.1 1.4 1.30.0.35-4.81	Cameron et al34		1,288					· · · ·
Diaboline at all 2 71 6 79 1.9 0.37, 0.50-178 Control at all 6 330 3 327 1.0 1.00, 0.50-158 Control at all 1 0.71 0.72 0.3 1.00, 0.50-158 Control at all 1 138 0.5 0.44, 0.00-162.2 Control at all 1.128 1.128 1.22, 0.14-7.21 Data at all 1.128 1.128 1.128 1.128 Data at all 1.128 1.128 1.128 1.128 1.128 Data at all 1.128 1.128 1.128 1.128 1.128 1.128 1.128 1.128 1.128 1.128 1.128	Cao et al ²¹	5	65	0	77	0.2	13.00, 0.73-230.76	+
Johanna rafi" 6 330 3 327 1.0 1.88, 0.59-7.86 Concert at all* 1 672 0.3 1.00, 0.00-15.98 Journingham at all* 2 445 2 1.00, 0.00-15.98 Journingham at all* 2 445 2 1.00, 0.00-15.98 Joachert at all* 1.4 1.145 6 1.126 2.1 2.230, 0.85-5.95 Joachert at all* 0 56 0.7 Not estimable	Chinot et al66							+
Scrie et al ¹⁰ 0 071 0 072 0.3 100.006-15.98 Jurningham et al ¹⁰ 0 34 1 136 0.5 0.44.001-8.23 Jurningham et al ¹⁰ 0 34 1 136 0.5 0.44.001-8.23 Join and tal ¹⁰ 0 88 0 97.0 Not estimable Join and tal ¹⁰ 0 12 0 11 Not estimable Join and tal ¹⁰ 1 2.0 11 Not estimable	Chisholm et al ⁷⁹							
Dodefit et al ^a 0 47 0 25 Not estimable Durningham et al ^{an} 0 134 1 136 0.5 0.34 0.01-8.23 Durningham et al ^{an} 2 468 2 477 0.7 102 0.01-8.23 Darbie et al ^{an} 14 1145 6 10.26 0.01-8.23 0.00-8.23 Darbie et al ^{an} 1 37 1 0.40 0.4 9.32 1.20-84.14 Darbie et al ^{an} 1 37 1 304 0.4 9.32 1.20-78.14 Darbie et al ^{an} 1 0.27 1 605 4.3 120.03-8.41 1.4 Darbie et al ^{an} 1 0.27 1 265 0.3 9.63.128-77.01 1.4 10.3 120.7 1.70.03-97.01 1.70.03-97.01 1.70.03-97.01 1.70.03-97.01 1.70.03-97.01 1.70.03-97.01 1.70.03-97.01 1.70.03-97.01 1.70.03-97.01 1.70.03-97.01 1.70.03-97.01 1.70.03-97.01 1.70.03-97.01 1.70.03-								
Lunningham et al ¹⁰ Lunningham et al ¹⁰ the Gamort et al ¹⁰ the Gamort et al ¹⁰ the Gamort et al ¹⁰ the Gamort et al ¹⁰ Cobbe et al ¹¹ Cobbe et al ¹¹				-		0.3		
Junningham et all ¹⁶ 2 458 2 477 0.7 120.014-721 been at all ¹⁷ 0 58 0 57 been at all ¹⁷ 1 141 1 70 consolid tall ¹⁷ 144 11 70 consolid tall ¹⁷ 144 0 59 1 15 been at all ¹⁷ 144 11 70 consolid tall ¹⁷ 144 0 59 1 15 been at all ¹⁸ 1 144 1 70 consolid tall ¹⁷ 144 0 58 0 5 consolid tall ¹⁷ 145 0 7 consolid tall ¹⁷ 15 consolid tall ¹⁷ 145 0 7 consolid tall ¹⁷ 15 consolid tall ¹⁷						0.5		
be Grammet al ¹¹ 14 1,145 6 1,126 2,1 222,0.88–5.96								
Defense tal ^{an} O S8 O S7 Not estimable Defan et al ^{an} 0 12 0 11 Not estimable Defan et al ^{an} 1 327 13 16 0.14 9.32 1.52-78.41 Samon et al ^{an} 15 207 14 161 4.4 9.32 1.52-78.41								
December are 2 67 1 69 0.3 2006. [0 + 22: 18 Scouder et all ²¹ 1 337 1 304 0.4 9.32. [2:0.75:41 Scouder et all ²¹ 8 227 3 116 14 9.32. [2:0.75:41 Signific et all ²¹ 3 257 14 206 0.3 9.37. [2:0.75:41 Signific et all ²¹ 10 287 1 266 0.3 9.37. [2:0.75:41 Signific et all ²¹ 10 287 1 266 0.3 9.37. [2:0.75:41 Signific et all ²¹ 1 10 33 0.7 17.0 0.3 0.57:0.00-7.82 Signific et all ²¹ 1 11 10 0.3 0.34. 0.12-82	Diéras et al ³⁸							
Johan et al ¹⁷ 0 12 0 11 Not estimable Under et al ¹⁸ 5 237 3 15 1 130 0.35 2.120-76 14 Simol et al ¹⁸ 3 255 1 265 0.3 2.97 17 Simol et al ¹⁸ 10 267 1 265 0.3 9.93, 128-77.07 Simol et al ¹⁸ 1 41 1 70 0.3 0.57, 0.03-9.70 Simol et al ¹⁸ 1 41 1 70 0.3 0.50, 0.00-7.82 Simol et al ¹⁸ 1 141 1 70 0.3 0.50, 0.00-7.82 Simol et al ¹⁸ 10 133 7 133 2.4 143, 0.55-37.7 Simol et al ¹⁸ 10 133 10 317 2.4 143, 0.55-2.77 Simolog al ¹⁸ 6 6 0 32 0.2 0.40, 0.37-110, 2.0-80.70 Simolog al ¹⁸ 1 0 1.5 1.6 50 5.4 1.6 50 5.4 1.6 50 5.4 1.6	Doebele et al ⁸¹					0.3		
Scader al ^{ab} 11 337 1 304 0.4 9.32, 120-78.41 Gran at al ^{ab} 15 627 14 618 4.8 1.06, 0.67-217 Samon at al ^{ab} 15 627 14 618 4.8 1.06, 0.67-217 Samon at al ^{ab} 10 257 11 206 0.3 2.67, 0.30-27.41 Samon at al ^{ab} 10 257 11 206 0.3 2.67, 0.30-27.41 Samon at al ^{ab} 10 270 12 233 0.7 17, 0.03-30-970 Samon at al ^{ab} 10 156 1 158 0.5 0.34, 0.01-8.22 Samon at al ^{ab} 10 127 137 2.2 0.26, 0.00-7.82 Samon at al ^{ab} 10 0.52 1.5 0.5 0.33, 0.01-7.05 Samon at al ^{ab} 10 0.3 2.2 0.22 0.20-7.02 Samon at al ^{ab} 10 1.33 0.2 2.71, 0.20-6.07 Samon at al ^{ab} 10 1.33	Dotan et al17			0				
B 236 3 115 1.4 1.30 0.35-481 Jann et al ¹⁰ 3 215 1 206 0.3 2.47 0.30 0.55-41 Jann et al ¹⁰ 3 215 1 206 0.3 2.47 0.30 0.51-27 1 Jann et al ¹⁰ 1 227 1 225 0.3 0.51 2.27 1 Jann et al ¹⁰ 1 156 1 158 0.5 0.33 0.01-7.82 Jann et al ¹⁰ 0 52 1 51 0.5 0.33 0.01-7.82 Herolst et al ¹⁰ 0 53 2.2 0.33 0.01-7.82	Escudier et al53			1		0.4		
Jamie ta ¹²⁴ 3 215 1 206 0.3 247 (30-27.41 jilient et al ¹⁶ 4 250 2 233 0.7 17,0 (33-9.70 jilient et al ¹⁶ 4 250 2 233 0.7 17,0 (33-9.70 jilient et al ¹⁶ 1 141 1 70 0.3 0.35 (0.20-7.82 jilient et al ¹⁶ 1 141 1 70 0.3 0.35 (0.20-7.82 jilient et al ¹⁶ 1 141 1 70 0.3 0.35 (0.20-7.85 0.3 0.91-7.85 0.3 0.91-7.85 0.4 0.93-7.110.25 0.2 0.27,10 20-85,70 0.4 0.93-7.110.25 0.2 0.27,10 20-85,70 0.4 0.93-7.110.25 0.2 0.27,10 20-85,70 0.4 0.93-7.110.25 0.4 0.93-7.110.25 0.4 0.93-7.110.25 0.4 0.93-7.10.25 0.4 0.95 0.4 0.95	Fuchs et al ⁸⁹	8	236	3	115	1.4	1.30, 0.35-4.81	
Sanchon et al" 10 287 1 285 0.3 9.33, 128-7.77 Juan et al" 4 250 2 23 0.7 179, 0.35-8.70 ternsley et al" 0 52 1 51 0.5 0.33, 0.00-7.82 ternsley et al" 0 52 1 51 0.5 0.33, 0.01-7.85 70 ternsley et al" 0 52 1 51 0.5 0.33, 0.01-7.85 70 ternsley et al" 12 0.33 17 413 0.55-77 1 turwize tal" 12 0.33 10 397 3.4 121, 052-77 0 dabinaver et al" 3 67 0 35 0.2 3.71, 02-09.79 dabinaver et al" 3 67 0 35 0.2 3.71, 02-09.79 dabinaver et al" 1 5 34 0.0 26 0.2 3.71, 02-09.79 dabinaver et al" 1 5 34 0.0 26 0.2 3.71, 02-09.79 dabinaver et al" 1 5 34 0.0 26 0.2 3.71, 02-09.79 dabinaver et al" 1 5 34 0.0 26 0.2 3.71, 02-09.79 dabinaver et al" 1 5 34 0.0 26 0.2 3.71, 02-09.79 dabinaver et al" 1 5 34 0.0 26 0.2 3.71, 02-09.79 dabinaver et al" 1 5 34 0.0 26 0.2 3.71, 02-09.79 dabinaver et al" 1 5 34 0.0 26 0.2 3.71, 02-09.79 dabinaver et al" 1 5 34 0.0 26 0.2 3.71, 02-09.79 dabinaver et al" 1 5 34 0.0 26 0.2 3.71, 02-09.79 dabinaver et al" 1 5 34 0.0 26 0.2 3.71, 02-09.79 dabinaver et al" 1 5 34 0.0 26 0.2 3.71, 02-09.79 dabinaver et al" 1 5 34 0.0 26 0.2 3.71, 02-09.79 dabinaver et al" 1 5 34 0.0 26 0.2 4.2 3.0 11, 0.10-4, 0.0 4.0 0.0	Garon et al ⁸²	15	627	14	618	4.8	1.06, 0.51-2.17	
Silbert et al ^m	Gianni et al33							
Juan et al ¹⁶ 1 1 11 1 70 0.3 0.50, 00-7.82 tensiey et al ⁷⁷ 0 52 1 55 0.5 0.33, 00-7.82 tensiey et al ⁷⁷ 0 52 1 55 0.5 0.33, 00-7.82 tensiey et al ⁷⁷ 0 52 1 51 0.5 0.33, 00-7.82 tensiey et al ⁷⁷ 1 0 313 7 313 2.4 1.43, 055-7.71 tensies et al ⁴⁷ 1 2 393 10 397 3.4 112, 055-7.71 tensies et al ⁴⁷ 1 2 393 10 397 3.4 1.12, 055-7.72 tensies et al ⁴⁷ 1 3 30 0 22 0.2 371, 02-0679 tensies et al ⁴⁷ 1 3 30 0 22 0.2 371, 02-0679 tensies et al ⁴⁷ 1 3 30 0 22 0.2 371, 02-0679 tensies et al ⁴⁷ 1 3 30 0 22 0.2 2 371, 02-0679 tensies et al ⁴⁷ 1 3 35 0.04 16 506 5.4 2.19, 1.23-3.91 tensies et al ⁴⁷ 2 1.43 5 69 2.3 0.19, 0.04-0.97 tensies et al ⁴⁷ 2 1.43 5 69 2.3 0.19, 0.04-0.97 tensies et al ⁴⁷ 2 1.43 5 69 2.3 0.7 0.98, 0.14-6.85, 0.5 tensies et al ⁴⁷ 0 1.31 0 1.31 Note estimate tensies et al ⁴⁷ 1 2.29 1 1.31 Note estimate tensies et al ⁴⁷ 1 2.29 1 1.31 Note estimate tensies et al ⁴⁷ 1 2.29 1 1.31 Note estimate tensies et al ⁴⁷ 1 2.29 1 1.31 Note estimate tensies et al ⁴⁷ 1 2.29 1 2.15 0.4 0.98, 0.14-6.89 tensies et al ⁴⁷ 1 2.29 1 2.15 0.4 0.98, 0.04-4.82 tensies et al ⁴⁷ 1 0 0 3 101 10 0.34, 0.04-3.22 tensies et al ⁴⁷ 1 0.9 3.101 10 0.34, 0.04-3.22 tensies et al ⁴⁷ 1 0.9 3.101 10 0.34, 0.04-3.22 tensies et al ⁴⁷ 1 0.9 3.101 10 0.34, 0.04-3.24 tensies et al ⁴⁷ 1 0.9 3.101 10 0.34, 0.04-3.24 tensies et al ⁴⁷ 2 1.50 0 4.60 9.02-2.46 tensies et al ⁴⁷ 1 0.9 3.101 10 0.34, 0.04-3.24 tensies et al ⁴⁷ 1 0.9 3.101 10 0.34, 0.04-3.24 tensies et al ⁴⁷ 1 0.9 3.101 10 0.34, 0.04-3.24 tensies et al ⁴⁷ 1 0.9 3.101 10 0.34, 0.04-3.24 tensies et al ⁴⁷ 1 0.9 3.101 10 0.34, 0.04-3.24 tensies et al ⁴⁷ 1 0.9 3.102 0.102 0.207 0.1 1.50, 0.02-2.07 tensies et al ⁴⁷ 1 0.9 0.9 0.22.1734 tensies et al ⁴⁷ 1 0.9 0.101 1.0 0.34, 0.04-3.24 tensies et al ⁴⁷ 1 0.9 0.101 1.0 0.34, 0.04-3.24 tensies et al ⁴⁷ 1 0.9 0.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Giantonio et al11							·
bigewisch-Becker et al ¹² 0 156 1 158 0.5 0.34, 0.01-8.25 refolst et al ¹² 3 39 1 42 0.3 3.23, 0.35-29.77 refolst et al ¹² 12 393 10 397 3.4 1.21, 0.55-2.77 refolst et al ¹² 12 393 10 397 3.4 1.21, 0.52-27.7 refolst et al ¹³ 1 12 393 10 397 3.4 1.21, 0.22-87.79 refolst et al ¹⁴ 6 6 0 32 0.2 2.10, 10.2-49.79 dabinxare et al ¹⁶ 6 6 0 15 10.1 11.10.17.06 Grapt al ¹¹ 1 3 0 2.2 2.3 0.19, 0.40-9.71 Grapt al ¹¹ 2 143 5 69 2.3 0.19, 0.40-9.71 Grapt al ¹¹ 2 143 5 0.3 4.15, 0.48-35.05 0.5 Grapt al ¹¹ 7 752 7 382 2.2 0								
tendel et all ²⁷ 0 62 1 51 0.5 0.33, 0.01-7.85 terbat et all ²⁷ 10 313 7 313 2.4 1.43, 0.55-3.71 terbat et all ²⁸ 10 397 3.4 1.21, 0.55-3.71								
ierbst er al ^m 3 39 1 42 0.3 323, 0.35-29.77 turwitz et al ^m 12 393 10 397 3.4 1.14, 0.65-3.71 turwitz et al ^m 6 65 0 32 0.2 371, 0.20-69.79 diabinavar et al ^m 3 67 0 352 0.2 371, 0.20-69.79 diabinavar et al ^m 0 46 0 36 0.2 2.19, 0.23.91 diapinate et al ^m 0 46 0 36 0.2 2.19, 0.23.91 diapinate et al ^m 1 5 60 2.3 0.19, 0.04-0.97 Ginde et al ^m 0 131 0 131 Not estimable diackey et al ^m 7 752 7 382 3.2 0.51, 0.10-1.44 diackey et al ^m 1 2.29 1 2.15 0.4 0.94, 0.06-14.82 differet al ^m 2 2.35 0.7 4.66, 0.24-56.02								
idenset at all* 10 313 7 313 2.4 1.43 0.55-3.71 industry at all* 6 65 0 32 0.2 6.40 0.37-110.26 isobinavar et all* 6 65 0 32 0.2 6.40 0.37-110.26 isobinavar et all* 6 100 3 104 10 1.73 0.43-7.06 isobinavar et all* 6 100 3 104 10 1.73 0.43-7.06 isobinavar et all* 0 466 0.86 1.14 1.18 0.24-2.81 1.4 isobinavar et all* 1 33 0 226 2.21 1.91 0.19 0.19 isobinavar et all* 0 131 0 131 0.3 Not estimable isobinavar et all* 0 91 0 92 Not estimable Not estimable isobinavar et all* 0 91 0 92 0.51 0.10-1.44 9 isobinavar et all* 0 91 0 92 0.90 0.90								
Unvike et al" 12 333 10 397 3.4 1.21, 0.53-277 Gabbiavar et al" 3 67 0 35 0.2 37, 10, 20-66, 79 Gabbiavar et al" 0 46 0 36 Not estimable Garayama et al" 0 46 0 36 Not estimable Garayama et al" 0 46 0 36 Not estimable Garayama et al" 0 46 0 36 Not estimable Kinder et al" 1 33 0.2 2.2 2.10, 10, 12-44, 55 Kinder et al" 0 131 0 131 Not estimable Gabetia et al" 0 131 0 131 Not estimable Gabetia et al" 0 99 0 92 100 100 144 46.80 Gabetia et al" 2 235 0 346 0.2 244 0.44.80 0.44.80 Gabetia et al" 2 19 0 68 0.2 246 0.42-50.30 0.44 0.44.80 0.44.80 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
boheson et al [®] 6 65 0 32 0.2 6.40, 0.37-110.26 dabbiavar et al [®] 5 100 3 104 1.0 173, 0.43-7.06 dabbiavar et al [®] 5 100 3 104 1.0 173, 0.43-7.06 dabbiavar et al [®] 5 100 3 104 1.0 173, 0.43-7.06 dabbiavar et al [®] 5 504 16 506 5.4 219, 123-3.81 								
Gabinary et ali ^a 3 67 0 35 0.2 37.1 0.20-60.79 Grayama et al ⁱⁿ 0 46 0 36 Not estimable Grayama et al ⁱⁿ 1 33 0.2 2.91 0.12-0.49.55 Gely et al ⁱⁿ 35 504 16 506 5.4 2.19 1.22-0.49.55 Gindler et al ⁱⁿ 2 1.33 0.93 0.04-0.97								
Gabhiavar et all* 5 100 3 104 1.0 1.73, 0.43-7.06 Kay et all* 1 33 0 22 0.2 2.91, 0.12-0.495 Kay et all* 2 143 5 650 5.4 2.19, 1.2-0.495 Kin et all* 2 143 5 650 2.3 0.19, 0.04-0.97 Kin et all* 2 143 5 69 2.3 0.4 1.0, 0.42-3.05 Kinder et all* 0 131 0 131 Not estimable Not estimable dacks yet all* 7 752 7 382 3.2 0.51, 0.10-1.44 4 daset all* 1 0.92 1.15, 0.22-5.92 Not estimable differet all* 1 2.29 1 2.15 0.4 0.94, 0.06-14.92 differet all* 1 2.90 3.10 1.0 0.40-2.46 differet all* 1 0.60 3 101 0.70 0.34, 0.04-3.26 differet all* 1 0.60 3 101	Kabbinavar et al ⁸							
Cap et al ¹⁶ 1 33 0 22 0.2 2.91 0.12-04.95 Gind et al ¹⁶ 5 64 2.15 0.13 0.12-04.95 Gind et al ¹⁶ 5 277 4 283 1.4 1.39 0.04-0.97 Gindle et al ¹⁶ 0 131 0 131 Not estimable Mackey et al ¹⁷ 7 752 7 382 3.2 0.51 0.10-1.44 Mass et al ¹⁶ 0 91 0 92 Not estimable Miles et al ¹⁸ 2 233 0.7 0.98 0.14-8.69 Miles et al ¹⁶ 2 386 2.2 33 0.7 0.98 0.02-3.93 Miles et al ¹⁶ 2 119 0 68 0.2 2.4% 0.02-4.92 0.00-4.04 Sinus et al ¹⁶ 2 150 0.3 101 0.94.04-2.46 0.06-3.92 0.00-0.00 0.00-0.00-0.00 0.00-0.00-0.00 0.00-0.00-0.00 0.00-0.00-0.00 0.00-0.00-0.00 0.00-0.00-0.00 0.00-0.00-0.00 0.00-0.00-0.00-0.00 0.00-0.00-0.00-0.00 <th< td=""><td>Kabbinavar et al¹⁰</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Kabbinavar et al ¹⁰							
Gely et all ¹⁶ 35 504 16 56 5.4 2.19, 1.23-31 Gindle et all ¹⁶ 5 2.77 4 23 0.19, 1.04-0.97 Gindle et all ¹⁶ 5 2.77 4 23 0.19, 1.04-0.97 Gindle et all ¹⁶ 0 131 0 131 Not estimable Mackey et all ¹⁶ 0 91 0 92 Not estimable Miles et all ¹⁶ 0 91 0 92 Not estimable Miles et all ¹⁶ 2 2.38 2 231 0.9 1.15, 0.23-5.92 Miles et all ¹⁶ 2 190 0 68 0.2 4.74, 0.23-98.32 Miller et all ¹⁶ 2 190 0 68 0.2 2.47, 0.23-98.32 Petropic at all ¹⁶ 9 3.46 8 201 3.1 0.99, 0.40-2.46 Miller et all ¹⁶ 9 3.46 1.45 0.3 1.96, 0.82-2.16 4.66 Petropic at all ¹⁶ 1 10 0.3, 0.43-34 1.4 4.56, 0.92-0.096 4.56, 0.92-0.096 4.56, 0.92-0.096	Karayama et al ⁵¹							
Kim et al ¹¹ 2 143 5 669 2.3 0.19, 0.04-0.97 Kindle et al ¹² 4 53 1 55 0.3 4.15, 0.48-3505 Kindle et al ¹² 7 752 7 382 3.2 0.51, 0.10-1.44 Masie tal ¹⁴ 0 91 0 92 Notestimable Miles et al ¹² 2 233 0.7 0.98, 0.14-6.89 Miller et al ¹⁷ 1 229 1 215 0.4 0.94, 0.02-1.492 Miller et al ¹⁶ 2 365 0 346 0.2 2.46, 0.12-0.39 Miller et al ¹⁸ 2 119 0 68 0.2 2.46, 0.12-0.39 Vihos et al ¹⁸ 9 746 2 753 0.7 4.56, 0.99-20.50 Petrylak et al ¹⁸ 2 166 1 11 0.4 2.06, 0.28-1.63 Vipde-Laurine et al ¹⁸ 9 746 2 75 0 0.66, 0.28-1.63 Vipde-Laurine et al ¹⁸ 0 37 0 37 0.383, 0.43-3.414 Vipde-Laurine e	Kay et al ⁷⁰	1	33	0	22	0.2	2.91, 0.12-04.95	
Kindler et al ¹⁶ 5 277 4 283 1.4 1.39, 0.32–37 Goberne et al ¹⁶ 0 131 0 131 Not estimable Mackey et al ¹⁶ 0 91 0 92 Not estimable Males et al ¹⁶ 0 91 0 92 Not estimable Males et al ¹⁶ 0 91 0 92 Not estimable Males et al ¹⁶ 2 238 2 231 0.7 0.88, 014-6.89 Miller et al ¹⁶ 2 355 0 346 0.2 2.46, 012-50.39 Sines et al ¹⁶ 9 346 8 201 3.1 0.99, 0.40-2.46 Terrare tal ¹⁶ 9 746 2 753 0.7 4.66, 0.92-0.90 Terrare tal ¹⁶ 9 746 2 753 0.7 1.06, 0.25-17.34 Terrare tal ¹⁶ 1 92 46 1 450 0.25, 0.27-17.34 Terrare tal ¹⁶ 2 650 5 327 7 2.2, 0.07-55.4 Terrare tal ¹⁶ 3	Kelly et al ⁷⁵	35	504	16	506	5.4		
Kindle rel ¹² 4 53 1 55 0.3 4.15, 0.48-35.05, 0.51, 0.10-1.44 Mackey rel ¹⁴⁷ 7 752 7 382 3.2 0.51, 0.10-1.44 Masie tal ¹⁴ 0 91 0 92 Not estimable Miles et al ¹⁶ 2 233 0.7 0.98, 0.14-6.89	Kim et al ⁷¹							
Cobber et al ⁶⁶ 0 131 0 131 Not estimable Masi et al ⁶⁷ 0 91 0 92 Not estimable Masi et al ⁶⁷ 5 499 2 231 0.9 115, 0.23-5.92 Miles et al ⁶⁷ 2 238 2 233 0.7 0.88, 0.14-6.89 Miler et al ⁶⁷ 1 2.29 1 215 0.4 0.94, 0.06-1.49.2 Miler et al ⁶⁷ 2 355 0 346 0.2 4.46, 0.12-50.39 Difus et al ⁶⁶ 2 119 0 68 0.21 3.1 0.98, 0.14-2.46 Difus et al ⁶⁶ 9 346 8 201 3.1 0.98, 0.14-3.25 Perron et al ⁶⁶ 9 7.6 2 75.3 0.7 4.56, 0.92-0.96 Perron et al ⁶⁶ 2 75.3 0.7 4.56, 0.28-1.63								
Mackey et all ⁶⁷ 7 752 7 382 3.2 0.51, 0.10-1.44 Miles et all ⁶⁷ 5 499 2 231 0.9 1.15, 0.23-592 Miles et all ⁶⁷ 1 229 1 215 0.4 0.048, 0.14-6.89 Miller et all ⁶⁷ 1 229 1 215 0.4 0.049, 0.06-1.49.2 Miller et all ⁶⁷ 2 119 0 68 0.2 2.46, 0.12-50.39 Ohnsu et all ⁶⁸ 9 3.46 8 201 3.1 0.99, 0.40-2.46 Ohnsu et all ⁶⁸ 9 3.46 1 45 0.3 1.66, 0.18-20.53 Petrylak et all ⁶⁸ 2 7.73 0.7 4.56, 0.28-20.86						0.3		
Mase it al ¹⁶ 0 91 0 92 Not estimable Miles et al ¹⁶ 5 499 2 231 0.9 115, 0.23-5.92 Miles et al ¹⁶ 2 238 2 233 0.7 0.88, 0.14-6.89 Miller et al ¹⁶ 2 355 0 346 0.2 4.74, 0.23-98.32 Miller et al ¹⁶ 9 346 8 2.01 1.0 0.94, 0.04-2.46 Shicu et al ¹⁶ 9 346 8 2.01 1.0 0.34, 0.04-2.46 Shicu et al ¹⁶ 9 746 2 753 0.7 4.66, 0.99-20.96 Vertrylak et al ¹⁶ 8 263 1.2 267 4.0 0.06, 0.28-1.63 Vipide-Lauraine et al ¹⁶ 2 179 2 181 0.7 1.01, 0.14-7.10 Vipide ta ¹⁶ 8 263 12 277 7.232, 0.07-5.54								
Miles et al ¹⁰ 5 499 2 231 0.9 115, 023-592 Miller et al ¹⁷ 1 229 1 215 0.4 0.94, 0.07-4.82 Miler et al ¹⁷ 1 229 1 215 0.4 0.94, 0.07-4.82 Miler et al ¹⁶ 2 315 0.4 0.94, 0.07-4.92 0.07-4.92 Mine et al ¹⁶ 2 346 8 201 31 0.99, 0.40-2.46 Dista et al ¹⁶ 1 90 3 101 10 0.34, 0.04-325 Terren et al ¹⁶ 2 46 1 45 0.3 196, 0.18-20.63 Terright et al ¹⁶ 3 16 1 11 0.4 206, 0.25-17.34 Tujdot Lauraine et al ¹⁶⁹ 3 36 327 2.7 2.32, 0.97-5.4 4.00 Tujdot et al ¹⁶¹ 3 66 5 327 2.7 2.2, 0.20-5.24 4.00 Short et al ¹¹⁶ 4 652 1 346 0.5 0.21-5.23.8 4.01 Short et al ¹¹⁶ 1 4 0.5 0.77 <td></td> <td></td> <td></td> <td></td> <td></td> <td>3.2</td> <td></td> <td></td>						3.2		
Alles et al ¹⁰ 2 238 2 233 0.7 0.98, 0.14-6.89 Aller et al ¹⁰ 2 355 0 346 0.2 47.4, 0.23-86.32 Aller et al ¹⁰ 2 355 0 346 0.2 47.4, 0.23-86.32 Dhtsu et al ¹⁰ 9 346 8 201 3.1 0.99, 0.40-2.46 Skines et al ¹⁰ 9 746 2 753 0.7 4.56, 0.99-20.66 Terren et al ¹⁰ 9 746 2 276 4.0 0.66, 0.28-16.3 "Inter et al ¹⁰ 2 179 2 181 0.7 1.01, 0.14-7.10 Vigide Lauraine et al ¹⁰ 2 179 2 181 0.7 1.03, 0.34, 3.41 Vigide ta ¹⁴ 4 352 1 347 0.3 3.83, 0.43, 4.14 Vigide ta ^{14*} 28 650 5 327 2.7 2.32, 0.97-5.54 Sinder et al ^{14*} 13 694 8 675 2.4 1.56, 0.66-3.79 Sinder et al ^{14*} 14 617 1 400 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>0.0</td><td></td><td></td></t<>						0.0		
Aller et al ¹⁷ 1 229 1 215 0.4 0.094.002-14.92 Wine et al ¹⁶ 2 119 0 68 0.2 2.46, 0.12-50.39 Difusu et al ¹⁶ 9 346 8 201 3.1 0.99.040-246 Schnes et al ¹⁶ 1 90 3 101 1.0 0.34, 0.04-325 Perren et al ¹⁶ 2 46 1 45 0.39-20.96 Petrylak et al ¹⁶ 2 46 1 45 0.3 1.99.0.18-20.53 Petrylak et al ¹⁶ 3 16 1 1 0.4 0.25-16.3 Pilade Et al ¹⁶ 2 179 2 181 0.7 1.01.0.14-7.10 Vijol et al ¹⁶ 2 179 2 181 0.7 1.01.0.14-7.10 Vijol et al ¹⁶ 4 352 1 37 0 383.043-34.14 Robert et al ¹³ 1.4 617 1 400 0.5 6.91.0.91-52.33 Sandler et al ¹⁶ 1.9 427 3 400 1.0 6.53.1.99-25.89								
Aller et al ¹⁶ 2 355 0 346 0.2 47.0 (23-96.32) Wine et al ¹⁶ 9 346 8 201 3.1 0.99, 0.40-2.46 Dhtsu et al ¹⁶ 9 346 8 201 3.1 0.99, 0.40-2.46 Perren et al ¹⁶ 9 746 2 753 0.7 4.56, 0.99-2.096 Petrylak et al ¹⁶ 2 46 1 45 0.3 1.96, 0.28-1.73.4 Pinter et al ¹⁶ 3 16 1 11 0.4 2.06, 0.28-1.63.5 Pinter et al ¹⁶ 3 16 1 11 0.4 2.06, 0.28-1.63.5 Vijde-Lauraine et al ¹⁶⁹ 2.179 2 181 0.7 1.01, 0.14-7.10 Vijde-Lauraine et al ¹⁶⁹ 2.86 650 5 327 2.7 2.32, 0.97-5.54 Statz et al ¹⁷ 1.4 617 1 400 0.5 6.91, 0.91-52.33 Sandler et al ¹⁶¹ 1.9 427 3 440 1.0 6.53, 1.95-25.89 Seymouret al ¹⁶⁶ 3.955 1 388 0.3								
Niho et al ⁴⁶ 9 346 8 20 13 1 0 9 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0	Miller et al ²⁸							
Dhise et al ¹⁶ 9 346 8 201 3.1 0.90, 40-2.46 Shines et al ¹⁶ 9 746 2 753 0.7 4.56, 0.99-20.96 Perren et al ¹⁶ 9 746 2 753 0.7 4.56, 0.99-20.96 Perren et al ¹⁶ 2 46 1 45 0.3 1.96, 0.18-20.53 Perren et al ¹⁶ 2 179 2 181 0.7 1.01, 0.14-7.10 Vigide-Laurine et al ¹⁶⁹ 2 179 2 181 0.7 1.01, 0.14-7.10 Vigide-Laurine et al ¹⁶¹ 2 179 2 181 0.7 1.01, 0.14-7.10 Vigide-Laurine et al ¹⁶¹ 2 165 327 2.7 2.32, 0.97-5.54 Vigide-Laurine et al ¹⁶¹ 4 650 5 327 2.7 0.3 38, 0.43-34.14 Sobert et al ¹⁷¹ 19 427 3 440 1.0 6.53, 1.95-25.89 Sandler et al ¹⁶¹ 12 100 4 101 1.4 303, 1.01-0.06 Show et al ¹⁷² 7 2.10 2.13	Niho et al45							
Perene tal ⁶⁶ 9 746 2 753 0.7 4.66, 0.99-20.96 Petrylak et al ⁶⁶ 2 46 1 45 0.3 1.96, 0.18-20.53 Petrylak et al ⁶⁷ 3 16 1 11 0.4 2.66, 0.25-17.34 Pujole et al ⁶⁷ 3 16 1 11 0.4 2.06, 0.25-17.34 Pujole et al ⁶⁷ 0 37 0 37 N 0.57 2.4 0.0.66, 0.25-17.34 Pujole et al ⁶⁷ 0 37 0 37 N 0.57 2.23 0.97-5.54 Rini et al ⁶⁴ 4 352 1 347 0.3 3.83, 0.43-34.14 Sobert et al ⁶¹ 14 617 1 400 0.5 6.91, 0.91-52.33 Sandler et al ⁶¹ 19 427 3 440 1.0 6.63, 1.95-25.89 Sandler et al ⁶¹ 19 427 3 440 1.0 6.53, 1.95-25.89 Selo et al ⁶⁷ 7 7 10 77 0.2 0.13, 0.25-105.14 Seymour et al ⁶⁶ 5 395 1 388 0.3 7.02, 0.01-62.21 Shen et al ⁶⁷ 12 100 4 101 1.4 3.03, 1.01-0.08 Show et al ⁶⁷ 7 7 125 0 216 0.2 15.21, 0.07-254.64 Show et al ⁶⁷ 13 529 9 528 3.1 144, 0.62-3.34 Fabermero et al ⁶⁶ 13 529 9 528 3.1 144, 0.62-3.34 Fabermero et al ⁶⁶ 13 529 9 528 3.1 144, 0.62-3.34 Fabermero et al ⁶⁶ 13 529 9 528 3.1 144, 0.62-3.34 Fabermero et al ⁶⁶ 13 529 9 528 3.1 144, 0.62-3.34 Fabermero et al ⁶⁶ 13 529 9 528 3.1 144, 0.62-3.34 Fabermero et al ⁶⁶ 13 529 9 528 3.1 144, 0.62-3.34 Fabermero et al ⁶⁶ 13 529 9 528 3.1 144, 0.62-3.34 Fabermero et al ⁶⁶ 13 529 9 528 3.1 144, 0.62-3.34 Fabermero et al ⁶⁶ 13 529 9 528 3.1 144, 0.62-3.34 Fabermero et al ⁶⁶ 10 20 2 2 219 0.7 4.98, 1.10-22.45 Faborero et al ⁶⁶ 10 20 2 2 219 0.7 4.98, 1.10-22.45 Faborero et al ⁶⁶ 13 529 9.7 1.76, 0.76-4.14 Faborero et al ⁶⁶ 14 227 8 329 2.7 1.76, 0.76-4.14 Faborero et al ⁶⁶ 12 27 0.0 0.71; <i>F</i> =20% Faborero et al ⁶⁷ 1 0.81, 0.44-1.50 Faborero et al ⁶⁷ 10 0.81, 0.44-1.50 Faborero et al ⁶⁶ 276 Faborero et al ⁶⁶ 276 Faborero et al ⁶⁷ 2 40.00, 0.1 1 10 2 Faborero 50.0 0.1 1 1 10 2	Ohtsu et al62	9	346	8	201	3.1	0.99, 0.40-2.46	
Petrylak et al ¹⁶ 2 46 1 45 0.3 196, 0.18-20.53 Petrylak et al ¹⁶ 8 263 12 267 4.0 066, 0.28-163 Petrylak et al ¹⁶ 3 16 1 11 0.4 2.06, 0.25-17.34 Pujade-Lauraine et al ¹⁶ 2 179 2 181 0.7 1.01, 0.14-7.10 Not estimable Petrylak et al ¹⁶ 3 16 1 11 0.7 Not estimable Petrylak et al ¹⁶ 4 352 1 37 Not estimable Petrylak et al ¹⁶ 4 352 1 37 Not estimable Petrylak et al ¹⁶ 4 352 1 37 0 3 3 38 0.43-34.1 Petrylak et al ¹⁶ 4 352 1 37 0 3 3 3 3 0.43-34.1 Petrylak et al ¹⁶ 4 352 1 3 694 8 675 2.4 1 56, 0.66-3.79 Petrylak et al ¹⁶ 1 9 427 3 40 0 65 691, 0.91-52.3 Petrylak et al ¹⁶ 1 9 427 3 40 0 65 691, 0.91-52.3 Petrylak et al ¹⁶ 1 9 427 3 40 0 65 1 3 7 2 7 2.7 2.7 2.7 2.8 3 9 Petrylak et al ¹⁶ 1 9 427 3 40 0 65 0 3 7 2 0 0 - 6 2 7 Petrylak et al ¹⁶ 1 9 427 3 40 0 6 5 0 3 7 Petrylak et al ¹⁶ 1 9 427 3 40 0 6 5 0 3 7 7 0 2	Okines et al ⁶³	1	90				0.34, 0.04-3.25	
Petrylaket all ¹⁶ Petrylaket et al ¹⁶⁸ Pinter et al ¹⁷⁸ Pinter et al ¹⁷¹ Pinter et al ¹⁷² Pinter et al ¹⁷² Pinter et al ¹⁷³ Pinter et al ¹⁷⁴ Pinter et al ¹⁷⁴ Pinter et al ¹⁷⁵ Pinter et al ¹⁷⁵ P								
Pinter at Pine								
Pujade-Lauraine et al ¹⁶⁹ 2 179 2 181 0.7 Not estimable Pujot et al ⁴⁴⁹ 0 37 0 37 7 2.7 2.32, 0.97–5.54 Not estimable Seck et al ⁴¹² 4 352 1 347 0.3 3.83, 0.43–34.14 4 352 1 347 0.3 3.83, 0.43–34.14 4 000 0.5 6.91, 0.91–52.33 Saltz et al ⁴² 19 427 3 440 1.0 6.53, 1.95–25.89 Sandler et al ⁴¹ 19 427 3 440 1.0 6.53, 1.95–25.89 Sandler et al ⁴¹ 19 427 3 440 1.0 6.53, 1.95–25.89 Sech et al ⁴⁷ 2 75 0 77 0.2 0.13, 0.25–105.14 Segmour et al ⁴⁶ 12 100 4 101 1.4 3.03, 1.01–0.08 Sikov et al ³⁷ 7 215 0 218 0.2 15.21, 0.07–254.64 Sikov et al ³⁷ 7 215 0 218 0.2 15.21, 0.07–254.64 Sikov et al ⁴⁶ 13 529 9 528 3.1 1.44, 0.62–3.34 fakeda et al ⁴⁰ 0 50 0 60 Not estimable Fabult et al ⁴⁴ 10 10 220 2 219 0.7 4.98, 1.10–22.45 Not estimable Minkwitz et al ⁴⁶ 1 59 1 65 0.3 0.94, 0.06–14.75 Gise 0 et al ⁴⁶ 12 59 1 65 0.3 0.94, 0.06–14.75 Sikov et al ⁴⁶ 12 59 1 65 0.3 0.94, 0.06–14.75 Sikov et al ⁴⁷ 7 217 2 1 276 7.1 0.81, 0.44–1.50 Wilke et al ⁴⁶ 1 59 1 65 0.3 0.94, 0.08–2.16 Wilke et al ⁴⁶ 1 22 102 22 24 0.2 5.04, 0.3–2.16 Wilke et al ⁴⁶ 1 62 5 0.3 0.94, 0.08–2.16 Wilke et al ⁴⁶ 1 29 10 7 4.98, 1.10–22.45 Not estimable Minkwitz et al ⁴⁶ 1 29 1 65 0.3 0.94, 0.06–14.75 Sige ot al ⁴⁷ 2 77 21 276 7.1 0.81, 0.44–1.50 Wilke et al ⁴⁶ 1 7 277 21 276 7.1 0.81, 0.44–1.50 Chou et al ⁴⁸ 2 140 1 134 0.3 1.91, 0.18–20.87 Chou et al ⁴⁸ 2 140 1 134 0.3 1.91, 0.18–20.87 Chou et al ⁴⁸ 2 140 1 134 0.3 1.91, 0.18–20.87 Chou et al ⁴⁸ 2 140 1 134 0.3 1.91, 0.18–20.87 Chou et al ⁴⁹ 7 7 277 21 276 7.1 0.81, 0.44–1.50 Favors Favors								
Duple tal ⁴⁶ 0 37 0 37 Not estimable Reck et al ⁴³ 28 650 5 327 2.7 2.32, 0.97-5.54 Note stimable 3 38.0, 0.43-34.14								
Teck et alsa 28 650 5 327 2.7 2.32, 0.97-5.54 Nini et alsa 4 352 1 347 0.3 3.83, 0.43-34.14 Sobert et alsa 617 1 400 0.5 6.91, 0.91-52.33 Saltz et alsa 13 694 8 675 2.4 1.56, 0.66-3.79 Sander et alsa 19 427 3 440 1.0 6.53, 1.95-26.89 Seto et alsa 2 75 0 77 0.2 0.13, 0.25-105.14 Sepmour et alsa 0 395 1 388 0.3 7.02, 0.01-62.21 Shove et alsa 12 1001 1.4 3.03, 1.01-0.08 4.00 Shove et alsa 13 529 9 528 3.1 1.44, 0.62-3.34 Taked et alsa 0.5 0.31, 0.01-7.34 4.00 0.50, 0.09-2.67 4.00 4.00 0.00, 0.9-2.67 Terwari et alsa 10 220 2 219 0.7 4.98, 1.10-22.45 4.024 4.024 4.024 4.024 0.05 0.09-2.67 4.0						0.7		
Nine tell ²⁴ 4 352 1 347 0.3 3.88, 0.43 - 34.14 Robert et al ²¹ 13 694 8 675 2.4 1.56, 0.66 - 3.79 Sandler et al ²¹ 13 694 8 675 2.4 1.56, 0.66 - 3.79 Sandler et al ²¹ 19 427 3 440 1.0 6.53, 1.95 - 25.89 Selo et al ²⁷ 2 75 0 77 0.2 0.13, 0.25 - 105.14 Seymour et al ²⁶ 5 395 1 388 0.3 7.02, 0.01 - 62.21 Shon et al ²⁶ 7 2.15 0 218 0.2 15.21, 0.07 - 254.64 Shon et al ²⁶ 0 39 1 36 0.5 0.31, 0.01 - 7.34 Takeda et al ²⁶ 0 528 3.1 1.44, 0.62 - 3.34 4 Fewari et al ²⁶ 0 9 528 1.3 1.44, 0.62 - 3.44 Greeval et al ²⁶ 0 9 1.38 1.4 0.20, 0.9 - 2.67 Tewari et al ²⁶ 0 9 1.66 0.30, 0.1 - 2.49 4						27		
Sobert et al ¹¹ 14 617 1 400 0.5 6.91 0.91-52.33 Saltz et al ¹² 13 694 8 675 2.4 1.56 0.66-3.79 Saltz et al ¹² 19 427 3 440 1.0 6.53.195-25.89 Send et al ¹⁴¹ 19 427 3 440 1.0 6.53.195-25.89 Semour et al ¹⁶⁶ 5 395 1 388 0.3 7.02, 0.01-62.21 Shore et al ¹⁶⁴ 12 100 4 101 1.4 3.03, 1.01-0.08 Shore et al ¹⁶⁴ 12 100 4 101 1.4 0.0, 0.9-26.67 Shore et al ¹⁶⁵ 13 529 9 528 3.1 1.44, 0.62-3.34 Saltz et al ¹⁶⁰ 0 50 0 60 Not estimable Febbutt et al ¹⁶⁴ 2 157 4 158 1.4 0.02, 0.09-2.67 Grewari et al ¹⁶⁷ 10 220 2 219 0.7 4.98, 1.10-2.2.45 Grewari et al ¹⁶⁷ 10 220 2 296								
Saltz et al ¹² 13 604 8 675 2.4 1.56, 0.66–3.79 Sandler et al ⁴¹ 19 427 3 440 1.0 6.53, 1.95–25.89 Sandler et al ⁴¹ 19 427 3 440 1.0 6.53, 1.95–25.89 Segmour et al ⁶² 5 395 1 388 0.3 7.02, 0.01–62.21 Segmour et al ⁶⁴ 12 100 4 101 1.4 3.03, 1.01–0.08 Sikov et al ⁵⁷ 7 215 0 218 0.2 15.21, 0.07–254, 64 Sikov et al ⁵⁰ 0 39 1 36 0.5 0.31, 0.01–7.34 faberner ot al ⁶⁶ 0 522 2 15.21, 0.07–254, 64 Sikov et al ⁶⁷ 0 50 0 60 Not estimable Fabbut et al ⁶⁶ 13 529 9 528 3.1 1.44, 0.62–3.34 fakeda et al ⁶⁰ 0 50 0 60 Not estimable Fabbut et al ⁶⁶ 10 220 2 219 0.7 4.98, 1.10–22.45 Favors 142 An Cutsem et al ⁶⁶ 122 Sikov et al ⁶⁷ 10 220 2 219 0.7 4.98, 1.10–22.45 Not estimable Not estimab	Robert et al ³¹							
Sandler et al ⁴¹ 19 427 3 440 1.0 6.53, 195–25.89 Send et al ⁴⁷ 2 75 0 77 0.2 0.13, 0.25–105.14 Semour et al ⁶⁶ 5 395 1 388 0.3 7.02, 0.01–62.21 Shoe et al ⁶⁶ 12 100 4 101 1.4 3.03, 1.01–0.08 Sikov et al ⁷⁷ 7 215 0 218 0.2 15.21, 0.07–254.64 Snoeren et al ⁶⁶ 0 39 1 36 0.5 0.31, 0.01–7.34 Takeda et al ⁶⁹ 0 50 0 60 Not estimable Tebutit et al ¹⁴⁵ 10 220 2 219 0.7 4.98, 1.10–22.45 Tere et al ¹⁶⁹ 0 96 0 103 Not estimable	Saltz et al ¹²							
Seymour et all** 5 395 1 388 0.3 7.02, 0.01-62.21 Shen et alf** 12 100 4 101 1.4 3.03, 1.01-0.08 Shon et alf** 7 215 0 218 0.2 15.21, 0.07-254.64 Shon et alf** 0 39 1 36 0.5 0.31, 0.01-7.34 Tabernero et alf** 0 50 0 60 Not estimable Fewari et alf** 10 220 219 0.7 4.98, 1.10-22.45 Gread et alf** 0 96 0 103 Not estimable or Minckwitz et alf** 0 96 0 103 Not estimable on Minckwitz et alf** 12 246 4 238 1.4 0.24, 0.03-2.16 of Minckwitz et alf** 1 246 4 238 1.4 0.24, 0.03-2.16 of Minckwitz et alf** 1 59 1 65 0.3 0.94, 0.06-14.75 of het alf** 2 222 0 224 0.2 5.04, 0.24-104.49 of het al	Sandler et al41							
Shen et al ⁶⁶ 12 100 4 101 1.4 3.03, 1.01-0.08 Sikov et al ⁵⁷ 7 215 0 218 0.2 15.21, 0.07-254.64 Sikov et al ⁶⁶ 0 39 1 36 0.5 0.31, 0.01-7.34 Takeda et al ⁶⁶ 0 50 0 60 Not estimable Tebbutt et al ⁶⁶ 10 220 2 219 0.7 4.98, 1.10-22.45 Tisce et al ⁶⁶ 20 96 0 103 Not estimable Van Cutsem et al ⁶⁶ 227 5.5 1.33, 0.71-2.49 Vilke et al ⁶⁶ 14 327 8 329 2.7 1.76, 0.76-4.14 Vilke et al ⁶⁶ 159 1 65 0.3 0.94, 0.06-14.75 Yord et al ⁶⁶ 25 62 5 80 1.7 0.98, 0.24-104.49 Thou et al ⁶⁶ 276 Total events 626 276 Teter on vanuel effect: Z=7.38 (p<0.0001) Vilke et al ⁶⁶ 276 Vilke et al ⁶⁷ 24,062 276 Vilke et al ⁶⁶ 276 Vilke et al ⁶⁷ 277 21 276 7.1 0.81, 0.44-1.50 Vilke et al ⁶⁷ 260,070; P ² =20% Vilke et al ⁶⁶⁶ 276 Vilke et al ⁶⁷ 277 21, 0.61 Vilke et al ⁶⁷ 277 21 Vilke et al ⁶⁷ 277 21 Vilke et al ⁶⁷ 276 Vilke et al ⁶⁷ 277 21 Vilke et al ⁶⁷ 277 21 Vilke et al ⁶⁷ 276 Vilke et al ⁶⁷ 276 Vil	Seto et al47							
Sikov et al ⁵² 7 215 0 218 0.2 15.21, 0.07–254, 64 Snoerne et al ⁵⁶ 0 39 1 36 0.5 0.31, 0.01–7.34 Tabernero et al ⁵⁶ 13 529 9 528 3.1 1.44, 0.62–3.34 Tabernero et al ⁵⁶ 0 60 Not estimable Tabebut et al ⁵⁶ 10 220 2 219 0.7 4.98, 1.10–2.245 Tiseo et al ⁵² 0 96 0 103 Not estimable An Cutsem et al ⁵⁶ 22 296 16 287 5.5 1.33, 0.71–2.49 Tiseo et al ⁵⁶ 12 296 16 287 5.5 1.33, 0.71–2.49 To Minckwitz et al ⁵⁶ 1 4 958 3 289 1.0 1.35, 0.30–0.02 To Minckwitz et al ⁵⁶ 1 4 958 3 289 1.0 1.35, 0.30–0.20 To Minckwitz et al ⁵⁶ 1 4 958 3 289 1.0 1.35, 0.30–0.22 To Minckwitz et al ⁵⁶ 1 4 958 3 289 1.0 1.35, 0.30–0.22 To Minckwitz et al ⁵⁶ 1 4 958 3 289 1.0 1.35, 0.30–0.22 To Minckwitz et al ⁵⁶ 1 4 958 3 289 1.0 1.35, 0.30–0.22 To Minckwitz et al ⁵⁶ 1 4 958 3 289 2.7 1.76, 0.76–4.14 Wilke et al ⁵⁰ 1 65 0.3 0.94, 0.06–14.75 To dot et al ⁶⁶ 2 76 0 81 0.2 5.32, 0.26–109 15 To dot et al ⁶⁷ 2 120 224 0.2 5.04, 0.24–104.49 Thou et al ⁶⁴ 2 17 2.77 2.1 2.76 7.1 0.81, 0.44–1.50 To tal events 626 276 Teterogeneity: χ^2 =90.19, <i>df</i> =72 (<i>p</i> =0.07); <i>f</i> =20% Test for overall effect: Z=7.38 (<i>p</i> <0.0001)								
Shoeren et al ²⁶ 0 39 1 36 0.5 0.31, 0.01–7.34 [abemero et al ⁸⁶ 13 529 9 528 3.1 1.44, 0.62–3.34 Akada et al ⁸⁰ 0 50 0 60 Not estimable lebbut et al ¹⁴ 2 157 4 158 1.4 0.50, 0.09–2.67 [ewari et al ¹⁶ 10 220 2 219 0.7 4.98, 1.10–22.45 [see et al ¹⁶ 20 96 0 103 Not estimable (ar Cutsem et al ¹⁶⁰ 222 296 16 287 5.5 1.33, 0.71–2.49 (ar Cutsem et al ¹⁶⁰ 1 246 4 238 1.4 0.24, 0.03–2.16 Wilke et al ¹⁶⁰ 1 59 1 65 0.3 0.94, 0.06–1.47.5 (ardley et al ¹⁶⁰ 2 76 0 81 0.2 5.32, 0.26–109, 15 (ardley et al ¹⁶¹ 5 82 5 80 1.7 0.98, 0.29–3.24 (ardman et al ¹⁶⁴ 2 140 1 134 0.3 1.91, 0.18–2.087 Chou et al ¹⁶² 2 140 1 134 0.3 1.91, 0.18–2.087 Chou et al ¹⁶² 2 140 1 1.34 0.3 1.91, 0.14–0.87 Chou et al ¹⁶⁴ 2 140 1 1.34 0.3 1.91, 0.14–0.87 Chou et al ¹⁶⁴ 2 140 1 1.34 0.3 1.91, 0.14–0.87 Chou et al ¹⁶² 17 2.77 2.1 2.76 7.1 0.81, 0.44–1.50 Favors Favors								
Tablemeno et all ⁶⁵ 13 529 9 528 3.1 1.44, 0.62–3.34 Takeda et all ⁶⁰ 0 50 0 60 Not estimable Tekeda et all ⁶⁰ 0 50 0 60 Not estimable Tekevari et all ⁶¹ 2 157 4 158 1.4 0.50, 0.09–2.67 Tewari et all ⁶² 10 220 2 219 0.7 4.98, 1.10–22.45 Tisse ot all ⁶² 0 96 0 103 Not estimable /an Cutsem et al ⁵⁶² 22 296 16 287 5.5 1.33, 0.71–2.49 /an Cutsem et al ⁵⁶² 22 296 16 287 5.5 1.33, 0.00–0.02 /an Mickwitz et al ⁵⁶³ 1 246 4 238 1.4 0.24, 0.03–2.16 /ardley et al ⁵⁶⁴ 1 59 1 65 0.3 0.94, 0.06–14.75 /ardley et al ⁵⁶⁴ 2 76 81 0.2 5.32, 0.26–109.15								
Takeda et all ⁶⁰ 0 50 0 60 Not estimable Tebbutt et all ⁴⁶ 2 157 4 158 1.4 0.50, 0.99-2.67 Tewari et all ⁴⁶ 10 220 2 219 0.7 4.98, 1.10-22.45 Sisco et all ²² 0 96 0 103 Not estimable An Cutsem et all ⁴⁶ 22 296 16 287 5.133, 0.71-2.49 Yan Mickwitz et all ¹⁶ 1 246 4 238 1.4 0.24, 0.03-2.16 Yan Mickwitz et all ¹⁶ 14 327 8 329 2.7 1.76, 0.76-4.14 Yan Height 1 59 1 65 0.3 0.94, 0.06-14.75 Yon Minckwitz et all ¹⁶ 1 5 82 5 80 1.7 0.98, 0.29-3.24 Yardiey et all ¹⁶ 2 222 0 224 0.2 5.04, 0.24-104.49 Zalcman et all ¹⁶ 2 1134 0.3 1.91, 0.18-20.87 Total et all 0.44-1.50 Thu et all ¹⁶ 2 246 276 7.1 0.81, 0.44-1.50 </td <td>T - h</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	T - h							
Tebbuttet al ¹⁴ 2 157 4 158 1.4 0.50, 0.09-267 Tewari et al ¹⁶ 10 220 2 219 0.7 4.98, 1.10-22.45 Tisse et al ¹⁶ 0 96 0 103 Not estimable Van Cutsem et al ⁶⁵ 22 296 16 287 5.5 1.33, 0.71-2.49 von Minckvitz et al ¹²⁰ 4 958 3 289 1.0 1.35, 0.30-002 von Minckvitz et al ¹²⁰ 1 246 4 238 1.4 0.24, 0.03-2.16 Vilke et al ¹⁶⁰ 1 59 1 65 0.3 0.94, 0.06-14.75 (ardley et al ¹⁶¹ 5 82 5 80 1.7 0.98, 0.29-324 (atcman et al ¹⁶¹ 2 224 0.2 5.04, 0.24-104.49 4 (bto et al ¹⁶² 17 276 7.1 0.81, 0.44-1.50 Phou et al ¹⁶² 2 140 1 134 0.3 1.91, 0.18-20.87 Chall events 626 276 1.081, 0.44-1.50 1.01, 0.18-20.87 1.005 0.1						3.1		
Term et al 1^{16} 10 220 2 219 0.7 4.98, 1.10-22.45 Tisse et al 1^{16} 0 96 0 103 Not estimable finance et al 1^{16} 22 296 16 287 5.5 1.33, 0.71-2.49 finance et al 1^{16} 22 296 16 287 5.5 1.33, 0.00-0.02 finance et al 1^{16} 1 246 4 238 1.4 0.24, 0.03-2.16 finance et al 1^{16} 1 59 1 65 0.3 0.94, 0.06-14.75 fon et al 1^{16} 2 76 0 81 0.2 5.32, 0.26-109.15 chon et al 1^{16} 2 76 0 81 0.2 5.04, 0.24-104.49 chon et al 1^{16} 2 10 1 134 0.3 1.91, 0.18-20.87 chou et al 1^{16} 2 76 7.1 0.81, 0.44-1.50 1.044 Chou et al 1^{12} 17 2.77 2.1 2.76 7.1 0.81, 0.44-1.50 Chou et al 1^{12} 17 2.77 2.1 2.						14		
Tiseo et all ⁵² 0 96 0 103 Not estimable Van Cutsem et all ⁵⁵ 22 296 16 287 5.5 1.33, 0.71–2.49 oro Minckwitz et all ²² 4 958 3 289 1.0 1.35, 0.30–0.02 oro Minckwitz et all ²⁶ 1 246 4 238 1.4 0.24, 0.03–2.16 Wilk et all ⁵⁶ 14 327 8 329 2.7 1.76, 0.76–4.14 Gradley et all ⁵⁶ 1 5 9 1 65 0.3 0.94, 0.06–14.75 (ardley et all ⁵⁶ 2 76 0 81 0.2 5.32, 0.26–109, 15 (fon et all ⁵¹ 5 82 5 80 1.7 0.98, 0.29–3.24 (Zalcman et all ²⁴ 2 244 0.2 5.04, 0.24–104.49								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tiseo et al ⁵²							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Van Cutsem et al55					5.5		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	von Minckwitz et al32						1.35, 0.30-0.02	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	von Minckwitz et al ³⁶						0.24, 0.03-2.16	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Wilke et al90							+
foon et al ^{β1} 5 82 5 80 1.7 0.98, 0.29-3.24 Zalcman et al ^{β4} 2 222 0 224 0.2 5.04, 0.24-104.49 Thu et al ^{β2} 17 277 21 276 7.1 0.81, 0.44-1.50 Total 95% CI 24,062 21,855 100 1.71, 1.48-1.97 Total events 626 276 febrogeneity: χ²=90.19, df=72 (ρ=0.07); β²=20% Γavors Favors Feavors Favors Favors	Yardley et al ⁸⁸							
Załoman et al ⁷⁴ 2 222 0 224 0.2 5.04, 0.24-104.49 Zhou et al ⁴⁸ 2 140 1 134 0.3 1.91, 0.18-20.87 Zhu et al ⁴² 17 277 21 276 7.1 0.81, 0.44-1.50 Fotal, 95% Cl 24,062 21,855 100 1.71, 1.48-1.97 fotal events 626 276 276 0.005 0.1 1 10 2 fest for overall effect: Z=7.38 (p<0.0001)	Yoh et al ⁸⁰							
2 140 1 134 0.3 1.91, 0.18-20.87 Chu et al ¹⁶² 17 277 21 276 7.1 0.81, 0.44-1.50 Total, 95% CI 24,062 21,855 100 1.71, 1.48-1.97 Total events 626 276 Teberogeneity: χ ² =90.19, df=72 (ρ=0.07); P=20% 0.005 0.1 1 10 Fest for overall effect: Z=7.38 (ρ<0.00001)								
2 ^h u et al ¹²² 17 277 21 276 7.1 0.81, 0.44–1.50 Total, 95% CI 24,062 21,855 100 1.71, 1.48–1.97 Total events 626 276 leterogeneity: χ ² =90.19, df=72 (p=0.07); l ² =20% 276 fest for overall effect: Z=7.38 (p<0.00001) 0.005 0.1 1 10 276 Favors								
Fotal, 95% CI 24,062 21,855 100 1.71, 1.48–1.97 fotal events 626 276 Heterogeneity: χ²=90.19, df=72 (p=0.07); l²=20% 0.005 0.1 1 10 2 fest for overall effect: Z=7.38 (p<0.00001)								
Total events 626 276 leterogeneity: χ^2 =90.19, df =72 (p =0.07); l^2 =20% 0.005 0.1 1 10 2 fest for overall effect: Z=7.38 (p <0.00001)	Zinu et di-	17	211	21	210	1.1	0.01, 0.44-1.50	-
Total events 626 276 leterogeneity: χ^2 =90.19, df =72 (p =0.07); l^2 =20% 0.005 0.1 1 10 2 fest for overall effect: Z=7.38 (p <0.00001)	Total 95% CI		24 062		21 855	100	1 71 1 48-1 97	
Heterogeneity: χ²=90.19, df=72 (p=0.07); l²=20% 0.005 0.1 1 10 2 fest for overall effect: Z=7.38 (p<0.00001)		626	24,002	276	21,000	100	1.71, 1.40-1.37	
Test for overall effect: Z=7.38 (p<0.00001) 0.005 0.1 1 10 2 Favors Favors Favors			7): /2=20%	210				-ttttt
Favors Favors							(
(experimental) (control)		- 10 0.000	- · /					
								(experimental) (control)

Figure 3 RR of high-grade bleeding. Abbreviations: M–H, Mantel–Haenszel; RR, relative risk.

showed that ramucirumab differed from bevacizumab in terms of the risk of high-grade bleeding and the risk of all-grade and high-grade pulmonary hemorrhage in lung cancer patients. The mechanisms underlying these differences remained unclear. A possible explanation was that bevacizumab, as an anti-VEGF-A agent, specified both VEGFR-1 and VEGFR-2, whereas ramucirumab was only specified for VEGFR-2. VEGFR-2 was the major mediator

Table 2 RR of all-grade bleeding	g associated with angiogenesis	s inhibitors in the subgroup analysis
----------------------------------	--------------------------------	---------------------------------------

Bleeding	No. of	No. of events/total (%)		RR, 95% CI
	trials	Treatment	Control	
Type of drug				
Bevacizumab	30	1,934/6,738 (28.7)	679/6,586 (10.3)	2.73, 2.24–3.33
Ramucirumab	13	1,268/3,403 (37.3)	552/2,904 (19.0)	1.94, 1.76–2.13
Drug dosage				
Low dose	22	1,452/5,220 (27.8)	508/4,863 (10.4)	2.46, 1.95–3.11
High dose	21	1,750/4,921 (35.6)	723/4,627 (15.6)	2.34, 2.00–2.73
Tumor types				
Colorectal cancer	10	387/1,552 (24.9)	184/1,563 (11.8)	2.24, 1.58–3.19
Non-colorectal cancer	33	2,815/8,589 (32.8)	1,047/7,927 (13.2)	2.42, 2.09–2.80

Abbreviation: RR, relative risk.

of VEGF-driven responses in endothelial cells. The precise function of VEGFR-1 was not entirely established and some studies showed that VEGFR-1 could also regulate proliferation and survival of endothelial cells.94-97 Increased level of tumor VEGFR-1 expression has been shown to be associated with high tumor angiogenesis.⁹⁶ VEGF/VEGFR-1 signalingmediated tumor cell monocyte chemoattractant protein-1 expression could represent a mechanism responsible for the tumor angiogenic switch.⁹⁷ Therefore, bevacizumab increased the risk of bleeding by inhibiting both VEGFR-1 and VEGFR-2. Squamous cell tumors are more frequently centrally located and have a greater tendency to cavitate as compared to adenocarcinoma, which is the main risk factor of pulmonary hemorrhage.98 The difference in the risk of pulmonary hemorrhage caused bevacizumab to be used only for non-squamous NSCLC and ramucirumab to be used for any tumor histology of NSCLC.

Our study also demonstrated that both low-dose and high-dose angiogenesis inhibitors increased the risk of bleeding. The risk of high-grade bleeding was more frequently observed in patients with high-dose angiogenesis inhibitors, suggesting that the risk may be dose-dependent and close supervision and careful management should be emphasized especially in patients with high dosage.

In a meta-analysis of bevacizumab, patients with colorectal cancer were found to have the highest risk of bleeding compared to other tumors.⁹⁹ For colorectal cancer patients, high-grade bleeding such as perforation was commonly fatal and life threatening.¹⁰⁰ Therefore, we performed a subgroup analysis according to colorectal cancer and non-colorectal tumors in order to identify the potential risk factors. Results showed that the risk of all-grade and high-grade bleeding was comparable between patients with colorectal cancer and non-colorectal tumors, suggesting that the increased risk of bleeding is associated with many tumor types.

Limitations

There are several limitations in this meta-analysis. First, we performed stratification analysis only for colorectal cancer and non-colorectal tumor types because too many tumor types were included in the analysis and assessment was difficult. Second, we did not evaluate the risk of pulmonary hemorrhage between bevacizumab and ramucirumab in

Bleeding	No. of	No. of events/total (%)	RR, 95% CI
	trials	Treatment	Control	
Type of drug				
Bevacizumab	70	432/20,731 (2.1)	194/19,000 (1.0)	1.98, 1.68–2.34
Ramucirumab	12	94/3,351 (2.8)	82/2,855 (2.9)	1.04, 0.78–1.39
Drug dosage				
Low dose	37	203/10,569 (1.9)	149/10,089 (1.5)	1.31, 1.06–1.60
High dose	49	323/13,513 (2.4)	135/12,391 (1.1)	2.17, 1.79–2.64
Tumor types				
Colorectal cancer	18	111/5,868 (1.9)	71/5,747 (1.2)	1.52, 1.13–2.03
Non-colorectal cancer	64	415/18,214 (2.3)	205/16,108 (1.3)	1.77, 1.50–2.09

Abbreviation: RR, relative risk.

Study or subgroup	Experime events	ental Total	Control events	Total	Weight (%)	Risk ratio M–H, fixed, 95% Cl		Risk ratio fixed, 95	,	
Bevacizumab										
Boutsikou et al46	7	116	0	113	0.9	14.62, 0.84–252.94	4	+		
Karayama et al ⁵¹	1	45	1	35	1.9	0.78, 0.05–12.00				
Niho et al45	26	119	3	58	6.9	4.22, 1.33–13.38		-		
Seto et al47	6	75	1	77	1.7	6.16, 0.76–49.95		+		-
Subtotal, 95% CI		355		283	11.3	4.72, 1.99–11.19			•	
Total events	40		5							
Heterogeneity: χ^2 =	2.37, df=3 (o=0.50); /2	² =0%							
Test for overall effe	ct: Z=3.52 (p=0.0004)								
Ramucirumab										
Garon et al ⁸²	49	627	46	618	78.8	1.05, 0.71–1.55				
Yoh et al ⁸⁰	8	76	6	81	9.9	1.42, 0.52–3.91				
Subtotal, 95% CI		703		699	88.7	1.09, 0.76–1.57		•		
Total events	57		52							
Heterogeneity: χ^2 =	0.30, <i>df</i> =1 (0=0.58); / ²	² =0%							
Test for overall effe	ct: Z=0.47 (o=0.64)								
Total, 95% CI		1,058		982	100	1.50, 1.09–2.07				
Total events	97	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	57			,				
Heterogeneity: $\chi^2 =$	10.81, <i>df</i> =5	(p=0.06);	/²=54%				-+		-	E.
Test for overall effe	,	u ,,					0.005	0.1 1	10	200
Test for subgroup of	4	,	f=1 (p=0.002	2); /²=89.4	%		E	avors	Favor	
U 1	,	- /						rimental)	(contro	-

Figure 4 RR of all-grade pulmonary hemorrhage.

Abbreviations: M–H, Mantel–Haenszel; RR, relative risk.

Study or subgroup	Experim events	ental Total	Control events	Total	Weight (%)	Risk ratio M–H, fixed, 95% Cl	Risk ratio M–H, fixed, 95% Cl
Bevacizumab							
Boutsikou et al46	3	116	0	113	4.4	6.82, 0.36–130.57	
Herbst et al42	2	39	0	42	4.2	5.38, 0.27–108.58	
Herbst et al44	3	313	1	313	8.7	3.00, 0.31–28.68	
Johnson et al40	6	66	0	32	5.8	6.40, 0.37–110.26	——
Karayama et al⁵¹	0	45	0	35		Not estimable	
Niho et al45	1	119	0	58	5.8	1.48, 0.06–35.66	
Pujol et al49	0	37	0	37		Not estimable	
Reck et al43	8	659	2	327	23.2	1.98, 0.42–9.29	
Sandler et al41	8	427	1	440	8.6	8.24, 1.04–65.63	
Seto et al47	0	75	0	77		Not estimable	
Takeda et al⁵⁰	0	50	0	50		Not estimable	
Tiseo et al52	0	95	0	103		Not estimable	
Zhou et al48	0	140	0	134		Not estimable	
Subtotal, 95% CI		2,181		1,761	60.8	3.97, 1.70-9.29	•
Total events Heterogeneity: $\chi^2=1$ Test for overall effect			4 =0%				
Ramucirumab							
Garon et al ⁸²	4	627	4	618	35.0	0.99, 0.25–3.92	_ _
Yoh et al ⁸⁰	1	76	0	81	4.2	3.19, 0.13–77.25	
Subtotal, 95% CI		703		699	39.2	1.22, 0.35–4.21	-
Total events Heterogeneity: $\chi^2=0$ Test for overall effect			4 =0%				
Total, 95% CI		2,884		2,460	100	2.89, 1.46–5.72	•
Total events	36		8				-
Heterogeneity: $\chi^2=4$ Test for overall effect	ct: Z=3.05 (p	=0.002)					0.005 0.1 1 10 20
Test for subgroub di	fferences: χ	² =2.37, df	=1 (p=0.12)	; /²=57.7%	, D		Favors Favors (experimental) (control)

Figure 5 RR of high-grade pulmonary hemorrhage. Abbreviations: M–H, Mantel–Haenszel; RR, relative risk. lung squamous cell carcinoma patients due to the small sample size or absence of original data. Finally, our literature search was limited to articles published in English leading to some selection bias.

Conclusion

Despite the limitations of our meta-analysis, we conclude that antiangiogenic monoclonal antibodies are associated with a significant increase in the risk of all-grade and high-grade bleeding. Ramucirumab may be different from bevacizumab in terms of the risk of high-grade bleeding and the risk of all-grade and high-grade pulmonary hemorrhage in lung cancer patients. Clinicians should be aware of this adverse effect and ensure close monitoring, especially in patients at high risk.

Acknowledgment

This study was supported by the Beijing Natural Science Foundation (7142125).

Disclosure

The authors report no conflicts of interest in this work.

References

- Kamba T, McDonald DM. Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br J Cancer. 2007;96:1788–1795.
- 2. Kerbel RS. Tumor angiogenesis. N Engl J Med. 2008;358: 2039–2049.
- Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. *J Clin Oncol.* 2005;23: 1011–1027.
- Poole RM, Vaidya A. Ramucirumab: first global approval. Drugs. 2014;74:1047–1058.
- Kilickap S, Abali H, Celik I. Bevacizumab, bleeding,thrombosis, and warfarin. J Clin Oncol. 2003;21:3542.
- Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Ann Intern Med*. 2009;151:264–269.
- Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. *BMJ*. 2003;327:557–560.
- Kabbinavar F, Hurwitz HI, Fehrenbacher L, et al. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. *J Clin Oncol.* 2003;21:60–65.
- Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. *N Engl J Med.* 2004;350:2335–2342.
- Kabbinavar FF, Schulz J, McCleod M, et al. Addition of bevacizumab to bolus fluorouracil and leucovorin in first-line metastatic colorectal cancer: results of a randomized phase II trial. *J Clin Oncol.* 2005;23: 3697–3705.
- Giantonio BJ, Catalano PJ, Meropol NJ, et al. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol. 2007;25: 1539–1544.

- Saltz LB, Clarke S, Diaz-Rubio E, et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. *J Clin Oncol.* 2008; 26:2013–2019.
- 13. Allegra CJ, Yothers G, O'Connell MJ, et al. Initial safety report of NSABP C-08: a randomized phase III study of modified FOLFOX6 with or without bevacizumab for the adjuvant treatment of patients with stage II or III colon cancer. *J Clin Oncol.* 2009;27:3385–3390.
- Tebbutt NC, Wilson K, Gebski VJ, et al. Capecitabine, bevacizumab, and mitomycin in first-line treatment of metastatic colorectal cancer: results of the Australasian Gastrointestinal Trials Group randomized phase III MAX study. *J Clin Oncol*. 2010;28:3191–3198.
- Stathopoulos GP, Batziou C, Trafalis D, et al. Treatment of colorectal cancer with and without bevacizumab: a phase III study. *Oncology*. 2010;78:376–381.
- Guan ZZ, Xu JM, Luo RC, et al. Efficacy and safety of bevacizumab plus chemotherapy in Chinese patients with metastatic colorectal cancer: a randomized phase III ARTIST trial. *Chin J Cancer*. 2011;30: 682–689.
- Dotan E, Meropol NJ, Burtness B, et al. A phase II study of capecitabine, oxaliplatin, and cetuximab with or without bevacizumab as frontline therapy for metastatic colorectal cancer. A Fox Chase extramural research study. J Gastrointest Cancer. 2012;43:562–569.
- de Gramont, Van Cutsem E, Schmoll HJ, et al. Bevacizumab plus oxaliplatin-based chemotherapy as adjuvant treatment for colon cancer (AVANT): a phase 3 randomised controlled trial. *Lancet Oncol.* 2012; 13:1225–1233.
- Bennouna J, Sastre J, Arnold D, et al. Continuation of bevacizumab after first progression in metastatic colorectal cancer (ML18147): a randomised phase 3 trial. *Lancet Oncol.* 2013;14:29–37.
- Cunningham D, Lang I, Marcuello E, et al. Bevacizumab plus capecitabine versus capecitabine alone in elderly patients with previously untreated metastatic colorectal cancer (AVEX): an open-label, randomised phase 3 trial. *Lancet Oncol.* 2013;14:1077–1085.
- 21. Cao R, Zhang S, Ma D, Hu L. A multi-center randomized phase II clinical study of bevacizumab plus irinotecan, 5-fluorouracil, and leucovorin (FOLFIRI) compared with FOLFIRI alone as second-line treatment for Chinese patients with metastatic colorectal cancer. *Med Oncol.* 2015;32:325–329.
- 22. Hegewisch-Becker S, Graeven U, Lerchenmuller CA, et al. Maintenance strategies after first-line oxaliplatin plus fluoropyrimidine plus bevacizumab for patients with metastatic colorectal cancer (AIO 0207): a randomised, non-inferiority, open-label, phase 3 trial. *Lancet Oncol.* 2015;16:1355–1369.
- Passardi A, Nanni O, Tassinari D, et al. Effectiveness of bevacizumab added to standard chemotherapy in metastatic colorectal cancer: final results for first-line treatment from the ITACa randomized clinical trial. *Ann Oncol.* 2015;26:1201–1207.
- Masi G, Salvatore L, Boni L, et al. Continuation or reintroduction of bevacizumab beyond progression to first-line therapy in metastatic colorectal cancer: final results of the randomized BEBYP trial. *Ann Oncol.* 2015;26:724–730.
- 25. Koeberle D, Betticher DC, von Moos R, et al. Bevacizumab continuation versus no continuation after first-line chemotherapy plus bevacizumab in patients with metastatic colorectal cancer: a randomized phase III non-inferiority trial (SAKK 41/06). Ann Oncol. 2015;26:709–714.
- 26. Snoeren N, van Hillegersberg R, Schouten SB, et al. Randomized phase III study to assess efficacy and safety of adjuvant CAPOX with or without bevacizumab in patients after resection of colorectal liver metastases: HEPATICA study. *Neoplasia*. 2017;19:93–99.
- Miller KD, Chap LI, Holmes FA, et al. Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. *J Clin Oncol.* 2005; 23:792–799.
- Miller K, Wang M, Gralow J, et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. *N Engl J Med.* 2007; 357:2666–2676.

- 29. Miles DW, Chan A, Dirix LY, et al. Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative meta-static breast cancer. *J Clin Oncol.* 2010;28:3239–3247.
- Brufsky AM, Hurvitz S, Perez E, et al. RIBBON-2: a randomized, double-blind, placebo-controlled, phase III trial evaluating the efficacy and safety of bevacizumab in combination with chemotherapy for second-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. *J Clin Oncol.* 2011;29: 4286–4293.
- Robert NJ, Dieras V, Glaspy J, et al. RIBBON-1: randomized, doubleblind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. *J Clin Oncol.* 2011;29:1252–1260.
- von Minckwitz G, Eidtmann H, Rezai M, et al. Neoadjuvant chemotherapy and bevacizumab for HER2-negative breast cancer. *N Engl J Med.* 2012;366:299–309.
- 33. Gianni L, Romieu GH, Lichinitser M, et al. AVEREL: a randomized phase III trial evaluating bevacizumab in combination with docetaxel and trastuzumab as first-line therapy for HER2-positive locally recurrent/metastatic breast cancer. J Clin Oncol. 2013;31:1719–1725.
- Cameron D, Brown J, Dent R, et al. Adjuvant bevacizumab-containing therapy in triple-negative breast cancer (BEATRICE): primary results of a randomised, phase 3 trial. *Lancet Oncol.* 2013;14:933–942.
- 35. Coudert B, Pierga JY, Mouret-Reynier MA, et al. Use of [(18)F]-FDG PET to predict response to neoadjuvant trastuzumab and docetaxel in patients with HER2-positive breast cancer, and addition of bevacizumab to neoadjuvant trastuzumab and docetaxel in [(18)F]-FDG PET-predicted non-responders (AVATAXHER): an open-label, randomised phase 2 trial. *Lancet Oncol.* 2014;15:1493–1502.
- 36. von Minckwitz G, Puglisi F, Cortes J, et al. Bevacizumab plus chemotherapy versus chemotherapy alone as second-line treatment for patients with HER2-negative locally recurrent or metastatic breast cancer after first-line treatment with bevacizumab plus chemotherapy (TANIA): an open-label, randomised phase 3 trial. *Lancet Oncol.* 2014;15: 1269–1278.
- 37. Sikov WM, Berry DA, Perou CM, et al. Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dose-dense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast cancer: CALGB 40603 (Alliance). J Clin Oncol. 2015;33:13–21.
- Diéras V, Wildiers H, Jassem J, et al. Trebananib (AMG 386) plus weekly paclitaxel with or without bevacizumab as first-line therapy for HER2-negative locally recurrent or metastatic breast cancer: a phase 2 randomized study. *Breast.* 2015;24:182–190.
- 39. Miles D, Cameron D, Bondarenko I, et al. Bevacizumab plus paclitaxel versus placebo plus paclitaxel as first-line therapy for HER2negative metastatic breast cancer (MERiDiAN): a double-blind placebo-controlled randomised phase III trial with prospective biomarker evaluation. *Eur J Cancer*. 2017;70:146–155.
- 40. Johnson DH, Fehrenbacher L, Novotny WF, et al. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. *J Clin Oncol.* 2004;22:2184–2191.
- Sandler A, Gray R, Perry MC, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. *N Engl J Med*. 2006; 355:2542–2550.
- Herbst RS, O'Neill VJ, Fehrenbacher L, et al. Phase II study of efficacy and safety of bevacizumab in combination with chemotherapy or erlotinib compared with chemotherapy alone for treatment of recurrent or refractory non small-cell lung cancer. *J Clin Oncol.* 2007;25: 4743–4750.
- 43. Reck M, von Pawel J, Zatloukal P, et al. Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. *J Clin Oncol.* 2009;27:1227–1234.

- 44. Herbst RS, Ansari R, Bustin F, et al. Efficacy of bevacizumab plus erlotinib versus erlotinib alone in advanced non-small-cell lung cancer after failure of standard first-line chemotherapy (BeTa): a double-blind, placebo-controlled, phase 3 trial. *Lancet*. 2011;377:1846–1854.
- 45. Niho S, Kunitoh H, Nokihara H, et al. Randomized phase II study of first-line carboplatin-paclitaxel with or without bevacizumab in Japanese patients with advanced non-squamous non-small-cell lung cancer. *Lung Cancer*. 2012;76:362–367.
- Boutsikou E, Kontakiotis T, Zarogoulidis P, et al. Docetaxel-carboplatin in combination with erlotinib and/or bevacizumab in patients with non-small cell lung cancer. *Onco Targets Ther.* 2013;6:125–134.
- 47. Seto T, Kato T, Nishio M, et al. Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced non-squamous non-smallcell lung cancer harbouring EGFR mutations (JO25567): an openlabel, randomised, multicentre, phase 2 study. *Lancet Oncol.* 2014;15: 1236–1244.
- Zhou C, Wu YL, Chen G, et al. BEYOND: a randomized, double-blind, placebo-controlled, multicenter, phase III study of first-line carboplatin/ paclitaxel plus bevacizumab or placebo in Chinese patients with advanced or recurrent nonsquamous non-small-cell lung cancer. *J Clin Oncol.* 2015;33:2197–2204.
- Pujol JL, Lavole A, Quoix E, et al. Randomized phase II–III study of bevacizumab in combination with chemotherapy in previously untreated extensive small-cell lung cancer: results from the IFCT-0802 trial. *Ann Oncol.* 2015;26:908–914.
- 50. Takeda M, Yamanaka T, Seto T, et al. Bevacizumab beyond disease progression after first-line treatment with bevacizumab plus chemotherapy in advanced nonsquamous non-small cell lung cancer (West Japan Oncology Group 5910L): an open-label, randomized, phase 2 trial. *Cancer.* 2016;122:1050–1059.
- 51. Karayama M, Inui N, Fujisawa T, et al. Maintenance therapy with pemetrexed and bevacizumab versus pemetrexed monotherapy after induction therapy with carboplatin, pemetrexed, and bevacizumab in patients with advanced non-squamous non small cell lung cancer. *Eur J Cancer*. 2016;58:30–37.
- 52. Tiseo M, Boni L, Ambrosio F, et al. Italian, multicenter, phase III, randomized study of cisplatin plus etoposide with or without bevacizumab as first-line treatment in extensive-disease small-cell lung cancer: the GOIRC-AIFA FARM6PMFJM trial. *J Clin Oncol*. 2017;35: 1281–1287.
- Escudier B, Pluzanska A, Koralewski P, et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. *Lancet*. 2007;370:2103–2111.
- Rini BI, Halabi S, Rosenberg JE, et al. Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206. *J Clin Oncol.* 2010;28:2137–2143.
- 55. Van Cutsem E, Vervenne WL, Bennouna J, et al. Phase III trial of bevacizumab in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. *J Clin Oncol*. 2009;27:2231–2237.
- 56. Kindler HL, Niedzwiecki D, Hollis D, et al. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303). *J Clin Oncol*. 2010;28:3617–3622.
- Burger RA, Brady MF, Bookman MA, et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. *NEngl J Med*. 2011; 365:2473–2483.
- Perren TJ, Swart AM, Pfisterer J, et al. A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med. 2011;365:2484–2496.
- Pujade-Lauraine E, Hilpert F, Weber B, et al. Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: the AURELIA open-label randomized phase III trial. *J Clin Oncol.* 2014; 32:1302–1308.
- Aghajanian C, Goff B, Nycum LR, Wang YV, Husain A, Blank SV. Final overall survival and safety analysis of OCEANS, a phase 3 trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent ovarian cancer. *Gynecol Oncol.* 2015;139: 10–16.

- 61. Coleman RL, Brady MF, Herzog TJ, et al. Bevacizumab and paclitaxelcarboplatin chemotherapy and secondary cytoreduction in recurrent, platinum-sensitive ovarian cancer (NRG Oncology/Gynecologic Oncology Group study GOG-0213): a multicentre, open-label, randomised, phase 3 trial. *Lancet Oncol.* 2017;18:779–791.
- Ohtsu A, Shah MA, Van Cutsem E, et al. Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a randomized, double-blind, placebo-controlled phase III study. *J Clin Oncol.* 2011;29:3968–3976.
- Okines AF, Langley RE, Thompson LC, et al. Bevacizumab with perioperative epirubicin, cisplatin and capecitabine (ECX) in localised gastro-oesophageal adenocarcinoma: a safety report. *Ann Oncol.* 2013; 24:702–709.
- 64. Shen L, Li J, Xu J, et al. Bevacizumab plus capecitabine and cisplatin in Chinese patients with inoperable locally advanced or metastatic gastric or gastroesophageal junction cancer: randomized, double-blind, phase III study (AVATAR study). *Gastric Cancer*. 2015;18:168–176.
- 65. Cunningham D, Stenning SP, Smyth EC, et al. Peri-operative chemotherapy with or without bevacizumab in operable oesophagogastric adenocarcinoma (UK Medical Research Council ST03): primary analysis results of a multicentre, open-label, randomised phase 2–3 trial. *Lancet Oncol.* 2017;18:357–370.
- Chinot OL, Wick W, Mason W, et al. Bevacizumab plus radiotherapytemozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370:709–722.
- Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. *N Engl J Med.* 2014; 370:699–708.
- Balana C, De Las Penas R, Sepúlveda JM, et al. Bevacizumab and temozolomide versus temozolomide alone as neoadjuvant treatment in unresected glioblastoma: the GENOM 009 randomized phase II trial. *J Neurooncol.* 2016;127:569–579.
- Seymour JF, Pfreundschuh M, Trneny M, et al. R-CHOP with or without bevacizumab in patients with previously untreated diffuse large B-cell lymphoma: final MAIN study outcomes. *Haematologica*. 2014; 99:1343–1349.
- Kay NE, Strati P, LaPlant BR, et al. A randomized phase II trial comparing chemoimmunotherapy with or without bevacizumab in previously untreated patients with chronic lymphocytic leukemia. *Oncotarget*. 2016;48:78269–78280.
- 71. Kim KB, Sosman JA, Fruehauf JP, et al. BEAM: a randomized phase II study evaluating the activity of bevacizumab in combination with carboplatin plus paclitaxel in patients with previously untreated advanced melanoma. *J Clin Oncol.* 2012;30:34–41.
- 72. Corrie PG, Marshall A, Dunn JA, et al. Adjuvant bevacizumab in patients with melanoma at high risk of recurrence (AVAST-M): preplanned interim results from a multicentre, open-label, randomised controlled phase 3 study. *Lancet Oncol.* 2014;15:620–630.
- Kindler HL, Karrison TG, Gandara DR, et al. Multicenter, double-blind, placebo-controlled, randomized phase II trial of gemcitabine/cisplatin plus bevacizumab or placebo in patients with malignant mesothelioma. *J Clin Oncol.* 2012;30:2509–2515.
- 74. Zalcman G, Mazieres J, Margery J, et al. Bevacizumab for newly diagnosed pleural mesothelioma in the Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): a randomised, controlled, open-label, phase 3 trial. *Lancet.* 2016;387:1405–1414.
- Kelly WK, Halabi S, Carducci M, et al. Randomized, double-blind, placebo-controlled phase III trial comparing docetaxel and prednisone with or without bevacizumab in men with metastatic castrationresistant prostate cancer: CALGB 90401. *J Clin Oncol.* 2012;30: 1534–1540.
- Tewari KS, Sill MW, Long HJ, et al. Improved survival with bevacizumab in advanced cervical cancer. N Engl J Med. 2014;370:734–743.
- 77. Hensley ML, Miller A, O'Malley DM, et al. Randomized phase III trial of gencitabine plus docetaxel plus bevacizumab or placebo as first-line treatment for metastatic uterine leiomyosarcoma: an NRG Oncology/Gynecologic Oncology Group study. *J Clin Oncol.* 2015;33: 1180–1185.

- Pinter M, Ulbrich G, Sieghart W, et al. Hepatocellular carcinoma: a phase II randomized controlled double-blind trial of transarterial chemoembolization in combination with biweekly intravenous administration of bevacizumab or a placebo. *Radiology*. 2015;277: 903–912.
- 79. Chisholm JC, Merks JHM, Casanova M, et al. Open-label, multicentre, randomised, phase II study of the EpSSG and the ITCC evaluating the addition of bevacizumab to chemotherapy in childhood and adolescent patients with metastatic soft tissue sarcoma (the BERNIE study). *Eur J Cancer*. 2017;83:177–184.
- Yoh K, Hosomi Y, Kasahara K, et al. A randomized, double-blind, phase II study of ramucirumab plus docetaxel vs placebo plus docetaxel in Japanese patients with stage IV non-small cell lung cancer after disease progression on platinum-based therapy. *Lung Cancer*. 2016; 99:186–193.
- Doebele RC, Spigel D, Tehfe M, et al. Phase 2, randomized, openlabel study of ramucirumab in combination with first-line pemetrexed and platinum chemotherapy in patients with nonsquamous, advanced/metastatic non-small cell lung cancer. *Cancer*. 2015;121: 883–892.
- 82. Garon EB, Ciuleanu T-E, Arrieta O, et al. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, double-blind, randomised phase 3 trial. *Lancet*. 2014;384:665–673.
- Petrylak DP, Tagawa ST, Kohli M, et al. Docetaxel as monotherapy or combined with ramucirumab or icrucumab in second-line treatment for locally advanced or metastatic urothelial carcinoma: an open-label, three-arm, randomized controlled phase II trial. *J Clin Oncol.* 2016; 34:1500–1509.
- 84. Petrylak DP, de Wit R, Chi KN, et al. Ramucirumab plus docetaxel versus placebo plus docetaxel in patients with locally advanced or metastatic urothelial carcinoma after platinum-based therapy (RANGE): a randomised, double-blind, phase 3 trial. *Lancet*. 2017;390: 2266–2277.
- 85. Tabernero J, Yoshino T, Cohn AL, et al. Ramucirumab versus placebo in combination with second line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): a randomised, double-blind, multicentre, phase 3 study. *Lancet Oncol.* 2015;16:499–508.
- Moore M, Gill S, Asmis T, et al. Randomized phase II study of modified FOLFOX-6 in combination with ramucirumab or icrucumab as second-line therapy in patients with metastatic colorectal cancer after disease progression on first-line irinotecan-based therapy. *Ann Oncol.* 2016;27:2216–2224.
- Mackey JR, Ramos-Vazquez M, Lipatov O, et al. Primary results of ROSE/TRIO-12, a randomized placebo-controlled phase III trial evaluating the addition of ramucirumab to first-line docetaxel chemotherapy in metastatic breast cancer. *J Clin Oncol.* 2015;33:141–148.
- Yardley DA, Reeves J, Dees EC, et al. Ramucirumab with eribulin versus eribulin in locally recurrent or metastatic breast cancer previously treated with anthracycline and taxane therapy: a multicenter, randomized, phase II study. *Clin Breast Cancer*. 2016;16: 471–479.
- Fuchs CS, Tomasek J, Yong CJ, et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicenter, placebo-controlled, phase 3 trial. *Lancet.* 2014;383:31–39.
- 90. Wilke H, Muro K, Van Cutsem E, et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. *Lancet Oncol.* 2014;15:1224–1235.
- 91. Yoon HH, Bendell JC, Braiteh FS, et al. Ramucirumab combined with FOLFOX as front-line therapy for advanced esophageal, gastroesophageal junction, or gastric adenocarcinoma: a randomized, double-blind, multicenter phase II trial. *Ann Oncol.* 2016;27:2196–2203.

- 92. Zhu AX, Park JO, Ryoo BY, et al. Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): a randomised, double-blind multicentre, phase 3 trial. *Lancet Oncol*. 2015;16:859–870.
- Je Y, Schutz FA, Choueiri TK. Risk of bleeding with vascular endothelial growth factor receptor tyrosine-kinase inhibitors sunitinib and sorafenib: a systematic review and meta-analysis of clinical trials. *Lancet Oncol.* 2009;10:967–974.
- Lyden D, Hattori K, Dias S, et al. Impaired recruitment of bone-marrowderived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. *Nat Med.* 2001;7:1194–1201.
- Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. *Nature*. 2005;438:820–827.
- Al-Moundhri MS, Al-Shukaili A, Al-Nabhani M, et al. Measurement of circulating levels of VEGF-A, -C, and -D and their receptors, VEGFR-1 and -2 in gastric adenocarcinoma. *World J Gastroenterol*. 2008;14: 3879–3883.

- Li C, Liu B, Dai Z, Tao Y. Knockdown of VEGF receptor-1 (VEGFR-1) impairs macrophage infiltration, angiogenesis and growth of clear cell renal cell carcinoma (CRCC). *Cancer Biol Ther.* 2011;12:872–880.
- 98. Sandler AB, Schiller JH, Gray R, et al. Retrospective evaluation of the clinical and radiographic risk factors associated with severe pulmonary hemorrhage in first-line advanced, unresectable nonsmall-cell lung cancer treated with carboplatin and paclitaxel plus bevacizumab. *J Clin Oncol.* 2009;27:1405–1412.
- Hang XF, Xu WS, Wang JX, et al. Risk of high-grade bleeding in patients with cancer treated with bevacizumab: a meta-analysis of randomized controlled trials. *Eur J Clin Pharmacol.* 2011;67:613–623.
- 100. Zhu X, Tian X, Yu C, Hong J, Fang J, Chen H. Increased risk of hemorrhage in metastatic colorectal cancer patients treated with bevacizumab: an updated meta-analysis of 12 randomized controlled trials. *Medicine (Baltimore)*. 2016;95:e4232.

Supplementary material

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
Title			
Title	I.	Identify the report as a systematic review, meta-analysis, or both.	I.
Abstract			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
Introduction			
Rationale	3	Describe the rationale for the review in the context of what is already known.	3,4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4
Methods			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (eg, Web address), and, if available, provide registration information including registration number.	
Eligibility criteria	6	Specify study characteristics (eg, PICOS, length of follow-up) and report characteristics (eg, years considered, language, publication status) used as criteria for eligibility, giving rationale.	4,5
Information sources	7	Describe all information sources (eg, databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	4
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	4
Study selection	9	State the process for selecting studies (ie, screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5
Data collection process	10	Describe method of data extraction from reports (eg, piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	5
Data items	11	List and define all variables for which data were sought (eg, PICOS, funding sources) and any assumptions and simplifications made.	5
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	5
Summary measures	13	State the principal summary measures (eg, risk ratio, difference in means).	5
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (eg, I ²) for each meta-analysis.	5
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (eg, publication bias, selective reporting within studies).	5
Additional analyses	16	Describe methods of additional analyses (eg, sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	5
Results			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	6
Study characteristics	18	For each study, present characteristics for which data were extracted (eg, study size, PICOS, follow-up period) and provide the citations.	6
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	6
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	7,8
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	7,8
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see item 15).	7,8

(Continued)

ERIS MA

PRISMA 2009 Checklist (Continued)

Section/topic	#	Checklist item	Reported on page #
Additional analysis	23	Give results of additional analyses, if done (eg, sensitivity or subgroup analyses, meta-regression [see item 16]).	7,8
Discussion			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (eg, healthcare providers, users, and policy makers).	9,10
Limitations	25	Discuss limitations at study and outcome level (eg, risk of bias), and at review-level (eg, incomplete retrieval of identified research, reporting bias).	10
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	10,11
Funding			
Funding	27	Describe sources of funding for the systematic review and other support (eg, supply of data); role of funders for the systematic review.	11

Notes: Moher D, Liberati A, Tetzlaff J, Altman DG; The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA statement. *PLoS Med.* 2009;6(7):e1000097. For more information, visit: <u>www.prisma-statement.org</u>.

OncoTargets and Therapy

Publish your work in this journal

OncoTargets and Therapy is an international, peer-reviewed, open access journal focusing on the pathological basis of all cancers, potential targets for therapy and treatment protocols employed to improve the management of cancer patients. The journal also focuses on the impact of management programs and new therapeutic agents and protocols on

Submit your manuscript here: http://www.dovepress.com/oncotargets-and-therapy-journal

Dovepress

patient perspectives such as quality of life, adherence and satisfaction. The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.